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Two important algebraic structures are S-acts and Boolean algebras. Combining these two structures, one gets S-Boolean algebras,
equipped with a compatible right action of a monoid S which is a special case of Boolean algebras with operators. In this article, we
considered some category-theoretic properties of the category Boo-S of all S-Boolean algebras with action-preserving maps
between them which also preserve Boolean operations. Te purpose of the present article is to study certain categorical and
algebraical concepts of the category Boo-S, such as congruences, indecomposable objects, coproducts, pushouts, and free objects.

1. Introduction and Preliminaries

Two important algebraic structures in many felds such as in
computer science are S-acts and Boolean algebras and then
a combination of these two structures called S-Boolean al-
gebras, introduced in [1], are essential. In this article, some
category-theoretic properties of the category Boo-S of all
S-Boolean algebras, with action and operations preserving
maps between them are considered. Let us explain our
motivation and eagerness to do this article.

Te study of categories in category C which is diferent
from the category set of sets are always of interest, for ex-
ample, topological groups, topological rings, topological
semigroups or the category of general (universal) algebras in
an arbitrary category (see [2]). In special, where C is the
category Act-S of sets with an action of a monoid S on them
has been considered in [1, 3–6]. Ebrahimi andMahmoudi, in
[1, 4, 5], have investigated the category Boo of Boolean
algebras in the category Act-S. Tey have studied some of
their properties such as internal injectivity and completion
in Boo-S. Jónsson and Tarski in [7, 8] introduced the concept
of Boolean algebras with operators. All S-Boolean algebras
are special instances of Boolean algebras with operators that
the set of these operators forms a monoid S. So, we are
persuaded to get some categorical and algebraic structures

and concepts such as congruences, coproducts, and free
objects, which were not obtained in [1, 4, 5, 7, 8].

On the other hand, acts over a semigroup or monoid S,
namely, S-acts, and also Boolean algebras are extended in
many applications such as in theoretical computer sci-
ence, algebraic automata theory, combinatorial problems,
theory of machines, and graph theory. A comprehensive
survey of S-acts was published by Kilp et al. in [9] and of
Boolean Algebras by Koppelberg in [10] and Givant and
Halmos in [11]. Recently, the study of the connection
between actions and algebraic structures (for example,
vector spaces, modules, S-acts, S-posets, and M-algebras)
has been of interest for some authors (see for example
[2, 3, 12, 13]). In [2], Ebrahimi introduced the concept of
S-algebras which is the action of a monoid S on (universal)
algebras. After that, the concepts of S-acts, S-poset, and
soft S-act were introduced, respectively, in [3, 12, 13].
Inspired by these studies, in this article, we identifed
congruences and some limits and colimits such as
products, coproducts, equalizers, pullbacks, and pushouts
in the category Boo-S. Also the existence of free objects on
a set X is shown and some adjoint situations are obtained.
We should mention that the constructions in the category
Boo-S are not mostly relevant to their counterparts in Act-
S and Set.
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Section 2 is devoted to defnition and some elementary
properties of S-Boolean algebras. In Section 3, we widely
investigated congruences and simple, subdirectly irreduc-
ible, and indecomposable algebras in Boo-S. Coproducts and
pushouts in Section 4 and free S-Boolean algebras in Section
5 are studied.

Troughout the article, S will denote a given monoid. A
(right) S-act is a set A on which S acts unitarily from the right
with the usual properties, that is, if there is an S-action
μ: A × S⟶ A, denoting μ(a, s): � as, such that a(st) �

(as)t and a1 � a, where 1 denotes the identity of S. In fact, an
S-act is a universal algebra (A, (μs)s∈S) where each
μs: A⟶ A, μs(a) � as is a unary operation on A such that
μs

°μt � μts for each s, t ∈ S and μ1 � idA. Tus, all objects of
the category Act-S form an equational class. On the other
hand, considering S as a one-object category whose mor-
phisms are the elements of S, the functor category SetS is
isomorphic to Act-S. Hence, since any functor category SetC,
for a small category C, is a topos, the category Act-S is
a topos (see [12]). An element a of an S-act A is called a fxed
element if as � a for all s ∈ S. Te set of all fxed elements of
A is denoted by Fix(A). Note that one can always adjoin
a fxed element to A and get an act A0 � A∪ 0{ } with a fxed
element 0. For two S-acts A and B, a map f: A⟶ B is
called S-homomorphism (or S-map), if f(as) � f(a)s for
each a ∈ A, s ∈ S. An equivalence relation θ on an S-act A is
called an S-act congruence on A if aθb implies asθbs for all
a, b ∈ A and s ∈ S. If θ is a congruence on A, then the factor
set A/θ � [a]θ | a ∈ A , with the action given by
[a]θs � [as]θ, for a ∈ A and s ∈ S, is clearly an S-act, called
the factor act of A by θ. Considering S to be a one element
monoid, the category Act-S is equivalent to the category Set
and so the categorical constructions are obtained similarly
for sets, for more information and the notions not men-
tioned here such as monomorphism, epimorphism, iso-
morphism, product, coproduct, equalizer, coequalizer,
pullback, pushout, and free objects, about the category Act-
S, see [9, 12]. Also, the interested reader is referred to [10, 11]
for some required defnitions and basic categorical in-
gredients of Boolean algebras needed in the sequel.

2. Boolean Algebras with
Semigroup Operations

In this section, we give a brief account of some basic def-
nitions and elementary properties about S-Boolean algebras
needed in the sequel. As we say in Section 1, recalling the
general notion of an algebra in a category, we discussed
Boolean algebras in the category Act-S. More generally (see,
[2]), an S-algebra A is an (ordinary) algebra of type τ which
is also an S-act such that each operation λ: An⟶ A is an
S-map, or equivalently, each S-action μs: A⟶ A defned
by μs(a) � as is an algebra homomorphism. Tus, the
category Boo-S of right S-Boolean algebras is an example of
S-algebras. In other words, we have the following defnition:

Defnition 1 (see [4]). Let S be a monoid. A right S-Boolean
algebra is a (possibly empty) Boolean algebra (A,∨,∧,′,⊥,⊤)
which is also an S-act whose Boolean algebra operations are

equivariant, that is, (a∨b)s � as∨bs, (a∧b)s � as∧bs, (as)′ �

a′s, ⊥s � ⊥ and ⊤s � ⊤ for each a, b ∈ A and s ∈ S.
Let S be a monoid. Ten, every Boolean algebra A can be

considered as a right S-Boolean algebra, by trivial action
defne as xs � x for all x ∈ A and all s ∈ S. Tus, the category
Boo is a full subcategory of Boo-S.

Lemma 1. Let a Boolean algebra (A,∨,∧,′,⊥,⊤) be an S-act.
Te following are equivalent:

(i) A is an S-Boolean algebra.
(ii) For every a, b ∈ A and s ∈ S,

(a∨b)s � as∨bs,

(as)
′

� a
′
s.

(1)

(iii) For every a, b ∈ A and s ∈ S,

(a∧b)s � as∧bs,

(as)
′

� a
′
s.

(2)

Proof. (i)⇒(ii) Clear.(ii)⇒(iii) Let a, b ∈ L and s ∈ S. Ten,

(a∧b)s � a
′∨b′ 
′
s � a

′∨b′ s 
′

� a
′
s∨b′s 

′

� (bs)
′

′

� as∧bs.
(3)

(iii)⇒(i) Te proof of this part is similar to (ii)⇒(iii).
From now on we use Lemma 1, part (ii) or (iii) for the

defnition of S-Boolean algebra. Also, one can defne an
order on an S-Boolean algebra as follow: a≤ b if and only if
a∧b � a. It is easy to check that if a≤ b, then as≤ bs.

By an S-Boolean algebra map (or homomorphism), we
mean a map f: A⟶ B between right S-Boolean algebras
which preserves binary operation ∨ (or ∧), unary operation ′
and the action. □

Remark 1. For a homomorphism f: A⟶ B and a, b ∈ A,

(i) f(⊥A) � ⊥B and f(⊤A) � ⊤B

(ii) if a≤ b, then f(a)≤f(b)

Let Ai  be a family of right S-Boolean algebras. Te
product of Ai  is their Cartesian product, with component
wise action and operations. Clearly, the category Boo-S is
product complete (i.e., for every family Ai  of S-boolean
algebras, the product exists in Boo-S) and determined up to
isomorphism. In particular, the terminal S-boolean algebra
(the product of the empty family of S-Boolean algebras) is
a one element object. Now, we are ready to explain a class of
right S-Boolean algebras.

Example 1. Consider the Boolean algebra A0 � ⊥,⊤{ } and
the group S � 1, s0 .

(1) Let A1 � 22 � ⊥, a, a′,⊤ . It is not difcult to check
that A1 by the action satisfying as0 � a′ and a′s0 � a

is an S-Boolean algebra.
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(2) LetA2 be the Boolean algebra with cardinality 23.Ten,
A2 � A0 × A1 which is an S-act by the action given by
(x, y)s � (xs, ys), for each x ∈ A0 and y ∈ A1. Using
part (1), ((x, y)∨ (z, w))s � (x∨ z, y∨w)s �

((x∨ z)s, (y∨w)s) � (xs∨ zs, ys∨ws) � (xs, ys)∨
(zs, ws) � ((x, y)s)∨((z, w)s) and (x, y)′s

� (x′, y′)s � (x′s, y′s) � ((xs)′, (ys)′) � (xs, ys)′ �

((x, y)s)′. Tus, A2 is a right S-Boolean algebra.
(3) Let A be a Boolean algebra with 2n elements. Ten,

using part (1) and (2) by induction we can easily
show that A is an S-Boolean algebra.

Example 2. For a S-Boolean algebra A, consider S to be the
set of all Boolean endomorphisms on A. By the binary
operation given by, for each f, g ∈ S, (f∗g)(a) � g(f(a)),
clearly S is a monoid. Defne an action on A as follow, for
each a ∈ A and f ∈ S, a.f � f(a). Now, it is not difcult to
check that A is an S-Boolean algebra.

By defnition, a sub-Boolean algebra of a Boolean algebra
B is a subset A of B which is closed under ∨ and ′. Also,
a subset A of an S-act B is called an S-subact, if for each a ∈ A

and s ∈ S, as ∈ A. So, a subset A of an S-Boolean algebra B is
said to be a sub S-Boolean algebra of B, if it is a sub Boolean
algebra of B as well as an S-subact. Note that in which case
binary and nullary operations are compatible with the
S-action. For a subset X⊆B, a sub S-Boolean algebra of B

generated by X, is a smallest sub S-Boolean algebra of B

containing X. For an S-Boolean algebra B and X⊆B, denote
X′ � x′ | x ∈ X . An element y ∈ B is called an elementary
product on X, if y � x1s1∧x2s2∧ . . .∧xnsn in which
xi ∈ X∪X′ and si ∈ S. By the properties of right S-Boolean
algebras we can easily show the following theorem:

Theorem 1. For a right S-Boolean algebra B and a subset
X⊆B, the subset

〈X〉 � y1∨y2∨ . . .∨yk yi

 is elementary produ cts onX ,

(4)

is the least sub S-Boolean algebra of B, called the sub
S-Boolean algebra of B generated by X.

We consider the set of all covariant functors from the
one-object category S to the category Boo and natural
transformations between them, as a category which called
functor category and denoted by BooS.

Theorem 2. Te category S-Boo of left S-Boolean algebras is
isomorphic to the category BooS.

Proof. Consider the functor ϕ: BooS⟶ S-Boo as follows:
For each F ∈ BooS, ϕ(F) � F(S) with an action sx � F(s)(x)

and for any natural transformation τ: F⟶ G in S-Boo, we
defne ϕ(τ) to be the only component τS of τ. Also, we
consider the functor ψ: S-Boo ⟶BooS, defned by
ψ(A)(S) � A and ψ(A)(s) � λs, for each A ∈ S-Boo and

s ∈ S. Note that each S-Boolean homomorphism
f: A⟶ B, ψ(f): ψ(A)⟶ ψ(B) is the natural trans-
formation whose only component is f. Now, it is not dif-
fcult to show that ψϕ � idBooS and ϕψ � idS−Boo.

Also, clearly the category Boo-S is isomorphic to the
category Sd-Boo (Sd is the dual monoid of S). In particular, if
S is a commutative monoid, then the categories Boo-S and S-
Boo are isomorphic, and hence the category Boo-S is iso-
morphic to the category BooS and this means that, as we said
before, the category Boo-S is a topos. □

3. Congruences on S-Boolean Algebras

Te action of a semigroup S on lattices, so called S-lattices,
was defned by Luo, [14]. Te author specially studied the
S-lattice congruences of S-lattices. In this section, we in-
troduced congruences of right S-Boolean algebras. Also,
some characterizations of congruences generated by a subset
X are investigated. Two kinds of congruence characteriza-
tions (Proposition 1 and Teorem 3) are given here. Ten,
relations between congruences and ideals are investigated.
Finally, some results about simple, subdirectly irreducible,
and indecomposable right S-Boolean algebras based on
congruences are obtained.

Defnition 2. An equivalence relation θ on an S-Boolean
algebraA is said to be a congruence relation onA, if θ is a sub
S-Boolean algebra of A × A, or equivalently, for each
a, b, c ∈ A and s ∈ S, aθb implies (a∨c)θ(b∨c), a′θb′, and
asθbs.

Note that, in Defnition 2, a′θb′ implies (a′∨c′)θ(b′∨c′).
Now, Demorgan’s low deduces that (a∧c)θ(b∧c). Te set of
all congruence relations on A is denoted by Con(A). Also,
each homomorphism f: A⟶ B induces the congruence
relation, kerf, on A, defned by a1ker(f)a2 if and only if
f(a1) � f(a2). As usual for a congruence ρ ∈ Con(A) and
a ∈ A, the congruence class of a is denoted by [a]ρ, or [a],
and (A/ρ) � [a]ρ | a ∈ A . By the action given by [a]ρs �

[as]ρ and operations [a]ρ∨[b]ρ � [a∨b]ρ, [a]ρ∧[b]ρ �

[a∧b]ρ, and [a]ρ
′ � [a′]ρ, (A/ρ) is an right S-Boolean al-

gebras. It is easy to check that the canonical map
π: A⟶ (A/ρ), defned by π(a) � [a]ρ, is a homomor-
phism. Also, a≤ b implies [a]ρ ≤ [b]ρ. Note that ρ(H) for
H⊆A × A denotes the congruence generated by H (i.e., the
smallest congruence on A containing H). We denote
H− 1 � a, b | (b, a) ∈ H{ }. For every semigroup S without an
identity one can adjoin an identity 1 by setting 1s � s � s1
for all s ∈ S and get an S-act denoted by S1. By placing
1.1 � 1, one can consider S1 as a monoid.

Now, we are ready to explain the frst congruence
characterization.

Proposition 1. Let H⊆A × A and ρ � ρ(H). Ten, for
a, b ∈ A, one has aρb if and only if either a � b or for
1≤ i≤ n, 1≤ j≤mi there exist (pi, qi) ∈ H∪H′ ∪
H− 1 ∪ (H− 1)′, si ∈ S1 and aij ∈ A, such that
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a � p1s1 ∗ a11 ∗ a12 ∗ · · · ∗ a1m1
,

q1s1 ∗ a11 ∗ a12 ∗ · · · ∗ a1m1
� p2s2 ∗ a21 ∗ a22 ∗ · · · ∗ a2m2

,

q2s2 ∗ a21 ∗ a22 ∗ · · · ∗ a2m2
� p3s3 ∗ a31 ∗ a32 ∗ · · · ∗ a3m3

,

⋮

qnsn ∗ an1 ∗ an2 ∗ · · · ∗ anmn
� b,

(5)

where ∗ ∈ ∨,∧{ }, mi ∈ N∪ 0{ }, and pisi ∗ ai1 ∗ ai2 ∗ . . . ∗
aimi

� (. . . ((((pisi ∗ ai1)∗ ai2)∗ ai3)∗ . . . ∗ aimi
).

Proof. It is not difcult to check that ρ is an equivalence
relation on A. Let s ∈ S and a, b, c ∈ A such that aρb. Te
expression (a∨c)ρ(b∨c) is obtained by adding ∨c to the right
side of all terms of the † chain. Using De Morgan’s laws, we
get aρb and also since the action of S on the Boolean algebra
operations of A is equivariant, we get asρbs. Now, we prove
that ρ is an smallest congruence containing H. Let θ be
a congruence containig H and aρb. So a � b or the chain †
holds. For each 1≤ i≤ n, since piθqi and θ is a congruence,
pisiθqisi and also pisi ∗ ai1θqisi ∗ ai1. By continuing this
argument pisi ∗ ai1 ∗ ai2 ∗ . . . ∗ aimi

θqisi ∗ ai1 ∗ ai2 ∗ . . . ∗
aimi

. Tus, aθb which implies ρ⊆θ.
In what follows (the second congruence characteriza-

tion), we shall often use a more explicit version of the
previous proposition. □

Theorem 3. Let A be a right S-Boolean algebra and H
⊆A × A. Consider the binary relation θ on A by for all
x, y ∈ A, xθy if and only if x � y or there exist
e1, e2, . . . , en ⊆A and s1, s2, . . . , sn−1 ⊆ S such that

x � e1,

e1∧p1s1 � e2∧p1s1, e1∨q1s1 � e2∨q1s1,

e2∧p2s2 � e3∧p2s2, e2∨q2s2 � e3∨q2s2,

⋮, ⋮(∗ ),

en−1∧pn−1sn−1 � en∧pn−1sn−1, en−1∨qn−1sn−1 � en∨qn−1sn−1,

en � y

(6)

where (pi, qi) ∈ H∪H− 1. Ten, θ � ρ(H).

Proof. It is easy to check that θ is an equivalence relation.
Suppose that xθy, s ∈ S, and c ∈ A. If x � y, then
x∨c � y∨c, x′ � y′, and xs � ys. Otherwise, there exist
e1, e2, . . . , en ⊆A and s1, s2, . . . , sn−1 ⊆S such that (∗ )

holds. Clearly, xsθys and (x∨c)θ(y∨c).
It sufces to show that x′θy′. By the assumption, one gets

the following equation:

x
′

� e
′
,

e1′∨p1′s1 � e2′∨p1′s1, e1′∧q1′s1 � e2′∧q1′s1,

e2′∨p2′s2 � e3′∨p2′s2, e2′∧q2′s2 � e3′∧q2′s2,

⋮ ⋮

en−1′∨pn−1′sn−1 � en
′∨pn−1′sn−1, en−1′∧qn−1′sn−1 � en

′∧qn−1′sn−1,

en
′ � y
′
.

(7)

For each 1≤ i≤ n − 1, (ei
′∨pi
′si)∧pisi � (ei+1′∨pi

′si)∧pisi

deduces that ei
′∧pisi � ei+1′∧pisi and similarly

ei
′∨qisi � ei+1′∨qisi. So, we have the following equation:

x
′

� e
′
,

e1′∧p1s1 � e2′∧p1s1, e1′∨q1s1 � e2′∨q1s1,

e2′∧p2s2 � e3′∧p2s2, e2′∨q2s2 � e3′∨q2s2,

⋮ ⋮

en−1′∧pn−1sn−1 � en
′∧pn−1sn−1, en−1′∨qn−1sn−1 � en

′∨qn−1sn−1,

en
′ � y
′
.

(8)

Tus, x′θy′ which deduces that θ is a congruence relation
an A. Suppose that (a, b) ∈ H, consider e1 � a, e2 � a∧b,
e3 � b, s1 � s2 � 1, p1 � b, q1 � a, p2 � a, and q2 � b. So,
aθb, and hence H⊆θ. Now, let ρ be a congruence relation
containing H and xθy. Tus, x � y or the (∗) holds. For each
1≤ i≤ n − 1, ei � ei∨(ei∧pisi) � (ei∨(ei+1∧pisi))ρ (ei∨
(ei+1∧qisi)) � (ei∨ei+1)∧(ei∨qisi) � ((ei∨ei+1)∧(ei+1∨qisi))

ρ(ei+1∨(ei∧pisi)) � ei+1∨(ei+1∧pisi) � ei+1. Tus, eiρei+1, and
hence x � e1ρe2ρ . . . ρen � y. Terefore, θ⊆ρ and then θ is
the smallest congruence containing H. □

Corollary 1. For a right S-Boolean algebra A and H⊆A × A,
if xρ(H)y, then there exist n ∈ N∪ 0{ }, s1, s2, . . . , sn ⊆S, and
(p1, q1), (p2, q2), . . . , (pn, qn) ∈ H∪H− 1 such that

(i) x∧p1s1∧ . . .∧pnsn � y∧p1s1∧ . . .∧pnsn;
(ii) x∨q1s1∨ . . .∨qnsn � y∨q1s1∨ . . .∨qnsn.

Corollary 2. Let H⊆A × A and K � a ∈ A |∃{

b ∈ A s.t (a, b) ∈ H∪H− 1}, the union of domain and image
of H. If xρ(H)y, then there exist a, b ∈ 〈K〉 such that x∧a �

y∧a and x∨b � y∨b

Defnition 3. An S-ideal of a right S-Boolean algebra A is
a Boolean ideal of A which is an S-sub act as well. Te set of
all S-ideals of an S-Boolean algebra A is denoted by IDS(A).

Proposition 2. Let I be an S-ideal in an S-Boolean algebra A

and ρI � ρ(I × I). Ten, the following are equivalent:

(i) xρIy.

(ii) x∨u � y∨u for some u ∈ I.
(iii) x∧v � y∧v for some v ∈ I′.

(iv) x∆y ∈ I, where x∆y � (x∧y′)∨(x′∧y).

Proof

(i) ⇒ (ii) Let xρIy. Using Corollary 1 in which u �

q1s1∨ . . .∨qn−1sn−1 ∈ I.
(ii) ⇒ (iii) x∧u′ � (x∨u)∧u′ � (y∨u)∧u′ � y∧u′.
(iii) ⇒ (ii) x∨v′ � (x∧v)∨v′ � (y∧v)∨v′ � y∨v′.
(ii) ⇒ (i) Consider e1 � x, e2 � y, s1 � 1, p1 � ⊥ and

q1 � u. So, xρIy.
(iv) ⇒ (ii) It is easy to check that x∨(x△y) �

x∨y � y∨(x△y).
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(iii)⇒ (iv) (x△y)∧v � (x∧v)△(y∧v) � (x∧v)△ (x∧v)

� ⊥A. Tus, (x△y)≤ v′ ∈ I, and therefore (x△y) ∈ I. □

Corollary 3. Let I be an S-ideal in an S-Boolean algebra A

and a ∈ I. Ten,

(i) I � [a]ρI
.

(ii) ρI is the greatest congruence on A having I as a whole
class.

Proof

(i) It is clear that I⊆[a]ρI
. For the converse, let x ∈ [a]ρI

.
Ten, there exists u ∈ I such that x∨u � a∨u ∈ I.
Tus, x ∈ I, and hence [a]ρI

� I.
(ii) Let θ ∈ Con(A), I � [a]θ, and xθy. Ten,

(x∨y)θ(x∧y) which implies x△y � (x∧y)′∧
(x∨y)θ(x∧y)′∧(x∧y) � ⊥A ∈ I � [a]θ. So,
(x△y)θa, and hence x△y ∈ I. Since
x∨(x△y) � y∨(x△y), by using Proposition 2 (ii),
xρIy. Tus, θ⊆ρI.

Using Corollary 3, one has [⊥A]ρI
� I. So, we have the

following theorem. □

Theorem  . For an S-Boolean algebra A, there is a one to one
correspondence between the sets IDS(A) and ConS(A).

For an S-Boolean algebra A, the congruences
∆ � (a, a) | a ∈ A{ } and ∇ � A × A are called diagonal
congruence and universal congruence, respectively. A
congruence θ is called trivial, if it is universal or diagonal. An
S-Boolean algebra A is called simple if ConS(A) � ∆,∇{ }. As
a consequence ofTeorem 4, we have A is simple if and only
if IDS(A) � ⊥{ }, A{ }.

In the following lemma, S-ideals generated by subsets of
an S-Boolean algebra are constructed.

Lemma 2. Let A be an S-Boolean algebra and X⊆A. Te set
L(X) � a ∈ A |∃n ∈ N, s1, s2, . . . , sn ∈ S, x1, x2, . . . , xn ∈ X

s.t a≤ x1s1∨ . . .∨xnsn} is the smallest S-ideal containing X.

Proof. Clearly, X⊆L(X) and x≤y ∈ L(X) implies that
x ∈ L(X). Also, L(X) is closed under ∨ and ∧ which is an
S-sub act of A, which is a subset of any S-ideal of A con-
taining X, so it is the smallest S-ideal containing X.

Using Lemma 2, we have the following proposition: □

Proposition 3. An S-Boolean algebra A is simple, if and only
if for each ⊥≠ a ∈ A there exist s1, s2, . . . , sn ∈ S such that
∨ni�1asi � ⊤.

In view of Proposition 3, we get the following example. It
shows that for every Boolean algebra A one can consider
a monoid S and an action of S on A, such that the induced
S-Boolean algebra is simple.

Example 3. Let (A,∨,∧,′,⊥,⊤) be a Boolean algebra.Te set
of all Boolean endomorphisms on A endowed with com-
position of morphisms, denoted by S � (HomB(A, A),°), is
a monoid. It is not difcult to check that A by the left
S-action, f.a � f(a) for a ∈ A and f ∈ S, is a left S-Boolean
algebra. Using [11],T. 20.12, for each⊥≠ a ∈ A, there exists
a proper maximal ideal M of A containing a′. Te map
f: A⟶ A is defned by f(x) � ⊥, if x ∈M and f(x) � ⊤
if x ∈ A∖M is a Boolean endomorphism. So, for each
⊥≠ a ∈ A, there exists an endomorphism f such that
f.a � f(a) � ⊤. Now, Proposition 3 shows thatA is a simple
left S-Boolean algebra.

If ρ and θ are congruences on an S-Boolean algebra A,
then the relational product ρ°θ is the binary relation on A

defned by (a, b) ∈ ρ°θ, if and only if there is c ∈ A such that
(a, c) ∈ ρ and (c, b) ∈ θ. Also, the pair ρ, θ is called a pair of
factor congruences on A, if ρ∩ θ � ∆, ρ∨θ � ∇, and
ρ°θ � θ°ρ.

Defnition 4

(i) An S-Boolean algebra A is said to be indecomposable
if A is not isomorphic to a direct product of two
nontrivial right S-Boolean algebras

(ii) An S-Boolean algebra A is called subdirectly irre-
ducible, if A is trivial or there is a minimum con-
gruence in Con(A)\ ∆{ } (i.e., the intersection of all
nontrivial congruences is nontrivial)

By [15], Corollary II.7.7, an S-Boolean algebra A is
indecomposable if and only if the only factor congruences
on A are ∆ and ∇. Unlike the case of Boolean algebras, in
which every simple, subdirectly irreducible, and in-
decomposable algebras are equal to 2, in the category Boo-
S, these mentioned concepts are not necessary to be equal
(example 2 and 3). Also, example 1 shows that, we can
construct a simple S-Boolean algebra of each Boolean
algebra.

Theorem 5. An S-Boolean algebra A is indecomposable if
and only if Fix(A) � ⊥,⊤{ }.

Proof. Let A be an indecomposable S-Boolean algebra and
a ∈ A a fxed element such that a ∉ ⊥,⊤{ }. We defne the
binary relation θ and ρ as follows:

xθy⇔x△y≤ a, and xρy⇔x△y≤ a
′
. (9)

Ten, θ, ρ ∈ Con(A). We only show the transitive
property for θ. Let x△y≤ a and y△z≤ a. So, x∧z′ �
(x∧z′)∧(y∨y′) � [x∧(y∨y′)]∧z′ � [(x∧y)∧z′]∨[(x∧ y

′
)

∧z′]≤ (y∧z′)∨(x∧y′) ≤ (y△z)∨(x△y)≤ a∨a � a, and
similarly x′∧z≤ a. Tus, x△z≤ a.

It is clear that aθ⊥ and a′ρ⊥. Tus, θ≠∆≠ ρ. If
(x, y) ∈ θ∩ ρ, then x△y≤ a∧a′ � ⊥ and hence x � y. Tus,
θ∩ ρ � ∆. Now, we consider Θ � θ∨ρ; the congruence
generated by θ∪ ρ. For each x, y ∈ A we have the following
equation:
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xθ(x∨a)θ(x∨(y∧a))ρ((x∨y)∧a)ρ(y∨(x∧a))θy. (10)

Tus, xΘy, by transitivity. So, Θ � ∇. Next, we showed
that ρ°θ � θ°ρ. Let (x, y) ∈ θ°ρ. Ten, there exists c ∈ A such
that xθcρy, and hence x△c≤ a and y△c≤ a′. Consider
d � (x∧a)∨(y∧a′). So, x∧d′ ≤ a′ and x′∧d≤ a′, which im-
plies x△d≤ a′ and similarly, d△y≤ a. Hence, (x, y) ∈ ρ°θ
and θ°ρ⊆ρ°θ. In a similar way, we concluded ρ°θ⊆θ°ρ.
Terefore, ρ, θ is a pair of factor congruences on A, which is
a contradiction. Tus, Fix(A) � ⊥,⊤{ }.

For the converse, let A be a decomposable S-Boolean
algebra. So, there exists a pair of nontrivial factor congru-
ences ρ, θ on A. By [15], T. II.5.9, Corollary II.7.7,
∇ � ρ∨θ � ρ°θ. Tus, there exists nontrivial element c ∈ A

with ⊥ρcθ⊤. Hence, for each s ∈ S, csρ⊥ρcθ⊤θcs which
deduces (cs, c) ∈ ρ∩ θ. Tus, cs � c, a contradiction.

As we mentioned before, each indecomposable Boolean
algebra is isomorphic to 2 (see [15]). Teorem 5 is a gen-
eralization for that results. Indeed, if we consider the
Boolean algebra B, then by the note just after Defnition 1, B

is a right S-Boolean algebra with trivial action. Clearly, in
this S-Boolean algebra each element is a fx element. So,
Teorem 5 implies that B is an indecomposable S-Boolean
algebra if B � ⊥,⊤{ }.

Using [15], Teorem. II.8.5, each simple algebra is
subdirectly irreducible and each subdirectly irreducible al-
gebra is indecomposable. In what follows, we introduce two
examples to show the converse is not generally true.

Let X be a subset of a poset (P≤ ). Ten, ↓X: �

x ∈ P | x≤p,∃p ∈ P  and ↑X: � x ∈ P | p≤x,∃p ∈ P .
Moreover, if X � p , then we use ↓p (↑p) instead of ↓ p 

(↑ p ), for simplicity. □

Example 4. Tere is a four elements subdirectly irreducible
right S-Boolean algebras, which is not simple. Consider S an
arbitrary semigroup and the Boolean algebra
A � ⊥, a, a′,⊤  by the action as � ⊥ and a′s � ⊤. It is not
difcult to show that A has only one nontrivial S-ideal
I � ↓a. So, by Teorem 4, A has only one nontrivial con-
gruence. Tus, A is subdirectly irreducible which is not
simple.

Example 5. If a Boolean algebra B has at least two atoms,
then there is an action on B such that B is an in-
decomposable and not subdirectly irreducible S-Boolean
algebra. Let b ∈ B be an atom. Te subsets ↑b and ↓b′ are
a partition of B. Consider two elements left zero semigroup
1, s{ } with 1 an identity and defne an action

xs �
⊥ if  x ∈↓b′
⊤ if  x ∈↑b

 . By this action B is a right S-Boolean

algebra. Now, B is indecomposable by usingTeorem 5. For
each atom a, the subset ↓a′ is a right ideal of B. Let Λ be the
set of all atoms of B. Since ∩

a∈Λ
↓a′ � ⊥{ }, B is not subdirectly

irreducible.

4. Coproduct

In [16], R. Lagrange studied the Amalgamation and epi-
morphisms in the category ofM-complete Boolean algebras.
After that, Banaschewski [17] introduced the structure of
strong amalgamations of Boolean algebras. In this section,
we showed, based on [17], the coproduct (free product) of
a family of right S-Boolean algebras exists and consequently,
the pushout of two S-Boolean homomorphisms with same
domain, exists as a qoutient of their coproduct.

Using [17], for Boolean algebras B andC, we consider the
lattice L � U⊆B × C | ↓U � U{ } by the following
requirements:

(∨S, c) ∈ U whenever S × c{ }⊆U,

(b,∨T) ∈ U whenever b{ } × T⊆U,
(12)

for all fnite S⊆B and T⊆C. Also, the maps

λ: B⟶L, x⟼↓ x,⊤C( ∪ ↓ ⊤B,⊥C( ,

μ: C⟶L, y⟼↓ ⊤B, y( ∪ ↓ ⊥B,⊤C( ,
(13)

are bounded lattice embeddings so that Im(λ) � B and
Im(μ) � C are sublattices ofL consisting of complemented
elements.

Coproduct of Boolean algebras B and C is a sublatticeM
of a latticeL generated by λ(B)∪ μ(C) in which both B and
C are embedded.

Furthermore, for each b ∈ B and c ∈ C,
λ(b)∧μ(c) � ↓(b, c)∪ ↓(⊤B,⊥C)∪ ↓(⊥B,⊤C). So
λ(b) � λ(b)∧μ(⊤C) and μ(c) � λ(⊤b)∧μ(c). Also, if b � ⊥B

or c � ⊥C, then

λ(b)∧μ(c) � λ ⊥B( ∧μ ⊥C( 

� ↓ ⊤B,⊥C( ∪ ↓ ⊥B,⊤C(  � ⊥M,
(14)

and if b1 and c1 are not bottom and λ(b1)∧μ
(c1) � λ(b2)∧μ(c2), then b2 and c2 are not bottom as well as
b1 � b2 and c1 � c2.

Now, if B and C are right S-Boolean algebras, for each
b ∈ B, c ∈ C which are not bottoms and s ∈ S, defne
[λ(b)∧μ(c)]s � λ(bs)∧μ(cs) and if b � ⊥B or c � ⊥C, then
[λ(b)∧μ(c)]s � ⊥M. Also, for each y � ∨i(∧jxij) ∈M in
which xij ∈ λ(B)∪ μ(C), we defned ys � ∨i(∧jxijs). Using
these actions, in the following, we deduced that M is an
S-Boolean algebra which is a coproduct of B and C, and both
λ and μ are S-Boolean monomorphisms.

Te abovementioned actions are well defned. Assume
that s ∈ S, b1, b2 ∈ B, c1, c2 ∈ C, and λ(b1)∧μ(c1) �

λ(b2)∧μ(c2). Let b1 and c1 are not bottom. Ten, b2 and c2
are not bottom and b1 � b2 and c1 � c2. Tus, b1s � b2s and
c1s � c2s, which implies that λ(b1s)∧μ(c1s) � λ(b2s)∧μ(c2s).
If b1 or c1 are bottom, then b2 or c2 are bottom too and hence
λ(b1s)∧μ(c1s) � ⊥M � λ(b2s)∧μ(c2s). Tus, the action
[λ(b)∧μ(c)]s � λ(bs)∧μ(cs) is well defned.

We will show the action ∨i(∧jxij)s � ∨i(∧jxijs) is well
defned. Let s ∈ S and x � ∨ni�1(∧

ni

j�1xij) � ∨mk�1(∧
mk

l�1ykl) � y

in which xij, ykl ∈ λ(B)∪ μ(C). Tus, xij � λ(bij)∧μ(cij)

such that bij ∈ B and cij ∈ C. Using the fact that,
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(λ(b1)∧μ(c1))∨(λ(b2)∧μ(c2)) � λ(b1∨b2)∧μ(c1∨c2), we
have the following equation:

x � ∨ni�1 ∧
ni

j�1xij 

� ∨ni�1 ∧
ni

j�1 λ bij ∧μ cij   

� λ ∨
n

i�1
∧
ni

j�1
bij  ∧μ ∨

n

i�1
∧
ni

j�1
cij  ,

(15)

and in a similar way y � λ(∨mk�1(∧
mk

l�1ekl)∧μ(∨mk�1(∧
mk

l�1fkl). If
one of the elements ∨ni�1(∧

ni

j�1bij), ∨ni�1(∧
ni

j�1cij), ∨mk�1

(∧mk

l�1ekl), and ∨mk�1(∧
mk

l�1fkl) is bottom, then x � y � ⊥M.
Now, let the mentioned elements are not bottoms. Ten,
∨ni�1(∧

ni

j�1bij) � ∨mk�1(∧
mk

l�1ekl) and ∨ni�1(∧
ni

j�1cij) � ∨mk�1(∧
mk

l�1
fkl) and by using the previous paragraph and the fact that B

and C are right S-Boolean algebras, we have the following
equation:

xs � λ ∨
n

i�1
∧
ni

j�1
bij  s ∧μ ∨

n

i�1
∧
ni

j�1
cij  s 

� λ ∨
m

k�1
∧
mk

k�1
ekl  s ∧μ ∨

m

k�1
∧
mk

k�1
fkl  s  � ys.

(16)

Similar calculations show that (x∨y)s � xs∨ys and
(xs)′ � x′s. Terefore, M is an S-Boolean algebra.

Also M is an S-Boolean coproduct of B and C. For, let
f: B⟶ A and g: C⟶ A be two S-Boolean maps. Since
M is a coproduct in the category of Boolean algebras, there
exists Boolean homomorphism h: M⟶ A such that hλ �

f and hμ � g. Consider s ∈ S and x � ∨ni�1(∧
ni

j�1xij) in which
xij ∈ λ(B)∪ μ(C). If xij ∈ λ(B), then h(xij)s � hλ(bij)s �

f(bij)s � hλ(bijs) � h(xijs) and similarly for the case
xij ∈ μ(C). So h(x)s � [h(∨ni�1(∧

ni

j�1xij))]s � ∨ni�1(∧
ni

j�1h(xij,

s)) � h∨ni�1(∧
ni

j�1xij, s) � h(xs). Tus, h is an S-Boolean
homomorphism. Also, h is unique.

As a corollary of the existence of coproducts, it is natural
to consider the pushouts in the category of right S-Boolean
algebras.

Lemma 3. Pushout of the following diagram exists.

Proof. Let (τi, A1∐A2) be the coproduct of the pair (A1, A2)

and I be a right ideal of A1∐A2 generated by the set
τ1h1(c)△τ2h2(c) | c ∈ C . We consider Q � A1∐A2/ρI, in
which ρI is a congruence generated by I × I and
pi � πτi: Ai⟶ Q, where π is a canonical map. Now, it is
not difcult to show that (Q, p1, p2) is a pushout of the
diagram. For c ∈ C, πτ1h1(c)△πτ2h2(c) �

π(τ1h1(c)△τ2h2(c)) � ⊥Q. Tus, p1h1 � P2h2. To prove the
universal property of pushouts, let fi: Ai⟶ A be ho-
momorphisms such that f1h1 � f2h2. So, there is a homo-
morphism h: A1∐A2⟶ A satisfying hτi � hi. On the
other hand, h(τ1h1(c)△τ2h2(c)) � hτ1h1(c)△hτ2h2 (c) �

f1h1(c)△f2h2 (c) � f1h1(c)△f1h1(c) � ⊥A. Tus,
I⊆K(h) � x ∈ A1∐A2 | h(x) � ⊥A , and hence there is
a homomorphism f: Q⟶ A such that fπ � h. It follows
that fpi � fi. Moreover, f is uniquely determined, which
implies that Q is a pushout of the diagram in Figure 1.

In [17], Banacshewski has shown that, in the category of
Boolean algebras, the pushout of the previous diagram is
a qoutient of the coproduct as A1∐A2/ρI in which J is an
ideal generated by the set τ1h1(c)∧τ2h2(c′) | c ∈ C . It is not
difcult to show that I � J, and hence ρI � ρJ. Tus,
A1∐A2/ρI is also a coproduct of the diagram in Figure 1.

Finally, we showed that pushouts preserve mono-
morphisms, that is, in the pushout diagram of Lemma 3, p2
is a monomorphism whenever h1 is a monomorphism. Let
x≠⊥A2

and p2(x) � ⊥Q. Ten, πτ2(x) � π(⊥A1∐A2
) and by

Corollary 3.7, there exists u ∈ I such that
τ2(x)∨u � ⊥A1∐A2

∨u � u which implies τ2(x)≤ u. Hence,
τ2(x)∧τ1(⊤A1

) � τ2(x) ∈ I, and by [17], there exists c ∈ C

such that τ2(x)∧τ1(⊤A1
)≤ τ2(h2(c))∧τ1(h1(c′)). So, by [17],

comparison principle, x≤ h2(c) and ⊤A1
≤ h1(c′) which

deduces ⊤A1
� h1(c′). Tus, h1(c) � ⊥A1

and since h1 is
a monomorphism, c � ⊥C. Hence, x≤ h2(⊥C) � ⊥A2

,
a contradiction, showing that p2 is a monomorphism. □

5. Free S-Boolean Algebras and
Adjoint Situations

By an act − free(Boolean − free) right S-Boolean algebra on
a right S-act (Boolean algebra) X we mean an S-Boolean
algebra F(X) with an S-map (Boolean homomorphism)
c: X⟶ F which has the following universal property. For
each S-Boolean algebra A and an S-map (Boolean homo-
morphism) f: X⟶ A there exists a unique right
S-Boolean homomorphism f: F⟶ A such that fc � f. In
particular, a set − free right S-Boolean algebra on a set X is
an act-free by taking the set X to be an S-act with trivial
action (each element is fxed).

Lemma  . If X is a right S-act, the power set Boolean algebra
P(X) with the following action is a left S-Boolean algebra. For
each s ∈ S and U ∈ P(X), sU � x ∈ X | xs ∈ U{ }.

Note that, by a similar argument, Lemma 4 is also true
for a left S-act.

Lemma 5. Let X be an infnite right S-act. Ten, there exists
an act-free S-Boolean algebra on X.

Proof. Consider a map c: X⟶ P(P(X)) defned by,
c(x) � U | x ∈ U ∈ P(X){ }. By twice using Lemma 4,
P(P(X)) is a right S-act. At frst, we showed that c is an S-act
monomorphism. It is clear that c is well defned. Note that,
for each x ∈ X and s ∈ S,

c(xs) � U | xs ∈ U ∈ P(X){ }

� U | x ∈ sU ∈ P(X){ },

c(xs) � W ∈ P(X) | sW ∈ c(x) 

� W ∈ P(X) | x ∈ sW{ }.

(17)

If c(x1) � c(x2), then x1 ∈ x1  ∈ c(x1) � c(x2) and
hence x2 ∈ x1  which implies x1 � x2. Tus, c is a right
S-act monomorphism. Also, c(x)′s � c(xs)′, since
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c(x)
′
s � W ∈ P(X) | sW ∈ c(x)

′
 

� W ∈ P(X) | x ∉ sW{ }

� W ∈ P(X) | xs ∉W{ }

� c(xs)
′
.

(18)

We showed that 〈c(X)〉, the sub-S-Boolean algebra of
P(P(X)) generated by c(X), is a free S-Boolean algebra
generated by X. By Teorem 1, each y ∈ 〈c(X)〉 is of the
form y � y1∨y2∨ . . .∨yk in which each yj � cαj1

(xj1)sj1∧cαj2(xj2)sj2∧ . . .∧cαjnj (xjnj
)sjnj

such that cαji (xji)

∈ c(xji), c(xji)
′

 . For an S-Boolean algebra A and an
S-map f: X⟶ A, we considered the map
f: 〈c(X)〉⟶ A, defned by f(y) � ∨kj�1(∧

nj

ij�1f
αjij

(xjijsjij)). To show f is well defned, we proved the fol-
lowing steps: □

Step 1. For every diferent elements x1, x2, . . . , xn ∈
X(n≥ 1), we have cα1(x1)∧ · · ·∧cαn (xn)≠⊥c(X) � ∅. Oth-
erwise, consider cα1(x1)∧ · · ·∧cαn (xn) � ⊥c(X) � ∅. If
cα1(x1) � c(x1)

′, . . . , cαn (xn) � c(xn)′, then c(x1)
′∧ · · ·∧

c(xn)′ � ∅ and hence X � x1, . . . , xn , which is a contra-
diction. So, we can partite the set x1, . . . , xn  in to two
subsets y1, . . . , ym  and ym+1, . . . , yn  such that
y1, . . . , ym  is a nonempty set and cαi (yi) � c(yi), 1≤ i≤m.
Tus,

c
α1 x1( ∧ · · ·∧cαn xn(  � c y1( ∧ · · ·∧c ym( ∧c ym+1( 

′

∧ · · ·∧c yn( 
′

� ∅.

(19)

Obviously y1, . . . , ym  ∈ c(y1)∧ · · ·∧c(ym)∧c(ym+1)
′

∧ · · ·∧c(yn)′ � ∅, which is a contradiction and hence
cα1(x1)∧ · · ·∧cαn (xn)≠⊥c(X) � ∅. We concluded that if
cα1(x1)∧ · · ·∧cαn (xn) � ∅, then there exists i, j ∈ 1, . . . , n{ }

such that xi � xj and αi ≠ αj.

Step 2. Let y � z ∈ 〈c(X)〉. Ten, y△z � ⊥ and hence
y∧z′ � ⊥ and z∧y′ � ⊥. Applying Teorem 1, consider y �

∨pj�1yj in which each yj � ∧nj

ij�1c
αjij (yjij

)sjij
�

∧nj

ij�1c
αjij (yjij

sjij
) and z � ∨ql�1zl in which each

zl � ∧nl

kl�1
c
αlkl (zlkl

)slkl
� ∧nl

kl�1
c
αlkl (zlkl

slkl
) and

z
′

� ∨n1i1�1∨
n2
i2�1 . . . ∨nq

iq�1 c
α1i1( z1i1

s1i1
 

′
∧cα2i2 z2i2

s2i2
 

′

∧ · · ·∧cαqiq zqiq
sqiq

′
 .

(20)

Since ∧pj�1(yj∧z′) � y∧z′ � ⊥, we have yj∧z′ � ⊥ for
each 1≤ j≤p. Tus,

∨n1i1�1∨
n2
i2�1 . . . ∨nq

iq�1 yj∧ ∧
q
t�1c

αtit ztit
stit

 
′

   � ⊥, (21)

and hence for each (i1, . . . , iq) ∈ Zn1
× Zn2

× · · · × Znq
, which

Z∗n � 1, 2, . . . , n{ }, and yj � ∧nj

ij�1c
αjij (yjij

sjij
), we obtained

the following equation:

∧nj

ij�1c
αjij yjij

sjij
  ∧ ∧qt�1c

αtit ztit
stit

 
′

  � ⊥. (22)

By Step 1, there exist 1≤ ij ≤ nj and 1≤ t≤ q such that
yjij

sjij
� ztit

stit
and αjij

≠ αtit
. Tus, f

αjij (yjij
sjij

)∧

fαtit (ztit
stit
′) � ⊥ and hence f(yj)∧(∧

q
t�1f

αtit (ztit
stit

)′) �

(∧nj

ij�1f
αjij (yjij

sjij
))∧(∧qt�1f

αtit (ztit
stit

)′) � ⊥. By distributive

low, f(yj)∧(∨
n1
i1�1∨

n2
i2�1 . . .∨nq

iq�1(∧
q
t�1f

αtit (ztit
stit

)′)) �

f(yj)∧f(z)′ � ⊥. So, f(y)∧f(z)′ � ⊥ and in a similar way
f(y)′∧f(z) � ⊥which implies f(y) � f(z). Terefore, f is
well defned.

Routine calculations show that f is an S-Boolean ho-
momorphism and unique under the universal property of
free objects.

Proposition  . If X is a right S-act, then there exists an act-
free S-Boolean algebra on X.

Proof. If X is an infnite S-act, then we are done by using
Lemma 5. Let X be a fnite S-act. Consider X+, the free word
semigroup over X. Te semigroup X+ by the action, for each
x1, x2, . . . , xn ∈ X and s ∈ S, (x1x2 · · · xn)s �

(x1s)(x2s) · · · (xns), is an S-act. Let A be an S-Boolean al-
gebra and f: X⟶ A an S-map. Te map f1: X+⟶ A

defned by f1(x1x2 · · · xn) � f(x1)∧f(x2)∧ · · ·∧f(xn) is an
S-act homomorphism. So there exists a unique S-Boolean
algebra homomorphism f2: F(X+)⟶ A such that
f2c � f1. Consider F(X), the sub S-Boolean algebra of
F(X+) generated by c(X) and f: F(X)⟶ A defned by
f � f2|F(X). It is clear that fc|X � f. Let g: F(X)⟶ A be
an S-Boolean homomorphism such that gc|X � f. Using the
S-Boolean homomorphism defned in the proof of Lemma 5,

f ∨qj�1 ∧
nj

ij�1c
αjij xjij

sjij
    � f2 ∨

q

j�1 ∧
nj

ij�1c
αjij xjij

sjij
   

� ∨qj�1 ∧
nj

ij�1f
αjij xjij

sjij
   ,

(23)

and on the other hand,

A2

C A1

h1

h2

Figure 1: Pushout.
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g ∨qj�1 ∧
nj

ij�1c
αjij xjij

sjij
    � ∨qj�1 ∧

nj

ij�1g c
αjij xjij

sjij
    

� ∨qj�1 ∧
nj

ij�1(gc)
αjij xjij

sjij
   

� ∨qj�1 ∧
nj

ij�1f
αjij xjij

sjij
   ,

(24)

which means f � g. Terefore, F(X) is a free S-Boolean
algebra on the S-act X.

Using the fact that, for each nonempty set X the S-act
X × S, with the action (x, s)t � (x, st), is a set-free S-act on
X, we have the following theorem: □

Theorem 6. Let X be a set and F(X) an act-free S-Boolean
algebra on the S-act X × S. Ten, F(X) is a set-free S-Boolean
algebra on X.

In what follows, we give adjoined pairs between the
category Boo-S and categories Act-S, Boo, and Set. Applying
Proposition 4 and Teorem 6, we have Teorem 7.

Theorem 7

(i) Te act-free functor F: Act-S ⟶Boo−

S is a left adj oint to the forgetful functorU: Boo − S
⟶Act − S

(ii) Te set-free functor F : Set⟶ Boo-S is a left adjoined
to the forgetful functor U : Boo-S⟶ Set

Let X be a set and FB(X) a set-free Boolean algebra on X,
which exists by [11]. Also consider F(X) to be a set-free
S-Boolean algebra on X. Te following theorem shows that we
can consider F(X) as a Boolean-free S-Boolean algebra
on FB(X).

Theorem 8. For a set X, F(X) is a Boolean-free S-Boolean
algebra on FB(X).

Proof. Suppose that c1: X⟶ F(X) and c2: X⟶ FB(X)

are set-free extensions. Since F(X) is a Boolean algebra and
FB(X) is set-free Boolean algebra, there is a Boolean ho-
momorphism f: FB(X)⟶ F(X) such that fc2 � c1.
Now, let B be an S-Boolean algebra and g: FB(X)⟶ B

a Boolean homomorphism. Since F(X) is set-free on X,
there exists g: F(X)⟶ B such that gc1 � gc2 and hence
gf � g. Obviously, g is unique.Tus, F(X) is a Boolean-free
S-Boolean algebra on FB(X). □

Theorem 9. For each A ∈ Boo and B ∈ Boo-S, there is a one
to one correspondence between the sets Hom(F(A), B) of
S-Boolean algebra homomorphisms and Hom(FB(A), B) of
Boolean homomorphisms.

Proof. Suppose that c1: A⟶ FB(A) and
c2: FB(A)⟶ F(A) are set free and Boolean-free exten-
sions, respectively. Te set map
ψ: Hom(F(A), B)⟶ Hom(FB(A), B), given by
ψ(f) � fc2, is an inverse of the set map

ϕ: Hom(FB(A), B)⟶ Hom(F(A), B), given by ϕ(g) � g,
defned in Teorem 8. □
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