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In this paper, the marginal distribution of concomitants of k—record values (CKR) based on the Huang-Kotz Far-
lie-Gumbel-Morgenstern (HK-FGM) family of bivariate distributions is derived. In addition, we obtained the joint distribution of
CKR for this family. Also, we obtained the hazard rate, reversed hazard rate, and residual life functions of CKR using the HK-FGM
family. The weighted extropy and the weighted cumulative past extropy (WCPJ) are acquired for CKR under the HK-FGM family. In
addition, we look into the issue of estimating the WCP] by combining the empirical method with the concurrent use of KR in the
HK-FGM family. Finally, we analyzed real-world data for illustration purposes, and the outcomes are rather striking.

1. Introduction

Let G, (t) be a continuous distribution function (DF) with
a probability density function (PDF) gy (t) for a series of
ii.d. random variables (RVs) {T};,i>1}. An observation T ;s
called an upper record value if T'; > T; for every i < j. It is no
longer adequate to use the model of record values when
waiting times between two record values are considered.
Numerous situations can benefit from record values, in-
cluding industrial stress tests, weather data analyses,
sporting events, and oil and mining surveys. As mentioned
above, many of the instances are related to informational
and reliability measures in record values, see Makouei et al.
[1] because record data are scarce in practical contexts and
each subsequent record is predicted to wait for an infinite

kn
Lm,n,k (tl’ t2) =

T T (m-n)

Gr(t2)

time, statistical inference based on records is difficult. In
these circumstances, the largest second or third values
typically play a significant role. It is possible to avoid these
issues by considering the k—record values (KR) model, as
described by Berred [2] and Fashandi and Ahmadi [3]. The
PDF of the nth upper KR is given by Dziubdziela and
Kopocinski [4] as

K
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where I'(.) is the gamma function and Gy (t) = 1 = G4 (¢). In
addition, the joint PDF (JPDF) of the nth and the mth upper

KR, T, and T,,,, respectively, is given by
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The use of families of bivariate distributions with
specified marginals is recommended when prior knowledge
exists as marginal distributions. Huang and Kotz [5] in-
troduced the Huang-Kotz Farlie-Gumbel-Morgenstern
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(HK-FGM) family as an expansion of the traditional FGM
family of bivariate distributions. The PDF for this model is
provided by

912 (t,2) = gr (g, (2)[1+a(1 - (1 +)G; (1) (1 - (1 +)G%(2))],¢>0, (3)

where G (t) and G (z) are the marginal DFs of two RVs T
and Z, respectively. The admissible range of association pa-
rameter « is —¢ > <a<c”! and the range for correlation co-
efficient is —(c+2) ?min(1,c?) <p<3c(c+ 2)72.  See
Elgawad et al. [6] for more details about this family. This family
has been the focus of a great deal of research from several
perspectives. Elgawad et al. [6]; Barakat et al. [7], and Hussieny
and Syam [8] are three examples of these investigations.

If only the sequence of KR of the first component T is of

useful in various industry real-life situations by Eryilmaz [9].
There are several practical experiments that deal with KR and
their concomitants, e.g., those of Alawady et al. [10] and
Chacko and Shy Mary [11]. The PDF of the concomitant Z ,,
(the nth upper concomitant of T, ;) is given by

9@ = [ gL 0a @

where g (Z|t) is the conditional PDF of Z given T.

interest to the investigator, the second component is referred to  Moreover, the JPDF of concomitants Zp,;; and
as its concomitant. The most striking application of con-  Z_ . (n<m) is given by
comitants arises in industry and biological selection problems.
Using concomitants in reliability models has been shown to be
[ee] (00
i) (21522) = Jo Jo gZIT(Zl |t1)gsz(zzltz)me,k (t1t;)dt,dt,. (5)

For an absolutely continuous nonnegative RV T, extropy
has been presented by Lad et al. [12] as a new indicator of
uncertainty, specified by

1 (*® 1 1 B
10 = [ lor@Pae == | gr(G7 @)du.  ©

It is clear that J(T) <0. Kelbert et al. [13] defined the
weighted extropy (WJ) as

[09]

J¥(T) = —% JO t[gr (1)]7dt. (7)

Recently, Kazemi et al. [14] proposed the weighted
cumulative past extropy (WCPJ) as

(00

1
£ = JO £[Gy (O] 2dr, (8)

Almaspoor et al. [15] have investigated the extropy
measurements for CKR in the FGM family. Also, Husseiny
et al. [16] have explored some properties of the extropy
measure in concomitants of records from the Sarmanov
family of bivariate DF. While Qiu and Jia [17] examined
extropy estimators utilised in uniformity testing, Qiu and Jia
[18] examined residual extropy utilising order statistics. An
investigation of the extropy properties of mixed systems was
conducted by Qiu et al. [19].

As a whole, the paper follows the following structure.
Section 2 provides marginal DFs, moment generating
functions (MGFs), and moments of the CKR as a function of
the HK-FGM family. Moreover, the joint DF (JDF) of the
bivariate CKR for this family is derived. In addition, the

hazard rate, reversed hazard rate, and mean residual life
functions for Z,;; based on the HK-FGM family are ob-
tained. In Section 3, the W] and WCPJ are obtained. Also, we
investigate the problem of estimating the WCP] by using the
empirical technique in conjunction with the CKR based on
the HK-FGM family. Finally, we analyzed real-world data for
illustration purposes, and the results are quite impressive.

2. CKR Based on HK-FGM

In this section, based on the HK-FGM family, we obtain
marginal DFs, MGFs, and moments for the CKR. On the
basis of the HK-FGM family, we also derive the JPDF for the
bivariate CKR. As well as hazard rates, reversed hazard rates,
and residual life functions based on the HK-FGM family, the
mean residual life functions are studied for Z, .

2.1. Marginal DF of CKR. The following theorem represents
the PDF of Z,;; in a useful way. To indicate that T is
distributed as G, we use the notation T' ~ G.

Theorem 1. Let V ~ GCZ”. Then,

Iink (Z2) = (1 + 5::;<);c)gz (2) - 87(53:ch (2), (9)
where 67(13‘31 =a[l-(1+0)I,.] and I, = Zi((f) (—1)’( f ) (k/

i+k)", N(t) =00, if t is non-integer and N(t) =t, if t is
integer.
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Proof. Consider the following integration

Using the transformation (~log(Gy (t))) = v, we obtain

_ K" ® . _ — n-1,—= k-1 _Ln o0 _ ¢ n-1 —vk
L"ffﬁijo G (1) (<log (Gy (1)) (Gr ()" gy (1)l IC—IXH)J (1-e )V e, (11)
(10) After using the binomial expansion, we obtain
n W e n—1 —v 1+k W "
L F(n),z( ( )Jov Z( 1)( )(”k) w2

Now, by using equations (1), (3), and (5), we obtain

Ik (2) = g7 (@1 +a(1-(1+0),)(1-(1+0)G(2))}
(13)

where M, (w) and My, (w) are the MGFs of the RVs Z and
V, respectively. Thus, by using equation (9) or (14), the mth
moment of CKR based on HK-FGM family is given by

(m) () (o)
# 1+96, oy .“ ! (15)
The proof is now completed. O Pnst ( kc) itV
where yém) = E[Z™] and y‘(,m) = E[V™].

Remark 2. Assuming k =1 in Theorem 1, which covers
record values mostly, we obtain the result of Barakat

et al. [7] 2.2. IDF of CKR. Following are the theorems we used to

determine the JPDF g, ., (21, z,) of concomitants of Z, 4

Relying on equation (9), the MGF of CKR based on and Zpjq in HK-FGM.

HK-FGM family is given by

Theorem 3. Let V ~ G5'. Then,
My, (w) =(1+85 )M, (w) -8\ My (w),  (14)
9 nmpk] (z1,2,) = (1 + (Snlr)nkc ‘stzmkc + 5n,m,k;c)gz (21)92(2) - (8r(tlmkc + 8n,m,k:c)gZ (22)gv (21) (16)
(&y(zzmk Tt 6n,m,k:c)g2 (Zl)gV (ZZ) +(8n,m,k:c)gV (Zl)gV (ZZ)’
where
(Sn,m,kc - a(ar(tlmkc + 8r(tzmkc - 815321kc)
o)
(1) 2n-m
= 1 —_ l >
Sye = a|1=(1+0)k Z Tk
R(c) (—1)j(j-> (17)
82 —all-(1+0k" Y ——34|,
nmk:c ]20 (] + k)
[ iwjf € \[ ¢
o )(5)
é =afl-(1+c)K" PE— s m-n |
nmkic ( ) & ];) (l i+ k) (] n k)
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Proof. By using equations (2), (3), and (5), we obtain

Gonit1:22) = rri—s [+ | Ta (@) (1 (10406 () (114065 ()]
<[92(2) (1 + (L= (1+ G} () (1 - (1 + 9GS (22)))] (log Gy (1)) (19
G (0 Cr )" g (t)g1 ()
x(Gr(t,)) (—logéT(tl)) T(tl)dtzdtl.

After a little algebra, we obtain

(1) _"‘7]‘” i _ c _ = n-1,—= k-1
Mt = it om = o )., (1~ (1+ OGE (1) (log@r ()" (G ()
Gr(t:)\"" g1 (1)gr (1) "
Gr(t t t
log =12 > IrVIT ) gy dt,.
(e Gr(n)
Taking the transformation u = -log(Gy(t;)) and v = Similarly,
—log (Gy (t,)), we obtain
M W (_1)1(?)
1 2n-m
6n,m,k:c =all- (1 + C)k ; (1 " k)n . (20)

k“ 00 0O . o el — _

ke = gt o |, (1~ 01+ 9Gk () (oG (0)))" G (1)

L Gr ()" g (t)gr (1)
(megies) oGt e
o)
=afl-(1+0k" — i |s
’ i ;0 (j+k) (1)
an 00 00 . . _ e
Ok = mjo Jtl (1-(1+0)Gr (1)) (1 - (1 +0)Gy(t,)) (log(Gr (1)) 1

x Gy (tz))kf 1 (—logGT (fz))mn 1£7T (_tl)gT (t2) dt,dt,

Gr(ty) Gr(t)
= a((srg,erl,k:c + 551,214)1,k:c - 551,314)1,k:c)’
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J ZOJ Tc;ul)c;(tz)(_log@ )" Gr ()

GT (tl) (22)

where
S0 _ek'a-a +¢)?
mmkie = T () (m — n)
= m-n—1
x(—loggT (tz)) gr (t)gr (tZ)dtzdtl
(f1)
i+if € [
,  RORO (_1)”( i ><J>
=al|l—(1+c)K" s am |
; j;) (i+j+K)"(j+k)
The proof is completed. O

Remark 4. For k=1 (record case), Theorem 3 vyields the
results of Barakat et al. [7].

M i (wl,wz) = (1 +8W

nm,k:c

—(8(2)

2.3. Reliability Concepts for CKR Based on the HK-FGM
Family. In this subsection, we derived the failure rate, re-
versed hazard rate, and mean residual life functions for CKR
for any arbitrary DFs based on the HK-FGM family of
bivariate distributions. The failure rate (hazard rate) func-
tion of Z,;; is defined as

nk (2)
i (2) = Jink 2
G[n,k] (Z)
(24)
_ 920 +8,3.(9,(2) - 9v (2)
Gy (2) + ‘S;if;c):c (G2 (2) -Gy (2))
Q[nk] (LU) :E(Z[nk] —W|Z[nk]>w) = = !
’ | ' Gy (2)

B G, (z)+0%

(1485 Ymy (w)Gy (w) - 6%

nk:c

+ 87(1,2r31,k:c + 8n,m,k:c)MZ (wl )MZ (wZ) - (ar(t,lrztk:c + an,m,k:c)MV (wl )MZ (wZ)

(o)

1
nk:c (G, (2) -Gy (2)) (J

The JMGF of Z 4, and Z ,,, 1}, n < m, based on HK-FGM
family is given by

nmk:c + 8n,m,k:c)MZ (wl)MV (w2) + (8n,m,k:c)MV (wl)MV (wl)

(23)
Also, the reversed hazard rate function is given by
Ginj (2)
A (2) =7~
[n,k] G[n,k] (2)
(25)

922 +8,2.(92(2) ~ gv (2)
G, (2) +8% (G, (2) - Gy (2))

nk:c

The mean residual life function for Z,;; can be
expressed as follows:

j (2 — w)g puu (2)dz

w

(Z - w)((l + 65;3?:5)92 (Z) - 5513?:ch (z)))dz (26)

my (w)Gy, (w)

G, (2) +85. (G4 (2) - Gy (2))



where m, (w) is the mean residual life of Z and m;, (w) is the
mean residual life of V.

3. Measures of Extropy for CKR Based on the
HK-FGM Family

In this section, we study the W] and WCPJ for CKR based on
the HK-FGM family of bivariate DF. We consider the ex-
tended Weibull (EW) family of distributions, which de-
veloped by Gurvich et al. [20] as a case study for family.
According to the EW distribution, the DF is as follows:

Gy (t) =1 - exp(~tH (£;@)), ¢ > 0,7>0, (27)

where H (t;w)) is differentiable, nonnegative, continuous,
and monotone increasing when t depends on the parameter

1 o0
I(Ziun) = - J . (G (2)) dz

= _% J:O z[(1+6%). )92 (2) - 8. gv (Z)]zdz
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vector w. Also, H(t;w)— 0* as t— 0" and
H(t;w) — +ocoast —> + oo. This DF is denoted by EW
(7,w) and has the following PDF:

gr (1) = th(t;@)exp (—tH (£;@)), £ > 0, (28)

where h (t; w) is the derivative of H (t; @) with respect to t. A
number of important models are included in the EW DF,
including uniform, Weibull, generalized exponential, Ray-
leigh, and Pareto. For more details about this family see,
Jafari et al. [21].

3.1. Weighted Extropy of CKR. If Z,,;, is the CKR from HK-
FGM, then the W] of Z[n,k] is

(29)

1 (o)
- —[(1+a2.)" jo 295 (2)dz +(5%, )’ jo 2g% (2)dz - 26 (1+615.) jo 29, (2)gy (2)dz

(1+8r(tol?c) (Z)+( nkc) ] (V)+8r(lolcc)c(

where J¥(Z) is the W] of Z and J* (V) is the W] of V.

Proposition 5. Let Z|, ;) be the CKR, Z= aZ,x +b, then

1+8% )E(Zgy (2)),

Proof. From Z = aZii +b, we have g-(z) =1/agp,
(z-bla), z>b and so

o)

Ginp) (2)) dz

, (30)
1 o0
Z=5 JO (g[n,k] (Z))ZdZ

]w (Z) ]w (Z[n,k]) +b/a](Z[n’k])
() = j
B lj az + b
2
1
= ‘QJ 2(Giu (2))
w b
=1(Z i) +;](Z[n,k1)>
where J(Z,,) is the extropy of Z . O

Remark 6. Assume that T and Z are EW based on HK-FGM
(HK-FGM-EW). Then, the W] of CKR is given by

T4 (Z i) = (148 ) T8 (2) +(80.) T4y (V)

+ (Sn,k:c(l + (Sr(lf)lcc):c)EEW (ng (Z))’
(31)
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where

Jow (2) = —% j:o z[th(t; @)exp (-7H (t; @))] dz,

Jow (V) = —% J:O (c+ l)zz[rh(t; w)exp (-tH (t; w)) (1 - exp(—TH(t;w)))c]zdz, (32)

Epw (Zgy (2)) = J:O (c+ 1)z[th(t; @)exp (-TH (¢; @) (1 - exp (—7H (t; w))) dz.

Example 1. Based on Remark 6, by choosing H (t;w) =t
and 7 = 6, we have T and Z are exponentially distributed as
HK-FGM (HK-FGM-ED) with DF as

Gr,(t,2) = (1 -exp(=0,t)) (1 — exp(-6,2))[1 + a(1 - (1 —exp(-6,1))°) (1 - (1 — exp(=6,1)))]. 1, 2,6,,6,>0.  (33)

Then, we have

1 (]
1(2)= = | 28 exp(-20,2)dz

1 (]
JY(V) = - Jo (c+ 1)2z9§ exp (—26,z)

- (1 - exp(-6,2))*dz

34
(417 (Hyy - 1) G0

4(2c2 +3c+ 1)

E(Zgy (2)) = J:O (c + 1)@z exp(-26,2)
(1 -exp(-6,2))°dz

c+2_1
c+2

>

where H, denotes the generalized harmonic numbers, which
is calculated by H, = ", 1/i. Finally, the J* (Z ,,4;) based on
HK-FGM-ED can be written as

]w<Z[ k]) = _(lﬂs’gka)‘c)z_((g(a) )2 (c+1)° (Hyeir = 1)

8 mhie 4(2c2 +3c+ 1)
H. ,-1
(a) (a) 2
+ 8&1(1 + 8n3m) ;++ 5

(35)

Example 2. Based on Remark 6, by choosing H(t;w) =
—log(a —t/a) and 7 = 1, we have T and Z from the HK-FGM
with uniform marginals DF as

Gry(t,2) = ‘% [1 * “(1 "(2))(1 _G))] (36)

0<t<a,0<z<b.

Then, we have

2
_ !
-
R O o1 rz\%*
i (V)——EJO (c+1) ﬁz@ dz
(37)
_ e+l
S

E(Zgy(2)) = JZ (c+ 1)$z<g)cdz

_c+1

)

The J* (Z|,x)) based on HK-FGM-uniform distribution
can be written as

(1489 (69.) (c+1)

w —
J (Z[",k]) - 4 - 4 (38)
(@ @\ct1
+ 8,1:’;(:5(1 + 8,[3‘“) et



Example 3. Based on Remark 6, by choosing H (t; @) = >
and 7 = 1/20%, we have a HK-FGM bivariate Rayleigh dis-
tribution (HK-FGM-RD) for T and Z with DF
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) (o) [ () O (O (4)

Then, we have

» 1 (® 5 z 2 Z2 22 2¢
JY(WV) = - JO (c+1) z(;) exp(—a—g)<l - exp(—z—a%)) dz w0

2

=(-1D)*"(c+1)T(-2(c+ 1)) (2c + 1),

00 2\ z 2\\°
E(Zgy(2)) = JO (c+ 1)z<0—%> exp<—0—2)<1 - exp(—E>> dz

_ 2m(-1)esc(me)
- c+2 '

The J*¥ (Z,,x)) based on HK-FGM-RD can be written as

o 2
(1 + ar(t,k):c) _(8(00

]w(Z[”,k]) = 4 nk:c

Figures 1(a) and 1(b) show WJ in Z;; from HK-
FGM-ED for various values of n and k at ¢ = 2,3. These
properties can be derived from Figure 1:

(1) With fixed ¢ and k, the value of W] increases as
n, (n<4) increases. Stability occurs in the values of
W] when n> 4, see Figure 1(a).

(2) As k increases, the value of W] decreases with fixed c,
and n,. Especially, when k > 3, see Figure 1(b)

Table 1 displays the W] of Y, ;; from HK-FGM-ED at
¢ =2, ¢ =4. From Table 1, the following properties can be
extracted:

(i) Forn> 1, and ¢ = 2, the value of J* (Z,4,) decreases
as the value of n increases at k = 1, and the value of
J¥(Z,x)) increases as the value of n increases at
k=3,6

)~ (e + PT(=2(c + DT (2c +1) - 8 (1+6%

e

nk:c c+2

nk:c

(ii) Forn>1, and ¢ = 4, the value of J* (Z ,,;) decreases
as the value of n increases at for (« < 0), and the value
of J¥(Z,x;) increases as the value of n increases at
k = 3,6 and the value of J*“(Z|,,) decreases as the
value of n increases at k = 1 for (a«>0)

Table 2 displays the W] of Y (,,;; from HK-FGM-copula
atc = 2and ¢ = 4. From Table 2, the following properties can
be extracted:

(i) For n>1, and ¢ = 2 and ¢ = 4, the value of J* (Z,,4))
increases as the value of #n increases for (a <0), and
the value of J*(Z,;;) decreases as the value of n
increases for (a>0)

3.2. Weighted Cumulative Past Extropy of CKR. 1f Z,,; is the
CKR from HK-FGM, then the WCP] of Z|,;; is



Journal of Mathematics 9
"(Z,) . . . . . I (Z,)
2 4 6 8 10 008
o051 0.10 \
0.12 +
-0.10 | 0.14 [
0.16
-0.15 +
0.18 |
020k -0.20
2 3 4 5 6 7 8
— J"(Z,,) — I"Z,,)
"2, — rZ) — I(Zy) — 12y
(Z[m}] P (Zyy — "2y
] (Zsy,
(a) (b)
Figure 1: W] in Z, from HK-FGM-ED. (a) c=2 and k=1, 2, 3, 4, and 5. (b) c=3 and k=2, 4, 5, 7, and 10.
TaBLE 1: J¥(Z,;) from HK-FGM-ED.
c=2 c=4
k n a=-0.2 a=-0.1 a=0.1 a=03 k n a=0.06 a=0.01 a=0.1 a=02
1 1 -0.125 -0.125 -0.125 —-0.125 1 1 —0.125 -0.125 -0.125 -0.125
1 2 -0.123519 -0.123762 -0.127234 —0.134688 1 2 —0.126538 —0.124918 —0.126421 —0.132825
1 3 —0.12464 —0.123492 —0.129163 —0.145456 1 3 —0.129147 —0.124888 -0.131323 —0.154189
1 4 -0.125994 —0.123517 —0.130442 —0.153205 1 4 -0.131591 —0.124887 —-0.13653 -0.176204
1 5 —0.126943 —0.123585 —0.131188 —0.157884 1 5 —0.133336 —0.124893 —0.140422 —0.192487
1 6 -0.127502 —0.123636 —0.131595 -0.160479 1 6 —0.134413 —0.124899 —0.142873 -0.202697
1 7 —-0.127807 —0.123666 -0.13181 —0.161855 1 7 —0.135025 —0.124904 —0.144278 —0.208541
1 8 —-0.127967 —0.123682 —-0.13192 -0.162567 1 8 —0.135356 —0.124906 —0.145042 -0.211713
1 9 —0.128049 —0.123691 -0.131976 -0.16293 1 9 —0.13553 —-0.124907 —0.145444 -0.213381
1 10 —0.128091 —0.123695 —0.132005 -0.163114 1 10 —0.135619 —0.124908 —0.145652 —0.214243
3 1 —0.129321 —0.12681 —0.123893 -0.123786 3 1 —0.124971 —-0.125083 -0.126825 —0.130873
3 2 —0.126479 —0.125677 —0.124448 —0.123718 3 2 —0.124888 —0.125049 —0.12587 —0.127596
3 3 —0.124553 —0.124767 —0.125253 —0.125818 3 3 -0.12497 —0.125005 —0.125059 —0.125131
3 4 —0.123646 —0.124151 —0.126194 —0.129616 3 4 —0.125364 —0.124964 —0.124948 —0.125588
3 5 —0.123506 -0.123783 -0.127156 —0.134285 3 5 —0.126099 —0.12493 —0.125755 —0.129745
3 6 —-0.123828 —-0.12359 —-0.128057 -0.139114 3 6 -0.127102 —0.124907 -0.127375 —0.137099
3 7 —0.124373 —0.123507 —0.128853 —0.143638 3 7 —0.128251 —0.124893 —0.129526 —0.146482
3 8 —0.124984 —0.123486 —0.129526 —0.147616 3 8 —0.129428 —0.124887 —0.131901 —0.156651
3 9 —0.125572 —0.123497 —0.13008 —0.150969 3 9 —0.130542 —0.124885 —0.134251 —0.166613
3 10 -0.126092 —0.123523 —0.130524 —-0.153712 3 10 —0.131539 —0.124886 —0.136416 -0.175726
6 1 —-0.131006 -0.127431 -0.123711 —0.124562 6 1 —-0.125031 —0.125096 —0.127255 —-0.132392
6 2 —0.129492 —0.126874 —0.123871 —0.123846 6 2 —0.124995 —0.125088 —-0.127003 —0.131498
6 3 -0.127891 -0.126257 -0.12412 —0.123491 6 3 —0.124943 —0.125075 —0.126584 —-0.13003
6 4 —0.126446 —0.125663 —0.124457 —-0.123731 6 4 —0.124897 —0.125056 —0.12606 —0.128231
6 5 —0.125279 —0.125136 —0.124869 —0.124626 6 5 —0.124889 —-0.125034 —0.125533 —0.126501
6 6 —0.124425 —0.124695 —0.125339 -0.12612 6 6 —0.12495 —0.12501 —0.125115 -0.12527
6 7 —0.12387 —0.124341 —0.125845 —0.128096 6 7 —0.125105 —0.124986 —0.1249 —0.124894
6 8 —0.123573 —0.124068 -0.126369 —0.130418 6 8 —0.125365 —0.124963 —0.124948 —-0.125593
6 9 —0.123486 —0.123864 —0.126893 -0.13295 6 9 —-0.125732 —0.124944 —0.125282 —0.127443
6 10 —0.123557 —-0.123718 —0.127404 —0.135576 6 10 —0.126195 —0.124927 —0.125893 —0.13039
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TaBLE 2: J¥(Z,,4;) from HK-FGM-copula.

c=2 c=4
k n a=-0.2 a=-0.1 a=0.1 a=03 k n a=0.06 a=0.01 a=0.1 a=02
1 1 -0.25 -0.25 -0.25 —0.25 1 1 —0.25 -0.25 -0.25 -0.25
1 2 —-0.215278 —-0.230903 —0.272569 —0.328125 1 2 —0.228286 —0.254388 -0.303757 -0.379474
1 3 —0.200471 -0.220604 —0.288659 —0.393767 1 3 —0.216354 —0.25816 —0.364414 —0.55175
1 4 —0.194522 —0.215355 —0.298457 —0.436806 1 4 —0.211325 —0.260788 —0.413701 —0.701456
1 5 —0.192058 -0.212704 -0.303946 —0.46179 1 5 —0.209463 —0.262409 —0.446778 —0.805077
1 6 —0.190977 -0.211365 —0.306883 —0.475391 1 6 —0.208803 —0.263338 —0.466595 —0.868108
1 7 -0.190476 —0.210688 —-0.308413 —0.482539 1 7 —0.208565 —0.263846 -0.477685 —0.903651
1 8 —0.190235 —0.210346 —0.309197 —0.48622 1 8 —0.208472 —0.264115 —0.483636 —-0.922802
1 9 -0.190117 -0.210174 —0.309596 —0.488095 1 9 —0.208433 —0.264255 -0.48675 -0.93284
1 10 —0.190058 —0.210087 —0.309797 —0.489042 1 10 —0.208416 —0.264326 —0.488352 -0.938011
3 1 —-0.2899 —0.268725 —0.233725 —0.208525 3 1 -0.268906 -0.247192 -0.226327 —-0.212449
3 2 -0.26562 —-0.257593 —0.242843 —0.229833 3 2 —0.261311 —0.248247 —0.234163 —0.222095
3 3 —0.244299 -0.247115 —0.252953 —0.259063 3 3 —0.251288 —0.249787 —0.247897 —0.245848
3 4 —-0.227886 —-0.238342 —-0.26286 —-0.292187 3 4 —0.240979 —0.25161 —0.267479 —0.288011
3 5 —0.21608 —0.231402 —0.271874 —0.325451 3 5 —0.231886 —0.253518 —0.291594 —0.347444
3 6 —-0.207889 -0.226071 —-0.279676 —-0.356269 3 6 —0.224658 —0.255357 —0.318148 —0.418685
3 7 —0.202309 —0.222039 —0.286193 —0.383272 3 7 -0.219319 -0.257031 —0.344968 —0.494727
3 8 —0.198531 —0.219011 —0.291497 —0.406016 3 8 —0.215578 —0.258491 —0.370313 —0.569305
3 9 —0.195969 —0.216746 —0.295732 —0.424629 3 9 —0.213055 —0.259723 —0.393066 —0.637995
3 10 —0.19422 —0.215052 —0.299065 —0.439543 3 10 —0.211398 -0.260737 —0.412696 —0.698341
6 1 —-0.302615 -0.274314 -0.229672 —-0.200973 6 1 -0.271811 —0.24681 —0.223813 —-0.210333
6 2 -0.291227 -0.269315 —0.233282 -0.207636 6 2 —0.270133 —0.247029 —0.225235 —0.211457
6 3 -0.27827 -0.263477 -0.237837 -0.217457 6 3 —0.267165 —0.247426 —0.227955 -0.214114
6 4 —0.265309 —0.257445 -0.242974 -0.230177 6 4 -0.263 —0.248005 —0.23225 —0.219395
6 5 —0.253245 -0.251612 —0.248408 —0.245287 6 5 -0.257927 —0.248746 —0.238322 —0.22856
6 6 —0.242513 —-0.246197 -0.253923 -0.262126 6 6 —-0.252323 —-0.249619 —0.246268 -0.242711
6 7 —0.233255 —0.241302 —0.25935 —0.280003 6 7 —0.246562 —0.250587 —0.256059 —0.262529
6 8 —0.225439 —0.236957 —0.264567 —0.298275 6 8 —0.240956 —-0.251615 -0.26753 —0.288131
6 9 —0.218941 —0.23315 —0.269492 —0.3164 6 9 —0.23573 —0.252668 —0.280406 —0.319091
6 10 —0.213595 —0.229841 —0.274071 —0.333951 6 10 -0.231027 -0.253718 —0.294333 —0.354554
w 1 (> 2
E(Zn) = JO 2(Gux (2)) dz
R 59 G 59 G (1%
- _E JO Z[(I + n,k:c) Z (Z) ~ Y“nkicFV (Z)] z
(42)

NS

=(1+89. ) (2) +(8% )& (v)

nk:c nk:c

+ 8% (1+ 8% )E(U?Q(wq (),

nk:c nk:c

where £ (Z) is the WCPJ of Z, £“ (V) is the WCP] of V, U is
a uniformly RV on (0, 1), and Q(u) = G}l (u) is the quantile
function (QF). The QF density is defined as q(u) =1/g,
(Q(u)), where q’(u) is the derivative of Q (1) with respect to
u, i.e., q(u) = Q (u).

£ (Zin) = (1489 V€8, (2) +(812.) €85, (V) + 6% (1 + 8% ) Epy (U2 Qw)g (),

[(1 +3 )’ J 2G3 (2)dz +(6%.) J 2G? (2)dz - 255‘}3.C<1 + o J 2G, (2)Gy (z)dz)]
0 o 0 o Jo

Proposition 7. Let Z, ;) be the CKR from HK-FGM, Z=a
Zig+b a>0, b>0 then &°(Z)=a*l"(Z,,) +abé

Zinky)

Remark 8. Assume that T and Z are EW based on HK-FGM
(HK-FGM-EW). Then, the WCPJ of CKR is given by

(43)
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where

£ (2) = _% ro 2[1 - exp (—7H (t; @))2dz,
0
w O o \2(eH)
&y (V) = ——J z[1 —exp(—7H (t; w))] dz,
2J)o

EEW(UC+2Q(M)q (u)) = J:O z[1 - exp(-TH (t; o))z
(44)

t—a
GT,Z(t’Z) = 1

Then, we have

a; +2a,b, + 3b;

§(2) = - 24 ’
vy - (32-0:) (@, + by (2c +3))
&(V) = 4(c+2)(2¢c +3) - 19
c+2 _(a,=by)(a, +b,y(c +3))
E(U?Q(u)q(w)) = (c+3)(c+4) '

2 2
fw(Z[n,k]) _ {1 L@ )mz +2a,b, + 3b; (s

nk:c

-a,

B ) [1+(x(1—<t
by -a; b,-a, by - a,

11

Example 4. Based on Remark 6, by choosing H (t;w) =
—log(b—t/b—-a) and 7 =1, we have T and Z follow the
HK-FGM with uniform marginals DF as

(45)

c zZ—a c
) )(1—(b2_ azz) )],a1<t<b1,a2<z<b2.

&z (nk))» in the case of HK-FGM-uniform distribution,
can be written as follows:

( (@) )2 (a, - by)(ay + by (2¢c + 3))

=0, (1+8,5%)

Example 5. Based on Remark 6, by choosing H (t; w) = —log
(1- (t/ﬂ)A) and 7 = 1, we have T and Z follow the HK-FGM
bivariate power distribution with DF as

by IR
oY GV oG

Then,
win B
@)= 400, +1)°
won_ B
&)= 4((c+ DAy +1)° (49)

c+2 _ /—;i
E(U™QUg(w) = Ay(c+2)+2

24 mkic 4(c+2)(2c+3)
(47)
(a, - b,)(a, +b,(c+3))
(c+3)(c+4) ’
Ac z A
) ><1—<) >:|,O<t<[$1,0<z<ﬂ2. (48)
B,

Table 3 displays the WCP] of Y, ;; from HK-FGM-
copula at ¢ = 2, ¢ = 4. From Table 3, the following properties
can be extracted:

(i) For ¢ = 2 and ¢ = 4, the value of & (Z x)) decreases
as the value of n increases for (a < 0), and the value of
§Y(Z,4) increases as the value of n increases for
(a>0)

Table 4 displays the WCPJ of Y ,,;; from HK-FGM with
power distribution at ¢ = 2,1, = 1, and ¢ = 4, A, = 2. From
Table 4, the following properties can be extracted:
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TaBLE 3: £ (Z ) in HK-FGM copula.

c=2 c=4

k n a=-0.2 a=-0.1 a=0.1 a=0.3 k n a=0.06 a=0.01 a=0.1 a=0.2

1 1 -0.125 —0.125 -0.125 -0.125 1 1 -0.125 -0.125 -0.125 -0.125

1 2 —0.139468 —-0.132089 —-0.1182 —0.105469 1 2 —0.134872 —0.123403 —0.109645 —-0.0956616
1 3 —0.149229 -0.136729 —0.114043 —0.0944459 1 3 —0.14336 -0.1221 —0.0980462 —0.0756499
1 4 —0.155003  —-0.139426  -0.111725  -0.0886285 1 4 —0.149272  -0.121226  —0.0907486  —0.0642505
1 5 —0.158189 —0.140901 —0.110487 —0.0856227 1 5 —0.152921 -0.1207 —0.086541 —0.058177
1 6 —0.159881 —-0.14168 —0.109841 —0.0840837 1 6 —0.155011 —0.120403 —0.0842276 —0.0550125
1 7 -0.160758 —0.142083 —0.109508 —0.0833002 1 7 —-0.156153 -0.120242 —0.0829924 —0.0533775
1 8 —0.161208 —0.142289 —0.109339 —0.0829031 1 8 —0.156758 -0.120157 —0.0823459 —0.0525373
1 9 —-0.161435 —0.142394 —0.109253 —-0.0827027 1 9 -0.157073 —-0.120112 —-0.082012 —-0.0521078
1 10 —0.161551 —0.142447 —0.10921 —0.0826017 1 10 -0.157234 —0.12009 —0.0818414 —0.0518894
3 1 —-0.113742  -0.119269  —0.130935 —0.143419 3 1 —0.118682  —0.126074 —0.13602 —0.147653
3 2 —0.120156 —0.12256 —0.127476 —0.132538 3 2 —-0.121055 -0.125666 —-0.131763 —-0.138762
3 3 —0.126957 —-0.125976 —-0.12403 -0.122107 3 3 —0.124521 -0.12508 —-0.125801 —-0.126605
3 4 —0.133373 —0.129136 —-0.120964 —0.113192 3 4 -0.128624 —0.124403 -0.119113 -0.113418
3 5 —0.139037 —0.131882 —0.118391 —0.105992 3 5 —0.132915 —0.123712 —0.112521 —0.100932
3 6 —0.143826  —-0.134174  —-0.116305 —0.100353 3 6 —-0.137054  —0.123062 —0.10653 —0.0900839
3 7 -0.147757 —0.136035 —0.114651 —0.0960099 3 7 —0.14082 —0.122483 —0.101373 —0.08117

3 8 —0.150913 -0.137519 -0.113357 —-0.0926978 3 8 —0.144104 —0.121988 —0.0970938 —0.0741052
3 9 —0.153408 —0.138684 -0.112356 —0.090186 3 9 —0.146876 —0.121577 —0.0936331 —0.0686326
3 10 —0.155357 —0.13959 -0.111586 —0.0882872 3 10 —0.149158 —0.121243 —0.0908841 —0.0644526
6 1 -0.110783 -0.117726 —0.132607 —0.148816 6 1 -0.117822 -0.126224 —-0.137599 —0.150993
6 2 —0.113422 —0.119103 -0.131114 —0.14399 6 2 -0.118315 —0.126138 —0.13669 —0.149068
6 3 -0.116672  —0.120781  —0.129328 —0.138313 6 3 -0.119209  -0.125983 —-0.135062 -0.145636
6 4 —0.120246 —0.122606 —0.127429 —0.132393 6 4 —0.120511 -0.125759 -0.132727 —-0.14076

6 5 —0.123936  —0.124467  —0.125535 —-0.12661 6 5 —0.122178  —0.125474 —0.129799 —0.134717
6 6 —0.127595 —0.126293 —0.123717 -0.121182 6 6 —0.124143 —-0.125143 —0.126438 -0.127886
6 7 —0.131124 —0.128035 -0.122019 —0.11622 6 7 -0.126322 —0.124781 —0.122818 —0.120661

6 8 —0.134457  —0.129665  —0.120462 -0.111767 6 8 —0.128633  —0.124401 —0.119098 -0.113387
6 9 —0.137554 -0.131167 —0.119053 —0.107819 6 9 —0.131003 —0.124018 —0.115409 —0.106335
6 10 —-0.140395 —-0.132535 -0.117791 —0.104352 6 10 —-0.133366 —-0.12364 -0.111851 —0.0996951

TaBLE 4: & (Z 1)) in HK-FGM with power distribution.
c=2and A, =1 c=4and A, =2

k n a=-0.2 a=-0.1 a=0.1 a=03 k n a=0.06 a=0.01 a=0.1 a=02

1 1 -0.125 —0.125 -0.125 -0.125 1 1 —0.0833333 —0.0833333 —0.0833333 —0.0833333
1 2 —0.139468 —-0.132089 -0.1182 —0.105469 1 2 —0.090872 —0.0821168 —0.0716815 -0.0611704
1 3 —0.149229 -0.136729 —0.114043 —0.0944459 1 3 —0.0973787 —0.081125 —0.0629549 —0.0463646
1 4 —0.155003 -0.139426  —-0.111725 —0.0886285 1 4 —0.101923 —0.0804606 —-0.0575055 —-0.0381221
1 5 —0.158189 —0.140901 —0.110487 —0.0856227 1 5 —0.104732 —0.0800605 —0.0543808 —0.033819

1 6 —0.159881 —0.14168 —0.109841  —0.0840837 1 6 —0.106343 —0.0798346  -0.0526689  —0.0316105
1 7 —-0.160758 —0.142083 —0.109508 —0.0833002 1 7 -0.107223 —-0.0797122 —-0.0517567 —0.0304805
1 8 —-0.161208 —0.142289  -0.109339 —0.0829031 1 8 -0.10769 —-0.0796475 —0.0512798 —0.0299031
1 9 -0.161435  —0.142394  -0.109253  -0.0827027 1 9 -0.107933 —-0.079614 —0.0510337  —0.0296089
1 10 —0.161551 —0.142447 —0.10921 —0.0826017 1 10 —0.108058 —0.0795968 —0.0509079 —0.0294595
3 1 —0.113742  -0.119269  —0.130935 —0.143419 3 1 —0.078527 —0.0841522 —0.091751 —0.100678

3 2 —0.120156 —0.12256 -0.127476 —0.132538 3 2 —0.0803307 —-0.0838406  —0.0884944 —0.0938512
3 3 -0.126957  —-0.125976 —0.12403 -0.122107 3 3 —0.0829686  —0.0833942 —0.0839435 —0.0845564
3 4 —0.133373 —0.129136 —-0.120964 -0.113192 3 4 —0.0860965 —0.0828784 —0.078855 —0.0745353
3 5 —0.139037 —0.131882 —0.118391 —0.105992 3 5 —0.0893752 —0.0823523 —0.073856 —0.0651192
3 6 —0.143826 —-0.134174 —-0.116305 —0.100353 3 6 —0.0925424 —0.0818574 —0.0693309 -0.057011

3 7 —0.147757 —-0.136035 —0.114651 —0.0960099 3 7 —0.0954294 —0.0814169 —0.0654502 —-0.0504134
3 8 —-0.150913  -0.137519  —0.113357  —0.0926978 3 8 —0.0979501  —0.0810403  -0.0622418  —0.0452375
3 9 —-0.153408 -0.138684 —0.112356 —0.090186 3 9 —0.10008 —0.0807274  —-0.0596552 —0.0412687
3 10 —0.155357 —0.13959 -0.111586 —0.0882872 3 10 —0.101835 —0.0804732 -0.0576064  —0.0382665
6 1 -0.110783 -0.117726  —0.132607 —0.148816 6 1 —0.0778739 —0.0842663 —0.0929604 —0.103248

6 2 —0.113422 -0.119103 —-0.131114 -0.14399 6 2 —0.0782488 —0.0842007 —0.0922641 —0.101766
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TaBLE 4: Continued.
c=2and}, =1 c=4and A, =2

k n a=-0.2 a=-0.1 a=0.1 a=03 k n a = 0.06 a=0.01 a=0.1 a=02
6 3 —0.116672 —0.120781 —0.129328 —0.138313 6 3 —0.0789276 —0.0840825 —0.0910172 —0.0991272
6 4 —0.120246 —-0.122606 —0.127429 —0.132393 6 4 -0.0799166 —0.0839117 —0.0892313 —0.0953835
6 5 —0.123936 —0.124467 —0.125535 —0.12661 6 5 —0.081185 —0.0836949 —0.0869935 —0.0907532
6 6 —0.127595 —0.126293 —-0.123717 —-0.121182 6 6 —0.0826802 —0.0834425 —0.0844292 —0.0855341
6 7 -0.131124 —-0.128035 —0.122019 —0.11622 6 7 —0.0843406 —0.0831662 —-0.0816717 —0.0800313
6 8 —0.134457 —0.129665 —0.120462 -0.111767 6 8 —0.0861041 —0.0828771 —0.078843 —0.0745122
6 9 —-0.137554 -0.131167 —0.119053 -0.107819 6 9 —0.0879135 —0.082585 -0.0760437 —0.0691842
6 10 —0.140395 —0.132535 —-0.117791 —0.104352 6 10 —0.0897199 —0.0822978 —0.0733495 —0.064191

(i) For ¢ = 2 and ¢ = 4, the value of & (Z 1x)) decreases
as the value of n increases for (a < 0), and the value of
§“(Z,)) increases as the value of n increases for

3.3. Estimating of WCP] for CKR Based on HK-FGM Family.
This section uses empirical estimators to calculate the WCP]
for concomitant Z |, ;. Our next task is to estimate the WCP]

(a>0) for concomitant using the empirical WCPJ. Let (T}, Z)),
where i = 1,2,..., be a HK-FGM sequence. Using the re-
lation (42), the empirical WCP] of Z|,, ;; may be calculated as
follows:

~w 1
& (Zow) = JO 2[Grun ()] dz
11 @ \& @ & (]
=1, z[(1+6,%.)G (2) - 8,%.Gy (2)] dz
1 n-1 D, R R R R (50)
- JD’ 2(1+89. )G () +(8%9.) Gy (2) - 20 (1469 )G, (2)Gy (2)dz
j=17Dj
15 2 2 @ V(N (5@ IV 5@ @ (A"
= _Z . 1(D(j+1) - D(j)) (1 + Sn,k:c) (;) +(6n,k:c) (1’1) - 28n,k:c(1 + (Sn,k:c)(;) :
=

4. Application of Real Data

In Table 5, we present 31 annual observations (1980-2010)
on exports of goods and services T and GDP growth Z as
part of the economic dataset used by El-Sherpieny et al. [22]
and Barakat et al. [23]. The first collection of these statistics
was carried out both by the World Bank and the OECD.
Considering that the correlation between the two datasets is
0.2709, those data are relevant to the FGM copula and its
generalizations, including HK-FGM. As part of their re-
search, El-Sherpieny et al. [22] used the maximum likelihood

estimation (MLE) approach to compare three FGM families
characterized by Weibull (FGM-WD), gamma, and gener-
alized exponential (GE) marginals. As a result of this in-
formation, Barakat et al. [23] investigated some measures of
information to assess this data. In this study (see Table 6), we
estimate four parameters based on HK-FGM-WD and the
MLE method y;, §;,i = 1,2, in the Weibull DF, where WD is
given by Gy, (w) =1 - exp(—(w/B;)"),w>0, besides the
shape parameters « and c. Table 7 examines the W] measure
for the model estimated HK-FGM-WD at g, = 0.207 and
B, = 0.791.
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TaBLE 5: Data of economics.

Years T Z

1980 30.51 10.01
1981 33.37 3.76
1982 27.03 9.91
1983 25.48 7.40
1984 22.35 6.09
1985 19.91 6.60
1986 15.73 2.65
1987 12.56 2.52
1988 17.32 7.93
1989 17.89 4.97
1990 20.05 5.70
1991 27.82 1.08
1992 28.40 4.43
1993 25.84 2.90
1994 22.57 3.97
1995 22.55 4.64
1996 20.75 4.99
1997 18.84 5.49
1998 16.21 4.04
1999 15.05 6.11
2000 16.20 5.37
2001 17.48 3.54
2002 18.32 2.37
2003 21.8 3.19
2004 28.23 4.09
2005 30.34 4.48
2006 29.95 6.85
2007 30.25 7.09
2008 33.04 7.16
2009 24.96 4.67
2010 21.35 5.15

TABLE 6: Parameters estimation for HK-FGM-WD.

MLE parameters estimation

} B 3! B Ha B, o ¢
HK-FGM-WD 1.0567 0.698 0.207 0.791 -0.265 0.729
TasLe 7: W] of HK-FGM-WD at g, = 0.207 and §, = 0.791. Conflicts of Interest
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