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Tis article introduces a generalized approach for analyzing stability and establishing the existence of positive solutions in
a specifc type of diferential equations known as p-Laplacian ψ-Caputo fractional diferential equations with fractional integral
boundary conditions. Te study utilizes various techniques, including the analysis of Green’s function properties and the ap-
plication of Guo–Krasnovelsky’s fxed point theorem on cones. By employing these methods, the research establishes novel
fndings concerning the existence and nonexistence of positive solutions. Te investigation relies on fractional integrals, dif-
ferential operators, and fundamental lemmas as fundamental tools. To assess solution stability, the Hyers–Ulam concept is
employed, which extends prior research and introduces a specifc defnition. Te article also provides numerical examples that
support the obtained results, thereby demonstrating the practical applicability and accuracy of the proposed methods. Moreover,
the study contributes to a deeper understanding of this subject matter and highlights real-life applications for these types of
problems. Overall, this study ofers a comprehensive analysis of stability and solution existence in a specifc class of diferential
equations, with implications that extend to real-world scenarios such as engineering systems, fnancial modeling, population
dynamics, epidemiology, and ecological studies. Tese types of problems arise in various felds where modeling and analyzing
complex phenomena are necessary.

1. Introduction

Fractional calculus, a feld of mathematical analysis, ex-
pands upon the principles of diferentiation and integration
to encompass noninteger orders. Te roots of this branch
can be traced back to the 18th century, where notable
mathematicians such as Leibniz and Euler made early
contributions. However, it was not until the mid-19th
century that fractional calculus gained increased atten-
tion from the scientifc and mathematical communities. In
recent years, fractional calculus has gained increasing at-
tention and has become an active area of research. Many
mathematical techniques and numerical methods have
been developed to solve fractional diferential equations
and perform fractional calculus operations. Tis feld has
diverse applications in physics, engineering, signal

processing, fnance, and control theory [1–4]. By providing
an extension to conventional calculus, fractional calculus
enables a more comprehensive comprehension of intricate
systems and phenomena, and this is due to its remarkable
properties and wide-ranging applications of this subject
that render it a captivating area of exploration for math-
ematicians, scientists, and engineers alike. Several studies
have presented proof that fractional models provide a more
accurate and organized depiction of natural phenomena
when compared to conventional models based on integer-
order and ordinary time-derivatives. Tis has been ex-
tensively discussed in scholarly works such as [5–7], and
the relevant literature cited therein.

Here, we present various examples showcasing the ap-
plications of fractional calculus. In a study by Mohammadi
et al. [7], a novel fractional system was utilized for modeling
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hearing loss associated with the mumps virus. Tis system
employed a nonsingular kernel fractional operator called the
Caputo–Fabrizio derivative. Te fractional-order derivative,
unlike its integer-order counterpart, efectively accounted
for memory efects and nonlocal behavior. Tis research
marked the frst instance of employing the Caputo–Fabrizio
derivative for modeling hearing loss with the mumps virus.
Another signifcant contribution was made by Rezapour
et al. [8], where the authors introduced a generalized
fractional system for analyzing the dynamics of anthrax
disease transmission. Tey employed the Caputo–Fabrizio
derivative, a fractional operator without a singular kernel, to
develop this novel approach. Te authors observed that the
approximate solutions obtained from the fractional Capu-
to–Fabrizio model gradually approached those derived from
the classical integer-order system as time progressed.
Moreover, several researchers have successfully imple-
mented fractional extensions of mathematical models
originally formulated with integer orders, demonstrating
their natural representation of real-world phenomena.
Notable examples include the works of Aydogan et al. [9],
Baleanu et al. [5, 10–12], Mohammadi et al. [13], and George
et al. [14], among others. Tese studies systematically in-
corporated fractional calculus into existing models, further
enriching their accuracy and applicability.

Fractional boundary value problems (FBVPs) have
gained considerable attention due to their broad applications
in various felds. FBVPs ofer a robust framework for
modeling complex phenomena and provide valuable insights
into the behavior of fractional systems. Tese problems have
found applications in diverse areas such as heat conduction,
control systems, and population dynamics. Numerous in-
vestigations have been devoted to studying the existence of
positive solutions for fractional diferential equations with
integral boundary conditions. Tese investigations employ
techniques such as the fxed point theory and upper and
lower solution methods. Relevant references for further in-
formation include ([15–31]) and references therein. Fur-
thermore, signifcant progress has been made recently in the
exploration of p-Laplacian operators and the treatment of
eigenvalue problems associated with fractional diferential
equations. Notable contributions in this feld have beenmade
by researchers such as Bai et al. Noteworthy references for
this topic include ([17, 29, 32–40]) and references therein.

Researchers have also made signifcant advancements in
understanding the spectral properties and solution behavior
of eigenvalue problems in fractional diferential equations.
Several studies have investigated various aspects, including
the existence, uniqueness, and stability of eigenvalues
and eigenfunctions. Contributions by researchers such as
Bai et al. have greatly enhanced our understanding of ei-
genvalue problems in the context of fractional diferential
equations. Key references for further exploration include
([10, 17, 20, 21, 33, 38, 42–44]) among others. Tese works
have greatly enriched our understanding of eigenvalue
problems in the context of fractional diferential equations.

Regarding the function ψ, fractional derivatives serve as
generalizations of the Riemann–Liouville derivatives. Te
ψ-Caputo fractional derivative difers from the classical
derivative due to the presence of kernel terms. Recently,
Almeida re-evaluated this derivative and provided
a Caputo-type regularization of the existing defnition with
intriguing properties. Additional properties and applica-
tions of the ψ -Caputo fractional derivatives can be found in
references such as ([45–51]), and references therein.

In [40], the authors investigated the existence of positive
solutions for an eigenvalue problem utilizing the method of
upper and lower solutions and the Schauder fxed point
theorem. Te problem can be formulated as follows:

− Dβ
t ϕp D

α
t u􏼐 ( 􏼁􏼑(t) � λf(t, u(t)), t ∈ (0, 1),

u(0) � D
α
t u(t) � 0, u(1) � 􏽚

1

0
u(s) dA(s).

⎧⎪⎪⎨

⎪⎪⎩
(1)

In this equation, D
β
t and Dα

t represent the standard
Riemann–Liouville derivatives, with 1< α≤ 2 and 0< β≤ 1.
Te function A is of bounded variation, and 􏽒

1
0 u(s) dA(s)

denotes the Riemann–Stieltjes integral of uwith respect toA.
Te p-Laplacian operator ϕp is defned as ϕp � |s|p− 2s,
where p> 1. Te function f(t, x): (0, 1) × (0, +∞)⟶ [0,
+∞) is continuous and may exhibit singularity at t � 0,
t � 1, and x � 0.

Te authors in [21] conducted a study on the presence of
positive solutions for an eigenvalue problem related to
a nonlinear fractional diferential equation. Te equation
involves a generalized p-Laplacian operator and is described
by the following system:

D
β
0+ ϕp D

α
0+ u(t)( 􏼁􏼐 􏼑 � λf(u(t)), t ∈ (0, 1),

u(0) � u′(0) � u″(0) � 0,ϕp D
α
0+ u(0)( 􏼁 � ϕp D

α
0+ u(1)( 􏼁􏼐 􏼑

′
� 0.

⎧⎪⎪⎨

⎪⎪⎩
(2)

In this system, the values of 2< α≤ 3 and 1< β≤ 2 are real
numbers. Te operator ϕp represents a generalized p-
Laplacian operator, λ> 0 is a parameter, and
f(t): (0, +∞)⟶ (0, +∞) is a continuous function. Te
study utilized the properties of Green functions and the

Guo–Krasnoselskii’s fxed-point theorem on cones to es-
tablish several results regarding the existence of at least one
or two positive solutions within diferent eigenvalue in-
tervals. In addition, the nonexistence of positive solutions
was also examined in relation to the parameter λ.
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In [29], the authors investigated the eigenvalue problem
concerning a boundary fractional diferential equation

involving the p-Laplacian operator. Te equation is given as
follows:

−
c
D

β
0+ ϕp

c
D

α
0+ u􏼐 ( 􏼁􏼑(t) � λf(t, u(t)), t ∈ (0, 1),

u(0) � 􏽚
1

0
g1(s)u(s)ds, u(1) � 􏽚

1

0
g2(s)u(s)ds, u

″
(0) � 􏽚

1

0
g3(s)u(s)ds,

c
D

α
0+ u(t)

􏼌􏼌􏼌􏼌 t�0 � 0,

⎧⎪⎪⎨

⎪⎪⎩
(3)

where cD
β
0+ and cDα

0+ are the standard Caputo derivatives
with 2< α≤ 3, and 0< β≤ 1. Te p-Laplacian operator ϕp is
defned as ϕp � |s|p− 2s with p> 1. Te functions
f(t, x): [0, 1] × [0, +∞)⟶ [0, +∞) and gi(s) ∈ C[0, 1]

(where i � 1, 2, 3) are continuous.Te interval J is defned as
J � [0, 1], and λ is a positive parameter.

In the work by Matar et al. [52], a newly proposed p-
Laplacian nonperiodic boundary value problem is examined,
which involves generalized Caputo fractional derivatives.
Te authors extensively investigate the existence and
uniqueness of solutions for this problem:

d

dt
ϕp

c
D

α,ρ
u(t)( 􏼁􏼐 􏼑 � q t, u(t),

c
D

c,ρ
u(t)( 􏼁, t ∈ [0, 1],

u(0) + μu(1) � θ(u(0), u(1)), u
′
(1) � v(u(0), u(1)),

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(4)

where cDα,ρ and cDc,ρ are the GCpFr derivatives with
α ∈ (1, 2), c ∈ (0, 1), ϕp is the p-Laplacian operator with
p> 1, μ≠ − 1, and the nonlinear nonlinear functions
q: [0, 1] × R × R⟶ R and θ: R × R⟶ R are given con-
tinuous functions.

However, as far as we know, there are few papers
studying the eigenvalue problem for the p-Laplacian frac-
tional diferential equations involving the integral boundary
condition. Inspired by the abovementioned works, in this
paper, we will explore the following p-Laplacian ψ-Caputo
fractional integro-diferential equation:

c
D

β,ψ
0+ ϕp

c
D

α,ψ
0+ u􏼐 􏼑􏼐 􏼑(t) + λf(t, u(t)) � 0, t ∈ [0, T],

u(0) �
1
Γ(c)

􏽚
T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1
g1(s)u(s)ds,

u(T) �
1
Γ(c)

􏽚
T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1
g2(s)u(s)ds,

u
″
(0) �

1
Γ(c)

􏽚
T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1
g3(s)u(s)ds,

c
D

α,ψ
0+ u(t)

􏼌􏼌􏼌􏼌 t�0 � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

where cD
α,ψ
0+ and cD

β,ψ
0+ are the ψ-Caputo fractional de-

rivatives of respective fractional orders α ∈ (2, 3] and

β ∈ (0, 1].Te IBVP 1 also involves the p-Laplacian operator
ϕp, which is a nonlinear operator defned as ϕp(s) � |s|p− 2s,
where p> 1. Te operator ϕp is used to model nonlinear
phenomena such as turbulence and phase transitions. Te
boundary conditions of the IBVP involve integrals of the
form 􏽒

T

0 ψ
′c− 1gi(s)u(s)ds, where c is a parameter between

0 and 1, and gi are continuous functions on [0, T] for
i � 1, 2, 3. Tese boundary conditions involve memory ef-
fects and nonlocality, which are typical of fractional order
problems. Te functions f(t, u): I × R⟶ R, and
gi: I⟶ R; (i � 1, 2, 3), and u: I⟶ R are continuous
functions on I � [0, T].

It is clear that the IBVP (5) is an equation that combines
fractional derivatives and integrals. It comprises a fractional
diferential equation governed by the p-Laplacian operator
and a nonlinearity function f(t, u), along with three
boundary conditions. Tese boundary conditions involve
fractional integrals that incorporate the function u and three
distinct functions g1(t), g2(t), and g3(t). Te diferential
equation and boundary conditions employ ψ-Caputo de-
rivatives, which are an extension of the classical Caputo
derivative. Te ψ-Caputo derivatives are defned using the
Riemann–Liouville fractional derivative and a scaling
function ψ(t) that satisfes specifc conditions. Te p-
Laplacian operator, a nonlinear diferential operator, is
utilized to model various physical phenomena such as fuid
fow, difusion, and image processing. Within this problem,
there exists a positive constant parameter λ referred to as the
eigenvalue, which characterizes the system. Te objective of
the research is to determine the values of λ that allow for
nontrivial solutions, known as eigenfunctions, to exist for
the problem. By analyzing the eigenvalues and eigenfunc-
tions, it is possible to study the stability and dynamics of the
system represented by the problem.

Te motivation behind studying such type of IBVPs is to
understand the behavior of the solutions of this problem,
particularly in the presence of nonlinearity and nonlocality.
Tis is an important research area with applications in
various felds, including physics, engineering, and biology.
In particular, the Caputo-type fractional IBVP in equation
(5) has numerous applications in modeling systems with
memory efects, nonlocality, and long-term dependencies.
Its specifc applications depend on the choice of the func-
tions f(t, u) and gi(t) used in each application depend on
the properties of the system being modeled, indicating the
fexibility and adaptability of the IBVP to diferent contexts.
Tus, the Caputo-type fractional IBVP (5) is a challenging
and interesting problemwith signifcant potential for a range
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of real-world applications in various felds of science and
engineering.

Te utilization of eigenvalue problems for a specifc class
of p-Laplacian ψ-Caputo fractional integro-diferential
equations has signifcant implications for various felds.
For instance, in the context of mumps virus transmission,
these eigenvalue problems ofer valuable insights into the
system’s stability, critical thresholds, and spatial patterns,
facilitating the development of efective strategies for con-
trolling the spread of the virus (see [7] and related refer-
ences). Moreover, eigenvalues play a crucial role in other
domains as well. In control theory, they determine the
stability and performance of quadcopter systems, allowing
for stable fight and improved control [53, 54]. In signal
processing, eigenvalues are employed for signal classifca-
tion, compression, and denoising, with applications in the
analysis of electroencephalogram signals related to Alz-
heimer’s disease [10, 55, 56]. Fractional IBVPs using these
eigenvalue problems are also used to model non-Newtonian
fuid dynamics in porous media and heat conduction in
biological tissues, ofering insights into memory efects and
thermal responses [22, 57–60]. Tese diverse applications
underscore the broad scope and signifcance of employing
eigenvalue problems for understanding complex phenom-
ena and informing practical solutions.

According to our knowledge, numerous research studies
have been conducted on the eigenvalue problems related to
fractional diferential equations that incorporate the
p-Laplacian and integral boundary conditions. But the
initial boundary value problem (IBVP) (5), presented in our
work, serves as a basis for obtaining various investigations
outlined in the monograph by utilizing necessary and ap-
propriate parameters as follows:

(i) If ψ(t) � t, β � 0, 1< α≤ 2, p � 2, λ � 1, T � 1, and
g1 � g2 � g3 � 0, then we obtain the following

boundary value problem of nonlinear fractional
diferential equations:

D
α
0+ u(t) + f(t, u(t)) � 0, t ∈ (0, 1),

u(0) � u(1) � 0,
􏼨 (6)

which is similar to those outcomes obtained in [17].
(ii) If ψ(t) � t, β � 0, 2< α≤ 3, p � 2, λ � 1, T � 1, and

g1 � g2 � g3 � 0, then we obtain the following
boundary value problem of nonlinear fractional
diferential equations:

D
α
0+ u(t) + f(t, u(t)) � 0, t ∈ (0, 1),

u(0) � u(1) � u
′
(0) � 0,

⎧⎨

⎩ (7)

which is similar to those outcomes obtained by
Zhao et al. [31].

(iii) If ψ(t) � t, 1< α≤ 2, 0< β≤ 1, λ � 1, T � 1,
g1 � g2 � g3 � 0, then we obtain the following
boundary value problem of nonlinear fractional
diferential equations:
c
D

β
0+ ϕc

p D
α
0+ u􏼐 􏼑(t) + f(t, u(t)) � 0, t ∈ (0, 1),

u(0) � u(1) � 0, and c
D

α
0+ u(0) � 0,

⎧⎪⎨

⎪⎩

(8)

which is similar to the results obtained by Chai [18]
for σ � 0.

(iv) If ψ(t) � t, T � 1, 0< β≤ 1, 2< α≤ 3, c � 1, g2 � 1,
and g1 � g3 � 0, then obtained outcomes in the
current paper incorporate the investigation of
Zhang et al. [40] for A(s) � s

c
D

β
0+ ϕc

p D
α
0+ u􏼐 􏼑(t) + λf(t, u(t)) � 0, t ∈ (0, 1),

u(0) � 0, u(1) � 0, u(1) � 􏽚
1

0
u(s)dA(s), and c

D
α
0+ u(t)

􏼌􏼌􏼌􏼌 t�0 � 0.

⎧⎪⎪⎨

⎪⎪⎩
(9)

(v) If ψ(t) � t, p � 2, β � 0, 2< α≤ 3, c � 1, λ � q(t),
T � 1, and g1 � g3 � 0, then we obtain the following
fractional diferential equation with the following
integral boundary conditions:

D
α
0+ u(t) + q(t)f(t, u(t)) � 0, t ∈ (0, 1),

u(0) � u
′
(0) � 0, and u(1) � 􏽚

1

0
g(s)u(s)ds,

⎧⎪⎪⎨

⎪⎪⎩

(10)

which is similar to that studied by Sun and
Zhao [29].

(vi) Also, if ψ(t) � t, T � 1, and c � 1 then we have the
p -Laplacian fractional diferential equations in-
volving the integral boundary condition.

c
D

β
0+ ϕp

c
D

α
0+ u( 􏼁􏼐 􏼑(t) + λf(t, u(t)) � 0, t ∈ [0, 1],

u(0) � 􏽚
1

0
g1(s)u(s)ds, u(1) � 􏽚

1

0
g2(s)u(s)ds,

u
″
(0) � 􏽚

1

0
g3(s)u(s)ds, and c

D
α
0+ u(t)

􏼌􏼌􏼌􏼌 t�0 � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(11)

which is the same result obtained in Su et al. [36].
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2. Main Results

2.1.Mathematical Background. In this section, we introduce
some notations, defnitions, lemmas, and theorems that are
considered prerequisites for our work, such as fractional
order integrals and derivatives, Green’s functions, com-
pletely continuous operators, and others.

Defnition 1 (see [47]). For any real number α> 0, the left-
sided ψ-Riemann–Liouville fractional integral of order α for
an integrable function u: I⟶ R with respect to another
function ψ: I⟶ R, which is an increasing diferentiable
function such that ψ′(t)≠ 0 for all t ∈ I is defned by the
following equation:

I
α,ψ

u(t) �
1
Γ(α)

􏽚
t

0
ψ′(s)(ψ(t) − ψ(s))

α− 1
u(s)ds, (12)

where Γ is the classical Euler Gamma function.

Defnition 2 (see [47]). If n ∈ N and ψ, u ∈ Cn(I, R) are two
functions such that ψ is increasing and ψ′(t)≠ 0 for all
t ∈ I, then the left-sided ψ-Caputo fractional derivative of
a function u of order α is defned by the following
equation:

c
D

α,ψ
u(t) � I

n− α,ψ 1
ψ′(t)

d

dt
􏼠 􏼡

n

u(t)

�
1
Γ(n − α)

􏽚
t

0
ψ′(s)(ψ(t) − ψ(s))

n− α− 1
u

[n]
ψ (s)ds,

(13)

where u[n]
ψ (t) � (1/ψ′(t)d/dt)nu(t) and n � [α] + 1 for

α ∉ N, and n � α for α ∈ N.

Lemma 3. Let α> 0, then the diferential equation
( cD

α,ψ
a+ h)(t) � 0 has the following solution:

h(t) � c0 + c1(ψ(t) − ψ(0)) + c2(ψ(t) − ψ(0))
2

+ · · · + cn− 1(ψ(t) − ψ(0))
n− 1

,
(14)

where ci ∈ R, i � 0, 1, 2, . . . , n − 1, and n � [α] + 1.

Lemma 4 (see [48]). Let α, β ∈ R+, and f(t) ∈ L1(I). Ten,
I
α,ψ
a+ I

β,ψ
a+ f(t) � I

β,ψ
a+ I

α,ψ
a+ f(t) � I

α+β,ψ
a+ f(t), and (I

α,ψ
a+ )nf(t)

� I
nα,ψ
a+ f(t), where n ∈ N.

Defnition 5 (see [15]). Let X be any space and let
f: X⟶ X. A point x ∈ X is called a fxed point for
mapping f if x � f(x).

Theorem  (see [48]). Arzela–Ascoli Teorem.

Let X be the Banach space of real or complex valued
continuous functions normed by ‖f‖ � supt∈X|f(t)|. If A �

fn􏼈 􏼉 is a sequence in X such that fn is uniformly bounded
and equi-continuous, then A is compact.

Theorem 7 (see [27]). Fixed point theorem on a cone.

Let X be a Banach space, and let S ⊂ X be a cone in X.
Assume thatΩ1 andΩ2 are bounded open subsets of X with
0 ∈ Ω1, Ω1 ⊂ Ω2, and let f: S∩ (Ω2\Ω1)⟶ S be a com-
pletely continuous operator such that either

(1) ‖fu‖≤ ‖u‖, u ∈ S∩ (zΩ1), and
‖fu‖≥ ‖u‖, u ∈ S∩ (zΩ2),

(2) ‖fu‖≥ ‖u‖, u ∈ S∩ (zΩ1), and
‖fu‖≤ ‖u‖, u ∈ S∩ (zΩ2),

Ten, f has a fxed point in S∩ (Ω2\Ω1).

Lemma 8 (see [35]). Let ϕp be a p-Laplacian operator. Ten,
we have

(1) If 1<p≤ 2, ζ1ζ2 > 0, and |ζ1|, |ζ2|≥ ϱ, then
|ϕp(ζ1) − ϕp(ζ2)|≤ (p − 1)ϱp− 2|ζ1 − ζ2|

(2) If p> 2, and |ζ1|, |ζ2|≤ ϱ, then
|ϕp(ζ1) − ϕp(ζ2)|≤ (p − 1)ϱp− 2|ζ1 − ζ2|

2.2. Preliminary Results. In the following, we present the
required results that will be used in our later discussion of
the existence of positive solutions for the IBVP (5).

Lemma 9. Te following IBVP

−
c
D

α,ψ
0+ u(t) � h(t), t ∈ I � [0, T],

u(0) �
1
Γ(c)

􏽚
T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1
g1(s)u(s)ds,

u(T) �
1
Γ(c)

􏽚
T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1
g2(s)u(s)ds,

u
″
(0) �

1
Γ(c)

􏽚
T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1
g3(s)u(s)ds,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

has a unique solution for any continuous function
h(t): I⟶ R, and gi ∈ C[0, T] (i � 1, 2, 3), such that

u(t) � 􏽚
T

0
ψ′(s)G(t, s)h(s)ds

+ 􏽚
T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1Φ(t, s)u(s)ds,

(16)

where
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G(t, s) �
1
Γ(α)

φ(t)

φ(T)
(ψ(T) − ψ(s))

α− 1
− (ψ(t) − ψ(s))

α− 1
, if 0≤ s≤ t≤T,

φ(t)

φ(T)
(ψ(T) − ψ(s))

α− 1
, if 0≤ t≤ s≤T,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(17)

where φ(t) � (ψ(t) − ψ(0))(2(ψ′(0))2 − (ψ(t)−

ψ(0))ψ″(0)), which is an increasing function such that
φ(t)≠ 0 for all t ∈ [0, T], and

Φ(t, s) �
1
Γ(c)

1 −
φ(t)

φ(T)
􏼠 􏼡g1(s) +

φ(t)

φ(T)
g2(s) +

χ(t)

φ(T)
g3(s)􏼢 􏼣,

(18)

where χ(t) � (ψ(T) − ψ(0))(ψ(t) − ψ(0))(ψ(t) − ψ(T)).

Proof. From Lemma 3, we have

u(t) � − I
α,ψ
0+ h(t) + c0 + c1(ψ(t) − ψ(0)) + c2(ψ(t) − ψ(0))

2
.

� −
1
Γ(α)

􏽚
t

0
ψ′(s)[ψ(t) − ψ(s)]

α− 1
h(s)ds + c0 + c1(ψ(t) − ψ(0)) + c2(ψ(t) − ψ(0))

2
.

(19)

Using the boundary conditions in (15), we obtain

c0 � u(0) �
1
Γ(c)

􏽚
T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1
g1(s)u(s)ds,

u(T) � −
1
Γ(α)

􏽚
t

0
ψ′(s)[ψ(T) − ψ(s)]

α− 1
h(s)ds + c0 + c1(ψ(T) − ψ(0)) + c2(ψ(T) − ψ(0))

2
,

(20)

and

u
″
(0) � c1ψ

″
(0) + 2c2 ψ′(0)􏼒 􏼓

2
. (21)

Solving (20) and (21) for c1 and c2, we obtain

c1 �
− u
″
(0)[ψ(T) − ψ(0)]

2
+ 2 ψ′(0)􏼒 􏼓

2
1/Γ(α) 􏽒

T

0 ψ
′
(s)[ψ(T) − ψ(s)]

α− 1
h(s)ds + u(T) − u(0)􏼒 􏼓

(ψ(T) − ψ(0)) 2 ψ′(0)􏼒 􏼓
2

− (ψ(T) − ψ(0))ψ″(0)􏼢 􏼣

, (22)

and

c2 �
u
″
(0)[ψ(T) − ψ(0)] − ψ″(0) 1/Γ(α) 􏽒

T

0 ψ
′
(s)[ψ(T) − ψ(s)]

α− 1
h(s)ds + u(T) − u(0)􏼒 􏼓

(ψ(T) − ψ(0)) 2 ψ′(0)􏼒 􏼓
2

− (ψ(T) − ψ(0))ψ″(0)􏼢 􏼣

. (23)
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Hence, if we take φ(t) � (ψ(t) − ψ(0))(2(ψ′(0))2−

(ψ(t) − ψ(0))ψ″(0)) where 2(ψ′(0))2 − (ψ(t)−

ψ(0))ψ″(0)> 1, then

u(t) � −
1
Γ(α)

􏽚
t

0
ψ′(s)[ψ(t) − ψ(s)]

α− 1
h(s)ds + c0 + c1(ψ(t) − ψ(0)) + c2(ψ(t) − ψ(0))

2

� −
1
Γ(α)

􏽚
t

0
ψ′(s)[ψ(t) − ψ(s)]

α− 1
h(s)ds

+
1
Γ(c)

􏽚
T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1
g1(s)u(s)ds

−
(ψ(T) − ψ(0))

2
(ψ(t) − ψ(0))

Γ(c)φ(T)
􏽚

T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1
g3(s)u(s)ds

+ 2
(ψ(t) − ψ(0)) ψ′(0)􏼒 􏼓

2

Γ(α)φ(T)
􏽚

T

0
ψ′(s)[ψ(T) − ψ(s)]

α− 1
h(s)ds

+ 2
(ψ(t) − ψ(0)) ψ′(0)􏼒 􏼓

2

φ(T)Γ(c)
􏽚

T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1
g2(s) − g1(s)( 􏼁u(s)ds

+
(ψ(T) − ψ(0))(ψ(t) − ψ(0))

2

Γ(c)φ(T)
􏽚

T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1
g3(s)u(s)ds

−
(ψ(t) − ψ(0))

2ψ″(0)

Γ(α)φ(T)
􏽚

T

0
ψ′(s)[ψ(T) − ψ(s)]

α− 1
h(s)ds

−
(ψ(t) − ψ(0))

2ψ″(0)

Γ(c)φ(T)
􏽚

T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1
g2(s) − g1(s)( 􏼁u(s)ds.

(24)

Consequently from the fact that 􏽒
T

0 � 􏽒
t

0 + 􏽒
T

t
, we obtain
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u(t) � −
1
Γ(α)

􏽚
t

0
ψ′(s)[ψ(t) − ψ(s)]

α− 1
h(s)ds +

1
Γ(c)

􏽚
T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1
g1(s)u(s)ds

−
(ψ(T) − ψ(0))

2
(ψ(t) − ψ(0))

Γ(c)φ(T)
􏽚

T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1
g3(s)u(s)ds

+ 2
(ψ(t) − ψ(0)) ψ′(0)􏼒 􏼓

2

Γ(α)φ(T)

􏽚
t

0
ψ′(s)[ψ(t) − ψ(s)]

α− 1
h(s)ds

+ 􏽚
T

t
ψ′(s)[ψ(T) − ψ(s)]

α− 1
h(s)ds

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 2
(ψ(t) − ψ(0)) ψ′(0)􏼒 􏼓

2

φ(T)Γ(c)
􏽚

T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1
g2(s) − g1(s)( 􏼁u(s)ds

+
(ψ(T) − ψ(0))(ψ(t) − ψ(0))

2

Γ(c)φ(T)
􏽚

T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1
g3(s)u(s)ds

−
(ψ(t) − ψ(0))

2ψ″(0)

Γ(α)φ(T)

􏽚
t

0
ψ′(s)[ψ(t) − ψ(s)]

α− 1
h(s)ds

+ 􏽚
T

t
ψ′(s)[ψ(T) − ψ(s)]

α− 1
h(s)ds

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−
(ψ(t) − ψ(0))

2ψ″(0)

Γ(c)φ(T)
􏽚

T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1
g2(s) − g1(s)( 􏼁u(s)ds,

(25)

which implies that u(t) � 􏽒
T

0 ψ
′(s)G(t,

s)h(s)ds + 􏽒
T

0 ψ
′(s)(ψ(T) − ψ(s))c− 1Φ(t, s)u(s)ds.

Terefore, the proof is completed. □

Remark 10. Troughout our work, we take the following
remarks in consideration:

(1) If m � min Φ(t, s): (t, s) ∈ I × I{ } and
M � max Φ(t, s): (t, s) ∈ I × I{ }, then we assume
that

0<m≤ |Φ(t, s)|≤M<T, A0( 􏼁. (26)

(2) Since ψ(t) is an increasing function with ψ′(t)≠ 0 for
all t ∈ I � [0, T], then G(t, s) is continuous and
positive for all t, s ∈ I.

(3) According to the defnition of G(t, s) and by (A0),
we deduce that Φ(t, s) ∈ C(I × I, R+) is continuous.

Lemma 11. For any s ∈ I, we have

max
t∈I

G(t, s)≤
φ(t)

Γ(α)φ(T)
(ψ(T) − ψ(s))

α− 1
, (27)

and for any s ∈ [0, T], there exist ε ∈ (0, T/2), q(t) � ψ(t) −

ψ(t)α− 1 which is a concave function, and ρ � mint∈[ε,T− ε]q(t)

� min (ψ(ε) − ψ(0)) − (ψ (ε) − ψ(0))α− 1, (ψ (T) − ψ􏽮

(ε)) − (ψ(T) − ψ(ε))α− 1} such that

min
t∈[ε,T− ε]

G(t, s)≥
ρ

Γ(α)φ(T)
(ψ(T) − ψ(s))

α− 1
. (28)

Proof. From the expression for G(t, s), it could be easily
obtained that

max
t∈I

G(t, s)≤
φ(t)

Γ(α)φ(T)
(ψ(T) − ψ(s))

α− 1
. (29)

Now, if 0≤ t≤ s≤T, then for t ∈ [ε, T − ε] and since φ is
an increasing function, then we have:

G(t, s) �
1

Γ(α)φ(T)
φ(t)(ψ(T) − ψ(s))

α− 1

≥
1

Γ(α)φ(T)
φ(ε)(ψ(T) − ψ(s))

α− 1
.

(30)

Since ψ and φ are increasing functions, then
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G(t, s)≥
1

Γ(α)φ(T)
(ψ(ε) − ψ(0)) 2 ψ′(0)􏼒 􏼓

2
− (ψ(t) − ψ(0))ψ″(0)􏼠 􏼡

􏽼√√√√√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√√√√√􏽽
> 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(ψ(T) − ψ(s))

α− 1
,

≥
1

Γ(α)φ(T)
[ψ(ε) − ψ(0)](ψ(T) − ψ(s))

α− 1
,

≥
1

Γ(α)φ(T)
(ψ(ε) − ψ(0)) − (ψ(ε) − ψ(0))

α− 1
􏽨 􏽩(ψ(T) − ψ(s))

α− 1
,

≥
ρ

Γ(α)φ(T)
(ψ(T) − ψ(s))

α− 1
.

(31)

If 0≤ s≤ t≤T, then for t ∈ [ε, T − ε] and s ∈ [0, T − ε],
we have the following equation:

G(t, s) �
1
Γ(α)

φ(t)

φ(T)
(ψ(T) − ψ(s))

α− 1
− (ψ(t) − ψ(s))

α− 1
􏼢 􏼣

�
1
Γ(α)

φ(t)

φ(T)
−

ψ(t) − ψ(s)

ψ(T) − ψ(s)
􏼠 􏼡

α− 1
⎡⎣ ⎤⎦(ψ(T) − ψ(s))

α− 1

�
1
Γ(α)

φ(t)

φ(T)
− 1 −

ψ(T) − ψ(t)

ψ(T) − ψ(s)
􏼠 􏼡

α− 1
⎡⎣ ⎤⎦(ψ(T) − ψ(s))

α− 1

≥
1
Γ(α)

ψ(t) − ψ(0)

ψ(T) − ψ(0)
− 1 −

1 − ψ(t) − ψ(0)/ψ(T) − ψ(0)

1 − ψ(s) − ψ(0)/ψ(T) − ψ(0)
􏼠 􏼡

α− 1
⎡⎣ ⎤⎦(ψ(T) − ψ(s))

α− 1

≥
ρ

Γ(α)φ(T)
(ψ(T) − ψ(s))

α− 1
.

(32)

Hence, we deduce that mint∈[ε,T− ε]G(t, s)≥ ρ
(1/Γ(α)φ(T))(ψ(T) − ψ(s))α− 1 for any s ∈ [0, T].

Terefore, we obtain for all t, s ∈ [0, T] that

ρ
1

Γ(α)φ(T)
(ψ(T) − ψ(s))

α− 1 ≤G(t, s)≤
φ(t)

Γ(α)φ(T)
(ψ(T) − ψ(s))

α− 1
. (33)

□

In the following, let X be a Banach space of all con-
tinuous functions from I � [0, T] to R with norm
‖u‖ � maxt∈I|u(t)|, and let P � u ∈ X: u(t)≥ 0, t ∈ I{ } be
a nonempty, bounded, closed, and convex cone in X.

Defnition 12. Let A: C(I, R)⟶ C(I, R) be an operator
defned by the following equation:

A(u(t)) � 􏽚
T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1Φ(t, s)u(s)ds.

(34)
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Lemma 13. If assumption (A0) holds, then A satisfes the
following properties:

(1) A is continuous linear operator
(2) A is a bounded
(3) A(P) ⊂ P

(4) A is reversible
(5) ‖(I − A)− 1‖≤ 1 + N/(1 − N)(ψ(T) − ψ(0))c/c,

where N � ((ψ(T) − ψ(0))c/c) M

Proof

(1) A is continuous
Consider a sequence un􏼈 􏼉 ⊂ P that converges to
u ∈ p, i.e., un⟶ u in P as n⟶∞. Ten,

A un(t)( 􏼁 − A(u(t))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 􏽚
T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1
|Φ(t, s)| un(s) − u(s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ds, (35)

where un, u ∈ C(I, R). Taking supremum for all t ∈ I,
we obtain

A yn( 􏼁 − A(y)
����

����≤M un − u
����

����
(ψ(T) − ψ(0))

c

c
.

(36)

Tus, ‖A(yn) − A(y)‖⟶ 0 as n⟶∞ and
consequently A is continuous.

(2) A is bounded.

‖A(u(t))‖ ≤ 􏽚
T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1
|Φ(t, s)| |u(s)|ds

≤M ‖u‖ 􏽚
T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1
ds

≤M‖u‖
(ψ(T) − ψ(0))

c

c
.

(37)

Tus, ‖A‖≤M (ψ(T) − ψ(0))c/c which is bounded.
(3) A is compact

If u(t) ∈ P, then since for all t, s ∈ I, we have
Φ(t, s)> 0, u(t)> 0, and ψ(t) is an increasing
function defned on R+, which implies that:

A(u(t)) � 􏽚
T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1Φ(t, s)u(s)ds≥ 0.

(38)

Tus, A(P) ⊂ P.
(4) A is reversible since A is continuous, bounded, and

compact.
(5) Let v ∈ C[0, T] be defned as v(t) � u(t) − Au(t).

Ten,

u(t) � (I − A)
− 1

v(t) for all t ∈ [0, T], (39)

u(t) � v(t) + 􏽚
T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1Φ(t, s)u(s)ds.

(40)

By using the iteration method, let

ui(t) � v(t) + 􏽚
T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1Φ(t, s)ui− 1(s) ds; i � 1, 2, 3, . . . , (41)

with u0(t) � u(t), and Φ1(t, s) � Φ(t, s), we obtain

u(t) � v(t) + 􏽚
T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1
R(t, s)v(s)ds,

(42)

where

R(t, s) � 􏽘
∞

j�i

􏽚
T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1Φ(t, τ)Φj− 1(τ, s)dτ

� 􏽘
∞

j�i

ψ′(s)(ψ(T) − ψ(s))
c− 1Φj(t, s),

(43)

where
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Φj(t, s) � 􏽚
T

0
ψ′(τ)(ψ(T) − ψ(s))

c− 1Φ(t, τ)Φj− 1(τ, s)dτ.

(44)

But, 0≤Φ(t, s)≤M≤T. Ten, R(t, s)≥ 0, and

R(t, s) � 􏽘
∞

j�i

ψ′(s)(ψ(T) − ψ(0))
c− 1Φj(t, s)

<
(ψ(T) − ψ(0))

c

c
M +

(ψ(T) − ψ(0))
2c

c
2 M

2
+ · · · +

(ψ(T) − ψ(0))
nc

c
n M

n
+ · · ·

<N + N
2

+ · · · + N
n

+ · · · �
N

1 − N
.

(45)

Tus,

(I − A)
− 1

v(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ |v(t)| +
N

1 − N
􏽚

T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1
|v(s)| ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ ‖v‖ +
N

1 − N

(ψ(T) − ψ(0))
c

c
‖v‖,

(46)

which implies that

(I − A)
− 1����

����≤ 1 +
N

1 − N

(ψ(T) − ψ(0))
c

c
. (47)

Te proof is completed. □

Lemma 14. Suppose that assumption (A0) holds,
u, cDα,ψu ∈ C(I), then the integral boundary value problem

c
D

α,ψ
0+ u(t) + f(t, u(t)) � 0, t ∈ I � [0, T],

u(0) �
1
Γ(c)

􏽚
T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1
g1(s)u(s)ds,

u(T) �
1
Γ(c)

􏽚
T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1
g2(s)u(s)ds,

u
″
(0) �

1
Γ(c)

􏽚
T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1
g3(s)u(s)ds,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(48)

is equivalent to the following integral equation

u(t) � 􏽚
T

0
ψ′(s)H(t, s)f(s, u(s))ds, (49)

where

H(t, s) � G(t, s) + 􏽚
T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1
R(t, τ)G(τ, s)dτ.

(50)

Proof. Defne the nonlinear operator B: C(I)⟶ C(I) as

Bu(t) � 􏽚
T

0
ψ′(s)G(t, s)f(s, u(s))ds. (51)

From (34) and (51), the IBVP (48) is equivalent to the
following integral equation:

u(t) � 􏽚
T

0
ψ′(s)G(t, s)f(s, u(s))ds + 􏽚

T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1Φ(t, s)u(s)ds

� Bu(t) + Au(t).

(52)
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By Lemma 13, we have the following equation:

(I − A)
− 1
Bu(t) � u(t), (53)

which implies that

u(t) � 􏽚
T

0
ψ′(s)G(t, s)f(s, u(s))ds

+ 􏽚
T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1
R(t, s) 􏽚

T

0
ψ′(s)G(s, τ)f(τ, u(τ))dτ ds

� 􏽚
T

0
ψ′(s)G(t, s)f(s, u(s))ds

+ 􏽚
T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1
􏽚

T

0
R(t, τ)ψ′(s)G(τ, s)f(s, u(s))dτ􏼠 􏼡ds

� 􏽚
T

0
ψ′(s)G(t, s)f(s, u(s))ds

+ 􏽚
T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1
􏽚

T

0
R(t, τ)ψ′(s)G(τ, s)f(s, u(s))dτ􏼠 􏼡ds

� 􏽚
T

0
ψ′(s) G(t, s) + 􏽚

T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1
R(t, τ)G(τ, s)dτ􏼠 􏼡f(s, u(s))ds

� 􏽚
T

0
ψ′(s)H(t, s)f(s, u(s))ds,

(54)

where H(t, s) � G(t, s) + 􏽒
T

0 ψ
′(s)(ψ(T)−

ψ(s))c− 1R(t, τ)G(τ, s)dτ. □

Lemma 15. Assumption that (A0) holds, then for any
t, s ∈ [0, T], functions H and R satisfy the following
properties:

(1) H(t, s) is continuous and positive
(2) n/(1 − n)≤R(t, s)≤N/(1 − N)

(3)

ρ nψ′(s)/Γ(α)(1 − n)􏼒 􏼓 (ψ(T) − ψ(s))
α+c− 2/φ(T)􏼐 􏼑(T − 2ε)≤H(t, s)

≤ (ψ(T) − ψ(s))
α− 1/Γ(α)φ(T)􏼐 􏼑 φ(t) + T N/(1 − N)(ψ(T) − ψ(s))

c− 1
􏽨 􏽩

Proof. Let t, s ∈ [0, T], then

(1) It is clear from expression (11) that H(t, s) is con-
tinuous. In addition, by Remark 10 and expression
(9), we have H(t, s)≥ 0.

(2) From expression (9), we have

n

1 − n
≤R(t, s)≤

N

1 − N
, (55)

where n � ((ψ(T) − ψ(s))(c− 1)/c)m and N �

((ψ(T) − ψ(s))(c− 1)/c)M.
(3) Suppose that (A0) holds, then from (45) and (50),

and Lemma 11 we have the following equation:

H(t, s) � G(t, s) + 􏽚
T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1
R(t, τ)G(τ, s)dτ

≥ 􏽚
T− ε

ε
ψ′(s)(ψ(T) − ψ(s))

c− 1
R(t, τ)G(τ, s)dτ

≥
ρ n

Γ(α)(1 − n)
􏽚

T− ε

ε
ψ′(s)

(ψ(T) − ψ(s))
α− 1

φ(T)
(ψ(T) − ψ(s))

c− 1
dτ

≥
ρ nψ′(s)

Γ(α)(1 − n)

(ψ(T) − ψ(s))
α+c− 2

φ(T)
(T − 2ε).

(56)
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Similarly,

H(t, s) � G(t, s) + 􏽚
T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1
R(t, τ)G(τ, s)dτ

≤
φ(t)

Γ(α)φ(T)
(ψ(T) − ψ(s))

α− 1
+

N

1 − N
􏽚

T

0

(ψ(T) − ψ(s))
α+c− 2

Γ(α)φ(T)
dτ

≤
φ(t)

Γ(α)φ(T)
(ψ(T) − ψ(s))

α− 1
+

T N

1 − N

(ψ(T) − ψ(s))
α+c− 2

Γ(α)φ(T)

≤
(ψ(T) − ψ(s))

α− 1

Γ(α)φ(T)
φ(t) +

T N

1 − N
(ψ(T) − ψ(s))

c− 1
􏼢 􏼣.

(57)

Consider the p-Laplacian operator ϕp defned as ϕp �

|s|p− 2s with p> 1, and let q> 1 be a real number satisfying
the relation 1/p + 1/p � 1, and ϕ− 1

p � ϕq. In the following, we

consider the associated linear p-Laplacian fractional dif-
ferential equations involving integral boundary conditions

c
D

β,ψ
0+ ϕp

c
D

α,ψ
0+ u(t)􏼐 􏼑􏼐 􏼑 + h(t) � 0, t ∈ I � [0, T],

u(0) �
1
Γ(c)

􏽚
T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1
g1(s)u(s)ds,

u(T) �
1
Γ(c)

􏽚
T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1
g2(s)u(s)ds,

u
″
(0) �

1
Γ(c)

􏽚
T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1
g3(s)u(s)ds,

c
D

α,ψ
0+ u(t)

􏼌􏼌􏼌􏼌 t�0 � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(58)

where h ∈ C[0, T] and h≥ 0. □ Lemma 1 . Te associated linear p-Laplacian fractional
diferential equations (58) has the unique solution

u(t) �
1
Γ(β)

􏽚
T

0
ψ′(s)H(t, s) ϕq 􏽚

s

0
ψ′(τ)(ψ(s) − ψ(τ))

β− 1
h(τ)dτ􏼒 􏼓ds. (59)

Proof. Let w � cD
α,ψ
0+ u, and v � ϕp(w). Ten, the solution of

the initial value problem
c
D

β,ψ
0+ v(t) + h(t) � 0, t ∈ I � [0, T],

v(0) � 0,

⎧⎨

⎩ (60)

is given by v(t) � − cI
β,ψ
0+ h(t) + c0 for any t ∈ [0, T].

Since v(0) � 0, 0< β≤ 1, then we obtain c0 � 0, which im-
plies that

v(t) � −
c
I
β,ψ
0+ h(t), t ∈ [0, T]. (61)
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But w � ϕq(v) which implies that the solution of the
IBVP (58) satisfes the following IBVP:

c
D

α,ψ
0+ u(t) � ϕq −

c
I
β,ψ
0+ h(t)􏼐 􏼑, t ∈ I � [0, T],

u(0) �
1
Γ(c)

􏽚
T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1
g1(s)u(s)ds,

u(T) �
1
Γ(c)

􏽚
T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1
g2(s)u(s)ds,

u
″
(0) �

1
Γ(c)

􏽚
T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1
g3(s)u(s)ds,

c
D

α,ψ
0+ u(t)

􏼌􏼌􏼌􏼌 t�0 � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(62)

Since h(t)≥ 0, we have ϕq(− cI
β,ψ
0+ h(t)) � − ϕq( cI

β,ψ
0+ h(t)).

Hence, by Lemma 11, we deduce that the solution of the
IBVP (62) can be written as follows:

u(t) � 􏽚
T

0
ψ′(s)H(t, s) ϕq

c
I
β,ψ
0+ h(s)􏼐 􏼑􏼐 􏼑ds, (63)

which implies that

u(t) �
1
Γ(β)

􏽚
T

0
ψ′(s)H(t, s) ϕq 􏽚

s

0
ψ′(τ)(ψ(s) − ψ(τ))

β− 1
h(τ)dτ􏼒 􏼓ds. (64)

□
Lemma 17. Suppose that assumption (A0) holds, and
u, cD

α,ψ
0+ u ∈ C[0, T], the the following integral boundary

value problem:

c
D

β,ψ
0+ ϕp

c
D

α,ψ
0+ u􏼐 􏼑􏼐 􏼑(t) + λf(t, u(t)) � 0, t ∈ [0, T],

u(0) �
1
Γ(c)

􏽚
T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1
g1(s)u(s)ds,

u(T) �
1
Γ(c)

􏽚
T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1
g2(s)u(s)ds,

u
″
(0) �

1
Γ(c)

􏽚
T

0
ψ′(s)(ψ(T) − ψ(s))

c− 1
g3(s)u(s)ds,

c
D

α,ψ
0+ u(t)

􏼌􏼌􏼌􏼌 t�0 � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(65)

is equivalent to the following integral equation

u(t) � 􏽚
T

0
ψ′(s)H(t, s) ϕq

λ
Γ(β)

􏽚
s

0
ψ′(τ)(ψ(s) − ψ(τ))

β− 1
f(τ, u(τ))dτ􏼠 􏼡ds. (66)

Defnition 18. Let X be a Banach space with norm
‖u‖ � max

t∈[0,T]
|u(t)|. Defne the reproductory cone P0 ⊂ X to

be the set

P0 � u ∈ P: u(t)≥ σ ‖u‖, t ∈ I{ }, (67)

where σ � ρ n(T − 2ε)(ψ(T) − ψ(s))c− 1/(1 − n)[φ(t) + T

N/1 − N(ψ(T) − ψ(s))c− 1] such that 0< σ <T.

Defnition 19. Let X be a Banach space, defne the operator
Cλ: X⟶ X as follows:
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Cλu(t) � 􏽚
T

0
ψ′(s)H(t, s) ϕq

λ
Γ(β)

􏽚
s

0
ψ′(τ)(ψ(s) − ψ(τ))

β− 1
f(τ, u(τ))dτ􏼠 􏼡ds. (68)

Consider the following assumptions:
(A1): Te nonlinear function f: I × R2⟶ R is con-

tinuous and there exist μ ∈ C(I, R+) with norm ‖μ‖ such
that:

|f(t, u(t)) − f(t, v(t))|≤ μ(t)|u(t) − v(t)|, for all t ∈ I.

(69)

Lemma 20. Suppose that assumption (A0) and (A1) hold,
then Cλ: P0⟶ P0 is completely continuous

Proof. First, the operator Cλ is continuous.
Consider a sequence un􏼈 􏼉 ⊂ P0 that converges to

y ∈ P0, i.e., un⟶ u in P0 as n⟶∞. Ten, by (A1) we
have

Cλ un(t)( 􏼁 − Cλ(u(t))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ 􏽚
T

0
ψ′(s)H(t, s)ϕq

λ
Γ(β)

􏽚
s

0
ψ′(τ)(ψ(s) − ψ(τ))

β− 1
f τ, un(τ)( 􏼁 − f(τ, u(τ))

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dτ􏼠 􏼡ds

≤ 􏽚
T

0
ψ′(s)H(t, s)ϕq

λ
Γ(β)

􏽚
s

0
ψ′(τ)(ψ(s) − ψ(τ))

β− 1
|μ(t)| un(τ) − u(τ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 dτ􏼠 􏼡ds

≤
1

Γ(α)φ(T)
φ(t) +

T N

1 − N
(ψ(T) − ψ(s))

c− 1
􏼢 􏼣

× 􏽚
T

0
ψ′(s)(ψ(T) − ψ(s))

α− 1 ϕq

λ
Γ(β)

􏽚
s

0
ψ′(τ)(ψ(s) − ψ(τ))

β− 1
|μ(t)| un(τ) − u(τ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dτ􏼠 􏼡ds.

(70)

Taking supremum for all t ∈ I, then applying Lebesgue
dominated convergence theorem, we get

Cλ un(t)( 􏼁 − Cλ(u(t))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤
λ‖μ‖ un − u

����
����

Γ(α)φ(T)
φ(t) +

T N

1 − N
(ψ(T) − ψ(s))

c− 1
􏼢 􏼣

× 􏽚
T

0
ψ′(s)(ψ(T) − ψ(s))

α− 1 ϕq

λ
Γ(β)

􏽚
s

0
ψ′(τ)(ψ(s) − ψ(τ))

β− 1
dτ􏼠 􏼡ds.

(71)

Journal of Mathematics 15



Since un⟶ u, then we obtainCλ(un(t))⟶ Cλ(u(t))

as n⟶∞ for each t ∈ I, and hence
‖Cλ(un(t)) − Cλ(u(t))‖⟶ 0 as n⟶∞ and conse-
quently A is continuous.

In other words, since H(t, s) and f(s, u(s)) are non-
negative and continuous, then it is clear that operator Cλ is
continuous.

Second, the operator Cλ maps bounded sets in P0 into
bounded sets in P0.

From Lemma 14, we have

Cλu(t) � 􏽚
T

0
ψ′(s)H(t, s) ϕq

λ
Γ(β)

􏽚
s

0
ψ′(τ)(ψ(s) − ψ(τ))

β− 1
f(τ, u(τ))dτ􏼠 􏼡ds,

≥
ρ n(T − 2ε)
Γ(α)(1 − n)

(ψ(T) − ψ(s))
c− 1

φ(T)

× 􏽚
T

0
ψ′(s)(ψ(T) − ψ(s))

α− 1 ϕq

λ
Γ(β)

􏽚
s

0
ψ′(τ)(ψ(s) − ψ(τ))

β− 1
f(τ, u(τ))dτ􏼠 􏼡ds,

(72)

and

Cλu(t)≤
1

Γ(α)φ(T)
φ(t) +

T N

1 − N
(ψ(T) − ψ(s))

c− 1
􏼢 􏼣

× 􏽚
T

0
ψ′(s)(ψ(T) − ψ(s))

α− 1 ϕq

λ
Γ(β)

􏽚
s

0
ψ′(τ)(ψ(s) − ψ(τ))

β− 1
f(τ, u(τ))dτ􏼠 􏼡ds,

(73)

which implies that

Cλu(t)≥
ρ n(T − 2ε)(ψ(T) − ψ(s))

c− 1

(1 − n) φ(t) +(T N/(1 − N))(ψ(T) − ψ(s))
c− 1

􏽨 􏽩
Cλu(t)

����
����

≥ σ Cλu(t)
����

����.

(74)

Hence, Cλ(P0) ⊂ P0.
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Tird, Cλ(Ω) is uniformly bounded for every Ω is
bounded in P0.

LetΩ ⊂ P0 be bounded.Ten, there exists a real number
l> 0 such that for any u ∈ Ω, ‖u‖≤l. Tus,

Cλu(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 􏽚
T

0
ψ′(s)H(t, s) ϕq

λ
Γ(β)

􏽚
s

0
ψ′(τ)(ψ(s) − ψ(τ))

β− 1
f(τ, u(τ))dτ􏼠 􏼡ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ 􏽚
T

0
ψ′(s)|H(t, s)| ϕq

λ
Γ(β)

􏽚
s

0
ψ′(τ)(ψ(s) − ψ(τ))

β− 1
|f(τ, u(τ))|dτ􏼠 􏼡ds

≤
λq− 1

Γ(α)Γ(β)
q− 1φ(T)

φ(t) +
T N

1 − N
(ψ(T) − ψ(s))

c− 1
􏼢 􏼣

× 􏽚
T

0
ψ′(s)ϕq 􏽚

s

0
ψ′(τ)(ψ(s) − ψ(τ))

β− 1
|μ(τ)||u(τ)|dτ􏼒 􏼓ds.

(75)

Taking supremum for all t ∈ I, we get

Cλu(t)
����

����≤
λq− 1

l ‖μ‖

Γ(α)Γ(β)φ(T)
φ(t) +

T N

1 − N
(ψ(T) − ψ(s))

c− 1
􏼢 􏼣 􏽚

T

0
ψ′(s) ϕq

(ψ(s) − ψ(0))
β

β
􏼠 􏼡ds

≤
λq− 1

l ‖μ‖

Γ(α)Γ(β)
q− 1φ(T)

φ(t) +
T N

1 − N
(ψ(T) − ψ(s))

c− 1
􏼢 􏼣 􏽚

T

0
ψ′(s)

(ψ(s) − ψ(0))β

β
􏼠 􏼡

q− 1

ds

≤
λq− 1

l ‖μ‖

Γ(α)Γ(β)
q− 1φ(T)

φ(t) +
T N

1 − N
(ψ(T) − ψ(s))

c− 1
􏼢 􏼣

1
q

(ψ(T) − ψ(0))β

β
􏼠 􏼡

q

≤
λq− 1

l ‖μ‖

Γ(α)Γ(β)
q− 1φ(T)

φ(t) +
T N

1 − N
(ψ(T) − ψ(0))

c− 1
􏼢 􏼣

(ψ(T) − ψ(0))

qβq

qβ

< +∞.

(76)

Finally, Cλ is equi-continuous.
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Since H(t, s) is continuous and hence uniformly
continuous on [0, 1] × [0, 1], then for every ε> 0,
there exist δ > 0 and t1, t2 ∈ I, with t1 < t2 and |t2 − t1|< δ

such that |H(t2, s) − H(t1, s)|< ε. Ten, for all u ∈ P0 we
have

Cλu t2( 􏼁 − Cλu t1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ 􏽚
T

0
ψ′(s) H t2, s( 􏼁 − H t1, s( 􏼁( 􏼁ϕq

λ
Γ(β)

􏽚
s

0
ψ′(τ)(ψ(s) − ψ(τ))

β− 1
f(τ, u(τ))dτ􏼠 􏼡ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ 􏽚
T

0
ψ′(s) H t2, s( 􏼁 − H t1, s( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ϕq

λ
Γ(β)

􏽚
s

0
ψ′(τ)(ψ(s) − ψ(τ))

β− 1
|f(τ, u(τ))|dτ􏼠 􏼡ds

≤
λq− 1ε
Γ(β)

q− 1 􏽚
T

0
ψ′(s) ϕq 􏽚

s

0
ψ′(τ)(ψ(s) − ψ(τ))

β− 1
|μ(τ)| |u(τ)|dτ􏼒 􏼓ds

≤
λq− 1

||μ|| ||u|| ε
Γ(β)

q− 1 􏽚
T

0
ψ′(s) ϕq 􏽚

s

0
ψ′(τ)(ψ(s) − ψ(τ))

β− 1
dτ􏼒 􏼓ds

≤
λq− 1

||μ|| ||u|| ε
Γ(β)

q− 1 􏽚
T

0
ψ′(s) ϕq

(ψ(s) − ψ(0))
β

β
􏼠 􏼡ds

≤
λq− 1

||μ|| ||u||

Γ(β)
q− 1

(ψ(T) − ψ(0))

qβq

qβ

􏼠 􏼡ε.

(77)

As t1⟶ t2, the right-hand side of the above inequality
is not dependent on u and tends to zero. Consequently,

A y t2( ( 􏼁􏼁 − A y t1( ( 􏼁􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌⟶ 0,∀ t2 − t1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌⟶ 0. (78)

Tis show that Cλu􏼈 􏼉 is equi-continuous onP0, andCλ
is a compact and completely continuous operator by the
Arzela–Ascoli Teorem 6. □

2.3. Existence of Positive Solutions. In this subsection, we
study the existence of positive solutions for the IBVP (5) by
applying the fxed point Teorem 7 on a cone. Te required

and sufcient conditions for having at least one positive
solution are presented.

Notation 21. Consider the following notations:

(1) f0 � limu⟶ 0+sup supt∈[0,T]f(t, u)/ϕp(u)

(2) f∞ � limu⟶ +∞sup supt∈[0,T]f(t, u)/ϕp(u)

(3) A1 � (‖μ‖/Γ(α)Γ(β)q− 1φ(T))[φ(t)+T N/(1 − N)

(ψ(T)− ψ(0))c− 1](ψ(T) − ψ(0))qβ/qβqqβ

(4)

A2 � ρ n(T − 2ε)/ Γ(α)Γ(β)
(q− 1)

(1 − n)􏼐 􏼑􏼐 􏼑(ψ(T) − ψ(0))
(c− 1)

􏼐 􏼑/(φ(T))

(1/β(β + 1)(β + 2))
(ψ(T) − ψ(0))

β+1
((β + 1)(ψ(T) − ψ(0)) + ψ(0))

− (β + 2)(ψ(T) − ψ(0))

⎡⎣ ⎤⎦

Theorem 22. Assume that (A0) holds. If we have ζ,ℵ> 0
such that f0 < ζ and f∞ >ℵ, then for each real number λ
satisfying

1
A

p− 1
2 ℵ
≤ λ≤

1
A

p− 1
1 ζ

. (79)

Te IBVP (5) has at least one positive solution.

Proof. By Notation 21, there exist two positive real numbers
􏽥ρ, ρ1, and ρ2 such that ρ2 > (1/σ)􏽥ρ and ρ2 � max 2ρ1, (1/σ)􏼈
􏽥ρ}. Ten, for any t ∈ [0, T], we have
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f(t, u)≤ ζϕp(u), for u ∈ 0, ρ1( 􏼃, (80)

and

f(t, u)≥ℵϕp(u), for u ∈ ρ2,􏼂 +∞). (81)

Defne

Ω1 � u ∈ X: ‖u‖≤ ρ1􏼈 􏼉,

Ω2 � u ∈ X: ‖u‖≤ ρ2􏼈 􏼉.
(82)

If u ∈ P0 with ‖u‖ � ρ1, then from (79) and (80), we have

Cλu(t)
����

����≤ sup
t∈[0,T]

􏽚
T

0
ψ′(s)|H(t, s)| ϕq

λ
Γ(β)

􏽚
s

0
ψ′(τ)(ψ(s) − ψ(τ))

β− 1
|f(τ, u(τ))|dτ􏼠 􏼡ds

≤
λq− 1

Γ(α)Γ(β)
q− 1φ(T)

φ(t) +
T N

1 − N
(ψ(T) − ψ(s))

c− 1
􏼢 􏼣

× 􏽚
T

0
ψ′(s) ϕq 􏽚

s

0
ψ′(τ)(ψ(s) − ψ(τ))

β− 1ζϕp ρ1( 􏼁dτ􏼒 􏼓ds

≤
λq− 1 ζq− 1

‖μ‖

Γ(α)Γ(β)
q− 1φ(T)

φ(t) +
T N

1 − N
(ψ(T) − ψ(0))

c− 1
􏼢 􏼣

(ψ(T) − ψ(0))

qβq

qβ
ρ1

≤ λq− 1 ζq− 1
A1 ρ1,

(83)

where

A1 �
‖μ‖

Γ(α)Γ(β)
q− 1φ(T)

φ(t) +
T N

1 − N
(ψ(T) − ψ(0))

c− 1
􏼢 􏼣

(ψ(T) − ψ(0))

qβq

qβ

. (84)

Hence,

Cλu
����

����≤ ‖u‖, for any u ∈ P0 ∩ zΩ1. (85)

Now, for any u ∈ P0 ∩ zΩ2, we have u ∈ P0 and
‖u‖ � ρ2. Ten,

u(t)≥
ρ n(T − 2ε)(ψ(T) − ψ(s))

c− 1

(1 − n) φ(t) +(T N/(1 − N))(ψ(T) − ψ(s))
c− 1

􏽨 􏽩
‖u(t)‖

≥ σ‖u‖

≥ σρ2 > 􏽥ρ.

(86)
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Ten, by (79) and (81), we have

Cλu(t)
����

����≥ sup
t∈[0,T]

􏽚
T

0
ψ′(s)|H(t, s)| ϕq

λ
Γ(β)

􏽚
s

0
ψ′(τ)(ψ(s) − ψ(τ))

β− 1
|f(τ, u(τ))|dτ􏼠 􏼡ds

≥
ρ n(T − 2ε)
Γ(α)(1 − n)

(ψ(T) − ψ(s))
c− 1

φ(T)

× 􏽚
T

0
ψ′(s)(ψ(T) − ψ(s))

α− 1 ϕq

λ
Γ(β)

􏽚
s

0
ψ′(τ)(ψ(s) − ψ(τ))

β− 1ℵϕp ρ2( 􏼁dτ􏼠 􏼡ds

≥
ρ n(T − 2ε)
Γ(α)(1 − n)

(ψ(T) − ψ(s))
c− 1

φ(T)

λℵ
Γ(β)

􏼠 􏼡

q− 1

× 􏽚
T

0
ψ′(s)(ψ(T) − ψ(s))

α− 1 ϕq 􏽚
s

0
ψ′(τ)(ψ(s) − ψ(τ))

β− 1ϕp ρ2( 􏼁dτ􏼒 􏼓ds

≥ (λℵ)
q− 1 ρ n(T − 2ε)
Γ(α)Γ(β)

q− 1
(1 − n)

(ψ(T) − ψ(0))
c− 1

φ(T)

1
(β + 2)(β + 1)β

× (ψ(T) − ψ(0))
β+1

((β + 1)(ψ(T) − ψ(0)) + ψ(0)) − (β + 2)(ψ(T) − ψ(0))􏽨 􏽩ρ2

≥ λq− 1ℵq− 1
A2ρ2

≥ ρ2 � ‖u‖,

(87)

where

A2 �
ρ n(T − 2ε)

Γ(α)Γ(β)
q− 1

(1 − n)

(ψ(T) − ψ(0))
c− 1

φ(T)

×
1

(β + 2)(β + 1)β

(ψ(T) − ψ(0))
β+1

((β + 1)(ψ(T) − ψ(0)) + ψ(0))

− (β + 2)(ψ(T) − ψ(0))

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦.

(88)

Tis implies that

Cλu
����

����≥ ‖u‖, for any u ∈ P0 ∩ zΩ2. (89)

Finally, by 20, 21, and Teorem 7, we conclude that By
(81) and (89) and Teorem 22, we conclude Cλ has a fxed
point u ∈ P0 ∩ (Ω2\Ω1) with ρ1 ≤ ‖u‖≤ ρ2, and obviously
the IBVP (5) has at least one positive solution u. □

Now, if we use other conditions for f0 and f∞, we
obtain the following theorem.

Theorem 23. Assume that (A0) holds. If we have ζ,ℵ> 0 such
that f0 >ℵ, and f∞ < ζ, then for each real number λ satisfying

1
A

p− 1
2 ℵ
≤ λ≤

1
A

p− 1
1 ζ

. (90)

Te IBVP (5) has at least one positive solution.

Proof. Suppose that λ satisfes (90), then there exists ρ1 > 0
for any t ∈ [0, T] so that

f(t, u)≥ℵϕp(u), for u ∈ 0, ρ2( 􏼃. (91)

Hence, if u ∈ P0 with norm ‖u‖ � ρ2, then we can
choose Ω1 and Ω2 as carried out in the previous theorem
such that

Cλu
����

����≥ ‖u‖, for all u ∈ P0 ∩ zΩ1. (92)

In addition, for any t ∈ [0, T], there exists ρ2 > 0 so that

f(t, u)≥ ζϕp(u), for u ∈ ρ2, +∞)􏼂 . (93)

Hence, if u ∈ P0 with norm ‖u‖ � ρ2, then we have
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Cλu
����

����≤ ‖u‖, for all u ∈ P0 ∩ zΩ2. (94)

By 20, 21, and Teorem 7, we deduce thatCλ has a fxed
point u ∈ P0 ∩ (Ω2/Ω1) with ρ1 ≤ ‖u‖≤ ρ2, and obviously
the IBVP (5) has at least one positive solution u. □

2.4. Nonexistence of Positive Solutions. In this part, we
present the conditions for the nonexistence of positive so-
lutions for the IBVP (5).

Theorem 24. If f0 < +∞ and f∞ < +∞, then for any
t ∈ [0, T] there exist positive constants K1, K2, ρ1, and ρ2 such
that ρ1 < ρ2 and

f(t, u)≤K1ϕp(u), for u ∈ 0, ρ1􏼂 􏼃, (95)

and

f(t, u)≥K2ϕp(u), for u ∈ ρ2,􏼂 +∞). (96)

Denote by K � max K1, K2,maxρ1≤u≤ρ2 ,0≤t≤Tf(t,􏽮

u)/ϕp(u)}, then

f(t, u)≤Kϕp(u), for any t ∈ [0, T], u ∈ [0, +∞]. (97)

Assume conversely that v(t) is a positive solution of the
IBVP (5). Ten, since Cλv(t) � v(t) for any t ∈ [0, T], we
have

‖v‖ � Cλv
����

����≤
λq− 1

Γ(α)Γ(β)
q− 1φ(T)

φ(t) +
T N

1 − N
(ψ(T) − ψ(0))

c− 1
􏼢 􏼣

× 􏽚
T

0
ψ′(s) ϕq 􏽚

s

0
ψ′(τ)(ψ(s) − ψ(τ))

β− 1
|f(τ, u(τ))|dτ􏼒 􏼓ds

≤
λq− 1

Γ(α)Γ(β)
q− 1φ(T)

φ(t) +
T N

1 − N
(ψ(T) − ψ(0))

c− 1
􏼢 􏼣

× 􏽚
T

0
ψ′(s) ϕq 􏽚

s

0
ψ′(τ)(ψ(s) − ψ(τ))

β− 1
Mϕp(v(τ))dτ􏼒 􏼓ds

≤ (λK)
q− 1

‖v‖ A1

<‖v‖,

(98)

which is a contradiction when 0< λ<K
− 1

(A− 1
1 )p− 1. Hence,

the IBVP (5) has no positive solutions in this case.

2.5. Hyers–Ulam Stability of Positive Solutions. In the fol-
lowing, we investigate the Hyers–Ullam stability of our
proposed IBVP (5). We give a similar defnition of the
Hyers–Ullam stability as that given in [61].

Defnition 25. Te integral equation (66) is Hyers–Ulam
stable if there exists a positive constant δ such that for every
ϵ> 0, if

u(t) − 􏽚
T

0
ψ′(s)H(t, s) ϕq

λ
Γ(β)

􏽚
s

0
ψ′(τ)(ψ(s) − ψ(τ))

β− 1
f(τ, u(τ))dτ􏼠 􏼡ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ ϵ, (99)

then, there exists

u
∗
(t) � 􏽚

T

0
ψ′(s)H(t, s)ϕq

λ
Γ(β)

􏽚
s

0
ψ′(τ)(ψ(s) − ψ(τ))

β− 1
f τ, u

∗
(τ)( 􏼁dτ􏼠 􏼡ds, (100)
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where

u(t) − u
∗
(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ δϵ. (101)

Theorem 2 . With the assumption (A0), the IBVP (5) is
Hyers–Ulam stable.

Proof. Suppose that u(t) is a positive solution of (66) and
u∗(t) is an approximation satisfying (100).Ten, by Lemmas
3 and 8, we obtain

u(t) − u
∗
(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � 􏽚

T

0
ψ′(s)H(t, s) ϕq

λ
Γ(β)

􏽚
s

0
ψ′(τ)(ψ(s) − ψ(τ))

β− 1
f(τ, u(τ))dτ􏼠 􏼡ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

− 􏽚
T

0
ψ′(s)H(t, s) ϕq

λ
Γ(β)

􏽚
s

0
ψ′(τ)(ψ(s) − ψ(τ))

β− 1
f τ, u

∗
(τ)( 􏼁dτ􏼠 􏼡ds

􏼌􏼌􏼌􏼌􏼌􏼌

≤
λq− 1

(p − 1)ϱp− 2

Γ(α)Γ(β)
q− 1φ(T)

φ(t) +
T N

1 − N
(ψ(T) − ψ(0))

c− 1
􏼢 􏼣

× 􏽚
T

0
ψ′(s) 􏽚

s

0
ψ′(τ)(ψ(s) − ψ(τ))

β− 1
f(τ, u(τ)) − f τ, u

∗
(τ)( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dτ ds

≤
λq− 1

(p − 1)ϱp− 2

Γ(α)Γ(β)
q− 1φ(T)

φ(t) +
T N

1 − N
(ψ(T) − ψ(0))

c− 1
􏼢 􏼣

× 􏽚
T

0
ψ′(s) 􏽚

s

0
ψ′(τ)(ψ(s) − ψ(τ))

β− 1
|μ(t)| un(τ) − u(τ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dτ ds

≤
λq− 1

(p − 1)ϱp− 2
‖μ‖

Γ(α)Γ(β)
q− 1φ(T)

φ(t) +
T N

1 − N
(ψ(T) − ψ(0))

c− 1
􏼢 􏼣

(ψ(T) − ψ(0))
β+1

β2 + β
un − u

����
����.

(102)

Hence, if δ � λq− 1(p − 1)ϱp− 2‖μ‖/Γ(α)Γ(β)q− 1

φ(T)[φ(t)+ T N/1− N(ψ(T)− ψ(0))c− 1](ψ(T) − ψ(0))β+1/
(β2 + β), then we deduce that the integral (66) is
Hyers–Ulam stable. Consequently, the IBVP (5) is
Hyers–Ulam stable. □

3. Numerical Examples

To demonstrate the practical implications of the key fndings
derived above, we provide the following numerical
examples.

Example 1. Consider the following p-Laplacian ψ-Caputo
fractional diferential equations involving integral boundary
conditions.

c
D

1/3,t
0+ ϕp

c
D

7/3,t
0+ u􏼐 􏼑􏼐 􏼑(t) + λ t

3
+ 2􏼐 􏼑 65u −

8449
130

sin u􏼒 􏼓 � 0, t ∈ [0, 1],

u(0) � 􏽚
1

0

199
205

u(s)ds, u(T) � 􏽚
1

0

199
205

u(s)ds, u
″
(0) � 􏽚

1

0

3
205

u(s)ds,

c
D

7/3,ψ
0+ u(t)

􏼌􏼌􏼌􏼌􏼌t�0 � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(103)

where ψ(t) � t, T � 1, c � 1, f(t, u(t)) � (t3 + 2)(65u−

8449/130 sin u), α � 7/3, β � 1/3, p � 2, ε � 1/6,
g1(s) � g2(s) � 199/205, g3(s) � 3/205, φ(t) � 2t, and
χ(t) � t(t − 1). Tis implies that
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Φ(t, s) � (1 − t)g1(s) + tg2(s) +
t(t − 1)

2
g3(s)

�
199
205

(1 − t) +
199
205

t +
3
410

− t + t
2

􏼐 􏼑.

(104)

Ten, through straightforward computations, we can
determine that m � 1589/1640, M � 199/205, ρ �

5(6 −
���
1803

√
)/36, σ � 95(6 −

���
1803

√
)/1806, A

p− 1
1 � 205/

6 Γ(11/3) � 8.51569, A
p− 1
2 � 12624605(6 −

���
1803

√
)2/

51827526 Γ(11/3) � 0.0075989, f0 � 3/130< 0.03 � ζ,
f∞ � 130>ℵ � 129, f0 � 1/65, and f∞ � 195. By using
Teorem 23, it is clear that the inequality

1/Ap− 1
2 ℵ< λ< 1/A

p− 1
1 ζ implies that the IBVP (103) has at

least one positive solution for each λ ∈ (1.02014, 3.91434).
Moreover, since 3/130u<f(t, u)< 195u, which implies by
using Teorem 24 that the IBVP (103) has no positive so-
lution for each λ ∈ (0, 0.000602207). Finally, since as-
sumption (A0) holds for m � 1589/1640 and M � 199/205,
i.e., 0<m≤ |Φ(t, s)|≤M< 1 then the IBVP (103) is
Hyers–Ulam stable.

Example 2. Consider the following p-Laplacian ψ-Caputo
fractional diferential equations involving integral boundary
conditions.

c
D

1/2,t2+1
0+ ϕp

c
D

5/2,t2+1
0+ u􏼒 􏼓􏼒 􏼓(t) + λ t

2
+ 1􏼐 􏼑 65u −

8449
130

sin u􏼒 􏼓 � 0, t ∈ [0, 1],

u(0) �
1
Γ(1/2)

􏽚
1

0

200
201

2s 1 − s
2

􏼐 􏼑u(s)ds, u(T) �
1
Γ(1/2)

􏽚
1

0

200
201

2s 1 − s
2

􏼐 􏼑u(s)ds,

u
″
(0) �

1
Γ(1/2)

􏽚
1

0

4
201

2s 1 − s
2

􏼐 􏼑u(s)ds,
c
D

5/2,t2+1
0+ u(t)

􏼌􏼌􏼌􏼌􏼌 t�0 � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(105)

where ψ(t) � t2 + 1, T � 1, c � 1/2, f(t, u(t)) �

(t3 + 2)(65u − 8449/130 sin u), α � 5/2, β � 1/2, p � 2,
ε � 1/4, g1(s) � g2(s) � 200/201, g3(s) � 4/201,

φ(t) � (ψ(t) − ψ(0)) 2 ψ′(0)􏼒 􏼓
2

− (ψ(t) − ψ(0))ψ″(0)􏼠 􏼡 � 2t
4
,

χ(t) � (ψ(1) − ψ(0))(ψ(t) − ψ(0))(ψ(t) − ψ(1)) � t
2

t
2

− 1􏼐 􏼑.

(106)

Tis implies that

Φ(t, s) �
1
Γ(c)

1 −
φ(t)

φ(T)
􏼠 􏼡g1(s) +

φ(t)

φ(T)
g2(s) +

χ(t)

φ(T)
g3(s)􏼢 􏼣

�
1
Γ(1/2)

1 − t
4

􏼐 􏼑
200
201

+ t
4200
201

+
t
2

t
2

− 1􏼐 􏼑

2
200
201

⎡⎣ ⎤⎦

�
1
��
π

√
200
201

t
4

+
100
201

t
2

t
2

− 1􏼐 􏼑 +
200
201

1 − t
4

􏼐 􏼑􏼒 􏼓.

(107)

Ten, through straightforward computations, we can
determine that m � 175/(201

��
π

√
) � 0.49121, M � 200/(201��

π
√

) � 0.561383, ρ � (3/8)(
�
3

√
− 2) � 0.100481, σ � 175(3/

4 − 3
�
3

√
/8)(1 − 200/(201

��
π

√
)/402(1 − 175/(201

��
π

√
))

��
π

√
�

0.0212749, A
p− 1
1 � 1/(6 (1 − 200/(201

��
π

√
))) � 0.379982,

A
p− 1
2 �30625(3/4− 3

�
3

√
/8)2 (1 − 200/(201

��
π

√
))/969624(1−

175/(201
��
π

√
))2 π � 0.000171988, f0 � 1/65< 1/64 � ζ,

f∞ � 65>ℵ � 64, f0 � (1/130), and f∞ � 130. By using
Teorem 23, it is clear that the inequality
1/(A

(p− 1)
2 ℵ)< λ< 1/(A

(p− 1)
1 ζ) implies that the IBVP (105) has

at least one positive solution for each λ ∈ (90.8492, 168.429).
Moreover, since (1/130)u<f(t, u)< 130u, which implies
by using Teorem 24 that the IBVP (105) has no positive so-
lution for each λ ∈ (0, (3/98)(1 − 200/(201

��
π

√
)) �

(0, 0.0134271). Finally, since assumption (A0) holds for m �

175/(201
��
π

√
) and M � 200/(201

��
π

√
), i.e., 0<m≤ |Φ(t, s)|≤

M< 1 then the IBVP (105) is Hyers–Ulam stable.

 . Conclusion

In conclusion, our study focuses on investigating the sta-
bility and existence of positive solutions for a specifc type of
p-Laplacian ψ-Caputo fractional diferential equations with
fractional integral boundary conditions. Trough the use of
Green’s function properties and the application of
Guo–Krasnovelsky’s fxed point theorem on cones, we have
established novel existence results, ensuring the presence of
at least one positive solution. Our analysis encompasses
a range of parameter values, providing a comprehensive
understanding of the problem. We have laid a solid foun-
dation for our investigation by utilizing fractional integrals,
diferential operators, and fundamental lemmas. Our study
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contributes to the existing knowledge in this feld by ex-
ploring both the existence and nonexistence of positive
solutions. We have also examined the Hyers–Ulam stability
of solutions by introducing a defned notion and building
upon previous research. To validate the efectiveness and
accuracy of our approach, we have presented numerical
examples. Overall, our study signifcantly advances the
understanding of stability and existence of positive solutions
for the considered class of fractional diferential equations.
Future research can focus on conducting more extensive
numerical studies to gain further insights into the system’s
behavior and properties under diferent parameter regimes.
In addition, exploring diferent choices of ψ(t) and other
parameter values can provide a deeper understanding of the
existence and stability of positive solutions. In summary, our
study makes substantial contributions to the understanding
of eigenvalue problems with the ψ-Caputo integro-
diferential operator, and its insights can be extended to
other investigations in this feld. By continuing to conduct
further numerical studies and explore diferent parameter
choices, researchers can advance our knowledge and un-
cover new aspects of this intriguing problem.
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