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Two important algebraic structures are S-acts and Boolean algebras. Combining these two structures, one gets S-Boolean algebras,
equipped with a compatible right action of a monoid S which is a special case of Boolean algebras with operators. In this article, we
considered some category-theoretic properties of the category Boo-S of all S-Boolean algebras with action-preserving maps
between them which also preserve Boolean operations. The purpose of the present article is to study certain categorical and
algebraical concepts of the category Boo-S, such as congruences, indecomposable objects, coproducts, pushouts, and free objects.

1. Introduction and Preliminaries

Two important algebraic structures in many fields such as in
computer science are S-acts and Boolean algebras and then
a combination of these two structures called S-Boolean al-
gebras, introduced in [1], are essential. In this article, some
category-theoretic properties of the category Boo-S of all
S-Boolean algebras, with action and operations preserving
maps between them are considered. Let us explain our
motivation and eagerness to do this article.

The study of categories in category % which is different
from the category set of sets are always of interest, for ex-
ample, topological groups, topological rings, topological
semigroups or the category of general (universal) algebras in
an arbitrary category (see [2]). In special, where € is the
category Act-S of sets with an action of a monoid S on them
has been considered in [1, 3-6]. Ebrahimi and Mahmoudi, in
[1, 4, 5], have investigated the category Boo of Boolean
algebras in the category Act-S. They have studied some of
their properties such as internal injectivity and completion
in Boo-S. Jonsson and Tarski in [7, 8] introduced the concept
of Boolean algebras with operators. All S-Boolean algebras
are special instances of Boolean algebras with operators that
the set of these operators forms a monoid S. So, we are
persuaded to get some categorical and algebraic structures

and concepts such as congruences, coproducts, and free
objects, which were not obtained in [1, 4, 5, 7, 8].

On the other hand, acts over a semigroup or monoid S,
namely, S-acts, and also Boolean algebras are extended in
many applications such as in theoretical computer sci-
ence, algebraic automata theory, combinatorial problems,
theory of machines, and graph theory. A comprehensive
survey of S-acts was published by Kilp et al. in [9] and of
Boolean Algebras by Koppelberg in [10] and Givant and
Halmos in [11]. Recently, the study of the connection
between actions and algebraic structures (for example,
vector spaces, modules, S-acts, S-posets, and M-algebras)
has been of interest for some authors (see for example
[2, 3,12, 13]). In [2], Ebrahimi introduced the concept of
S-algebras which is the action of a monoid S on (universal)
algebras. After that, the concepts of S-acts, S-poset, and
soft S-act were introduced, respectively, in [3, 12, 13].
Inspired by these studies, in this article, we identified
congruences and some limits and colimits such as
products, coproducts, equalizers, pullbacks, and pushouts
in the category Boo-S. Also the existence of free objects on
a set X is shown and some adjoint situations are obtained.
We should mention that the constructions in the category
Boo-S§ are not mostly relevant to their counterparts in Act-
S and Set.
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Section 2 is devoted to definition and some elementary
properties of S-Boolean algebras. In Section 3, we widely
investigated congruences and simple, subdirectly irreduc-
ible, and indecomposable algebras in Boo-S. Coproducts and
pushouts in Section 4 and free S-Boolean algebras in Section
5 are studied.

Throughout the article, S will denote a given monoid. A
(right) S-actis a set A on which S acts unitarily from the right
with the usual properties, that is, if there is an S-action
u: AxS — A, denoting u(a,s): =as, such that a(st) =
(as)t and al = g, where 1 denotes the identity of S. In fact, an
S-act is a universal algebra (A, (4,),s) Where each
ys: A — A, u (a) = as is a unary operation on A such that
U, =y, for each s, t € S and py = id 4. Thus, all objects of
the category Act-S form an equational class. On the other
hand, considering S as a one-object category whose mor-
phisms are the elements of S, the functor category Set® is
isomorphic to Act-S. Hence, since any functor category Set?,
for a small category &, is a topos, the category Act-S is
a topos (see [12]). An element a of an S-act A is called a fixed
element if as = a for all s € S. The set of all fixed elements of
A is denoted by Fix(A). Note that one can always adjoin
a fixed element to A and get an act A” = A U {0} with a fixed
element 0. For two S-acts A and B, a map f: A— B is
called S-homomorphism (or S-map), if f(as) = f(a)s for
eacha € A, s € S. An equivalence relation 0 on an S-act A is
called an S-act congruence on A if afb implies as8bs for all
a,b e Aand s € S. If 0 is a congruence on A, then the factor
set A/0={[alglac A}, with the action given by
[algs = [as]y, for a € A and s € §, is clearly an S-act, called
the factor act of A by 0. Considering S to be a one element
monoid, the category Act-S is equivalent to the category Set
and so the categorical constructions are obtained similarly
for sets, for more information and the notions not men-
tioned here such as monomorphism, epimorphism, iso-
morphism, product, coproduct, equalizer, coequalizer,
pullback, pushout, and free objects, about the category Act-
S, see [9, 12]. Also, the interested reader is referred to [10, 11]
for some required definitions and basic categorical in-
gredients of Boolean algebras needed in the sequel.

2. Boolean Algebras with
Semigroup Operations

In this section, we give a brief account of some basic defi-
nitions and elementary properties about S-Boolean algebras
needed in the sequel. As we say in Section 1, recalling the
general notion of an algebra in a category, we discussed
Boolean algebras in the category Act-S. More generally (see,
[2]), an S-algebra A is an (ordinary) algebra of type T which
is also an S-act such that each operation A: A" — A is an
S-map, or equivalently, each S-action y;: A — A defined
by p,(a) =as is an algebra homomorphism. Thus, the
category Boo-S of right S-Boolean algebras is an example of
S-algebras. In other words, we have the following definition:

Definition I (see [4]). Let S be a monoid. A right S—B,oolean
algebra is a (possibly empty) Boolean algebra (A, V, A, , L, T)
which is also an S-act whose Boolean algebra operations are
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equivariant, that is, (avb)s = asvbs, (anb)s = asAbs, (as), =
a’s, 1s=1and Ts=T for each a,b € A and s € S.

Let S be a monoid. Then, every Boolean algebra A can be
considered as a right S-Boolean algebra, by trivial action
define as xs = x for all x € Aand all s € S. Thus, the category
Boo is a full subcategory of Boo-S.

Lemma 1. Let a Boolean algebra (A, V, A, L, T) be an S-act.
The following are equivalent:

(i) A is an S-Boolean algebra.
(ii) For every a,b € A and s € §,

(avb)s = asVbs,

b (1)
(as) =as.
(iii) For every a,b € A and s € §,
(anb)s = asN\bs,
(2)

I !
(as) =as.

Proof. (i)= (ii) Clear. (ii)= (iii) Let a,b € Land s € S. Then,

(anb)s = (alvb,),s = ((alvbl>s), = (a,svb/5>,
, (3)
= ( (bs)/) = asAbs.

(ili)= (i) The proof of this part is similar to (ii)= (iii).

From now on we use Lemma 1, part (ii) or (iii) for the
definition of S-Boolean algebra. Also, one can define an
order on an S-Boolean algebra as follow: a <b if and only if
anb = a. It is easy to check that if a <b, then as<bs.

By an S-Boolean algebra map (or homomorphism), we
mean a map f: A — B between right S-Boolean algebras
which preserves binary operation V (or A), unary operation ’
and the action. O

Remark 1. For a homomorphism f: A — Band a,b € A,

(i) f(Ly) =Lgand f(T,)=Tp
(ii) if a<b, then f(a)< f(b)

Let {A;} be a family of right S-Boolean algebras. The
product of {A;} is their Cartesian product, with component
wise action and operations. Clearly, the category Boo-S is
product complete (i.e., for every family {A;} of S-boolean
algebras, the product exists in Boo-S) and determined up to
isomorphism. In particular, the terminal S-boolean algebra
(the product of the empty family of S-Boolean algebras) is
a one element object. Now, we are ready to explain a class of
right S-Boolean algebras.

Example 1. Consider the Boolean algebra A, = {1, T} and
the group S = {1, s,}.
(1) Let A, =2% = {J_,a, a, T}. It is not difficult to check
that A, by the action satisfying as, =a andas, =a
is an S-Boolean algebra.
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(2) Let A, be the Boolean algebra with cardinality 2°. Then,
A, = Ay x A which is an S-act by the action given by
(x, y)s = (xs, ys), foreach x € Ajand y € A,. Using
part (1), ((x,»)V(z,w))s=(xVz, yVw)s=
((xVvz)s, (yVw)s) = (xsVzs, ysVws) = (xs, ys)y
(zs, l,US),Z ((x, )s)y( (z, w)s), apd (x,p) s
= () ))s = (¥5,7'9) = ((x5), (19)) = (s, ys) =
((x, y)s) . Thus, A, is a right S-Boolean algebra.

(3) Let A be a Boolean algebra with 2" elements. Then,
using part (1) and (2) by induction we can easily
show that A is an S-Boolean algebra.

Example 2. For a S-Boolean algebra A, consider S to be the
set of all Boolean endomorphisms on A. By the binary
operation given by, for each f,g € S, (f * g)(a) = g(f (a)),
clearly S is a monoid. Define an action on A as follow, for
eacha e Aand f €S, a.f = f(a). Now, it is not difficult to
check that A is an S-Boolean algebra.

By definition, a sub-Boolean algebra of a Boolean algebra
B is a subset A of B which is closed under Vv and ’. Also,
asubset A of an S-act Bis called an S-subact, if for eacha € A
and s € S, as € A. So, a subset A of an S-Boolean algebra B is
said to be a sub S-Boolean algebra of B, if it is a sub Boolean
algebra of B as well as an S-subact. Note that in which case
binary and nullary operations are compatible with the
S-action. For a subset X C B, a sub S-Boolean algebra of B
generated by X, is a smallest sub S-Boolean algebra of B
containing X. For an S-Boolean algebra B and X<B, denote
X = {x' |x € X}. An element y € B is called an elementary
product on X, if y=x;5Ax;5A...Ax,s, in which
x; € XUX ands; €. By the properties of right S-Boolean
algebras we can easily show the following theorem:

Theorem 1. For a right S-Boolean algebra B and a subset
X C B, the subset

Xy = {ylv)/zv ...V | yiis elementary produ cts on X},
(4)

is the least sub S-Boolean algebra of B, called the sub
S-Boolean algebra of B generated by X.

We consider the set of all covariant functors from the
one-object category S to the category Boo and natural
transformations between them, as a category which called
functor category and denoted by Boo®.

Theorem 2. The category S-Boo of left S-Boolean algebras is

isomorphic to the category Boo®.

Proof. Consider the functor ¢: Boo> — S-Boo as follows:
For each F € Boo®, ¢ (F) = F(S) with an action sx = F (s) (x)
and for any natural transformation 7: F — G in S-Boo, we
define ¢ (1) to be the only component 74 of 7. Also, we
consider the functor y: S-Boo ——Boo®, defined by
¥ (A)(S) = A and w(A)(s) =A,, for each A € S-Boo and

se€S. Note that each S-Boolean homomorphism
f:A— B, y(f): y(A) — y(B) is the natural trans-
formation whose only component is f. Now, it is not dif-
ficult to show that y¢ = idp, s and ¢y = idg_p,,.

Also, clearly the category Boo-S is isomorphic to the
category $%-Boo (8¢ is the dual monoid of §). In particular, if
S is a commutative monoid, then the categories Boo-S and S-
Boo are isomorphic, and hence the category Boo-S is iso-
morphic to the category Boo® and this means that, as we said
before, the category Boo-S is a topos. O

3. Congruences on S-Boolean Algebras

The action of a semigroup S on lattices, so called S-lattices,
was defined by Luo, [14]. The author specially studied the
S-lattice congruences of S-lattices. In this section, we in-
troduced congruences of right S-Boolean algebras. Also,
some characterizations of congruences generated by a subset
X are investigated. Two kinds of congruence characteriza-
tions (Proposition 1 and Theorem 3) are given here. Then,
relations between congruences and ideals are investigated.
Finally, some results about simple, subdirectly irreducible,
and indecomposable right S-Boolean algebras based on
congruences are obtained.

Definition 2. An equivalence relation 6 on an S-Boolean
algebra A is said to be a congruence relation on A, if 8 is a sub
S-Boolean algebra of AXx A, or equivalently, for each
a,b,c € A and s € S, afb implies (avc)d(bvc), a' b, and
asObs.

Note that, in Definition 2, a 6b’ implies (a'veHob've).
Now, Demorgan’s low deduces that (aAc)0(bAc). The set of
all congruence relations on A is denoted by Con(A). Also,
each homomorphism f: A — B induces the congruence
relation, ker f, on A, defined by a ker( f)a, if and only if
f(a;) = f(a,). As usual for a congruence p € Con(A) and
a € A, the congruence class of a is denoted by [a]P, or [al,
and (A/p) = {[a]P la € A}. By the action given by [a]ps =
[as]p and operlation,s [a]pv [b]p = [avb]p, [a]p/\[b]p =
[a/\b]p, and lal, =lal, (A/p)is an right S-Boolean al-
gebras. It is easy to check that the canonical map
n: A — (Alp), defined by n(a) = [a]p, is a homomor-
phism. Also, a<b implies lal, < [b]p. Note that p(H) for
HCA x A denotes the congruence generated by H (i.e., the
smallest congruence on A containing H). We denote
H ' ={a,b| (b,a) € H}. For every semigroup S without an
identity one can adjoin an identity 1 by setting 1s = s = sl
for all s €S and get an S-act denoted by S!. By placing
1.1 =1, one can consider S' as a monoid.

Now, we are ready to explain the first congruence
characterization.

Proposition 1. Let HCAx A and p=p(H). Then, for
a,b € A, one has apb if and only if either a="b or for
1<i<n,1<j<my there  exist (pirq;)) e HUH U
H'U(H™"),s; €S" and a;; € A, such that



4
a=piSp*ay *ap* - kay,,
1Sy ¥ Gy ¥ Ay * o0 R Ay = PrS; R Ay Kdy kocce kA, ,
A2Sy * Agp * Ay * -+ * Ay = P3S3 ¥ A3y *Agp * -0 * a3, , (5)
Sy * Oy * Ay % -+ % 4y, =,

n

where * € {V,A}, m; e NU{0}, and p;s;*a; xa;, * ... *
A, = (o (CC(pss; * ajy) * ap) * agg) * ... ay, )
Proof. It is not difficult to check that p is an equivalence
relation on A. Let s € S and a,b,c € A such that apb. The
expression (avc)p (bvc) is obtained by adding Vc to the right
side of all terms of the 1 chain. Using De Morgan’s laws, we
get apb and also since the action of S on the Boolean algebra
operations of A is equivariant, we get aspbs. Now, we prove
that p is an smallest congruence containing H. Let 6 be
a congruence containig H and apb. So a = b or the chain t
holds. For each 1<i<n, since p;0q; and 0 is a congruence,
pisiOq;s; and also p;s; * a;,0q;s; * a;;. By continuing this
argument DiSi * iy * Ap * ... %k, 0,8 % Ay kan Lk
... Thus, afb which implies p<6.

In what follows (the second congruence characteriza-
tion), we shall often use a more explicit version of the
previous proposition. O

Theorem 3. Let A be a right S-Boolean algebra and H
CAx A. Consider the binary relation 6 on A by for all
x,yeA, x0y if and only if x=1y or there exist
{er ey ... e} CA and {s),s,,...,s,.,} €S such that

x=e,
eAP1S1 = €A\P1Ss
e A\PyS; = e3A\DPyS), eV qys) = €3V, S,

R F(x),
en—l/\Pn—lsn—l = en/\pnflsnfl’ enflvqnflsnfl = €ann,15n,1,

€ =Y

eVq,s; = e;Vq; Sy

(6)

where (p;,q;) € HUH™'. Then, 6 = p(H).

Proof. It is easy to check that 0 is an equivalence relation.
Suppose that x@y, se€S, and ce A If x=y, then
xVe = yVe,x =y, and xs= ys. Otherwise, there exist
{er ey ... e,JCA and {s,s,,...,s,,}CSS such that (x)
holds. Clearly, xs0ys and (ch)@( yVe).

It suffices to show that x'8y". By the assumption, one gets
the following equation:

x =e
[N N [P |
eVpis) = &Vpis, e1N\g1s1 = eA\q; Sy,
[N A [
eV PyS; = €3VPrs;, e NSy = e3NyS), )
p ! —evp. ! 'ng. ! —e'ng. !
enfl pnflsnfl - en pnflsnfl’ enfl qnflsnfl - en qnflswfl’
.
e, =Y.
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For each 1<i< n- 1, (ei-vggsi)/\pisi = (e, |VPiS)AD;S;
d’educes ’that eAp;s; = e Ap;s;  and  similarly
e;Vq;s; = €;.1Vq;s;. So, we have the following equation:

x =e,

! ! ! !
eI\P1S1 = AP1S1 eVq, s, = Vg, Sy,

! ! ! !
€\D1S; = €3ADP1S), eVays; = €3V,

i i li li
en—l/\pn—lsn—l = en/\pn—lsn—l’ en—lvqn—lsn—l = envqn—lsn—l’

el=y.
(8)

Thus, x' 0y which deduces that 8 is a congruence relation
an A. Suppose that (a,b) € H, consider e; = a, e, = anb,
es=b,s;=s,=1, py=b, q,=a, p,=a, and g, =b. So,
abb, and hence HCO. Now, let p be a congruence relation
containing H and x0y. Thus, x = y or the (x) holds. For each
1<i<n—-1, ¢ =¢V(eAp;s;) = (Ve Ap;is)lp  (eV
(ei1ng;s;)) = (e;Vey, )N (eVg;s;) = ((eVe, )N (e, Va;s;))
p eV (eAp;s)) = eV (e APis)) = e,y Thus, ejpe;, |, and
hence x = e, pe,p .. .pe, = y. Therefore, Cp and then 0 is
the smallest congruence containing H. O

Corollary 1. For a right S-Boolean algebra A and HCA x A,

if xp (H)y, then there existn € NU{0}, {s},s,,...,s,}CS, and
(p1-91)> (P2 q2)s - - -» (Prq,) € HUH™ ! such that

(i) XAP1SIN .. APLS, = YAPISIA <. APSs

(ii) xvVq;$;V ... Vq,S, = YVq;5,V ... Vq,5,.
Corollary 2. Let HCAxA and ={acAl3

be Ast (a,b) € HUH '}, the union of domain and image
of H. If xp (H)y, then there exist a,b € (K) such that x\a =
yAa and xVb = yVb

Definition 3. An S-ideal of a right S-Boolean algebra A is
a Boolean ideal of A which is an S-sub act as well. The set of
all S-ideals of an S-Boolean algebra A is denoted by IDg (A).

Proposition 2. Let I be an S-ideal in an S-Boolean algebra A
and p; = p(I x I). Then, the following are equivalent:

(i) xpry.
(ii) xVu = yVu for some u € I.
(iii) xAv = yAv forsome v € I.
(iv) xAy € I, where xAy = (x/\yl)v(x,/\y).

Proof

(i) = (i) Let xp;y. Using Corollary 1 in which u =
4181V .- Vfln 1851 € L.

(ii) = (iii) XA = (xVu)/\u = ( qu)/\u = y/\u

(iil) = (i) xvv = (xAV)VY = (y/\v)Vv = va

(i) => (1) Consider e; =x, e, =y, s, =1, p; = L and
q, = u. So, xp;y.

(ivy = (i) It is easy to check that xV(xAy) =
xVy = yV(xAy).
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(iiif) = [1v) (xAYIAY = (XAV)IA(YAV) = (XAV)A (xAY)
= 1,4. Thus, (xAy) <v' €I, and therefore (xAy)el. O

Corollary 3. Let I be an S-ideal in an S-Boolean algebra A
and a € I. Then,

(i) = lal,.
(ii) py is the greatest congruence on A having I as a whole
class.

Proof

(i) Itis clear that IC[a] o, For the converse, let x € [a] o
Then, there exists u € I such that xvu = avu € I.
Thus, x € I, and hence [a]p, =1.

(ii) Let 0€Con(A), I=l[alg, and x0y. Thep,
(xVy)H(x/\y), which implies xAy = (xAy) A
(xV)B(xAy) A(xAy) =L, € I = [a],. So,
(xAy)0a, and  hence xAyel.  Since
xV(xAy) = yV(xAy), by using Proposition 2 (ii),
xppy. Thus, 8<p;.

Using Corollary 3, one has [L,], =I. So, we have the
following theorem. O

Theorem 4. For an S-Boolean algebra A, there is a one to one
correspondence between the sets IDg(A) and Cong (A).

For an S-Boolean algebra A, the congruences
A={(a,a)|lac A} and V=AxA are called diagonal
congruence and universal congruence, respectively. A
congruence 0 is called trivial, if it is universal or diagonal. An
S-Boolean algebra A is called simple if Cong (A) = {A, V}. As
a consequence of Theorem 4, we have A is simple if and only
if 1D (A) = {1}, A}.

In the following lemma, S-ideals generated by subsets of
an S-Boolean algebra are constructed.

Lemma 2. Let A be an S-Boolean algebra and XCA. The set
L(X)={acAlTneN,s;,8...,8, €S, X, X5, ..., %, € X
sta< x,5V...Vx,s,} is the smallest S-ideal containing X.

Proof. Clearly, XCL(X) and x<y € L(X) implies that
x € L(X). Also, L(X) is closed under Vv and A which is an
S-sub act of A, which is a subset of any S-ideal of A con-
taining X, so it is the smallest S-ideal containing X.
Using Lemma 2, we have the following proposition: [

Proposition 3. An S-Boolean algebra A is simple, if and only
if for each L#a € A there exist s,,5,,...,s, €S such that
Viias; =T.

In view of Proposition 3, we get the following example. It
shows that for every Boolean algebra A one can consider
a monoid S and an action of S on A, such that the induced
S-Boolean algebra is simple.

Example 3. Let (A,V,A,, 1, T) be a Boolean algebra. The set
of all Boolean endomorphisms on A endowed with com-
position of morphisms, denoted by S = (Homjy (4, A),"), is
a monoid. It is not difficult to check that A by the left
S-action, f.a = f(a)fora € Aand f €, is a left S-Boolean
algebra. Using [11], Th. 20.12, for each L #a € A, there exists
a proper maximal ideal M of A containing a". The map
f: A— Aisdefinedby f(x)=1,ifxe Mand f(x)=T
if x e ANM is a Boolean endomorphism. So, for each
Ll+#a €A, there exists an endomorphism f such that
f.a = f(a) = T.Now, Proposition 3 shows that A is a simple
left S-Boolean algebra.

If p and 0 are congruences on an S-Boolean algebra A,
then the relational product p°0 is the binary relation on A
defined by (a,b) € p°0, if and only if there is ¢ € A such that
(a,c) € pand (c,b) € 0. Also, the pair p, 0 is called a pair of
factor congruences on A, if pnf=A, pvf=V, and
p°6 = 0.

Definition 4

(i) An S-Boolean algebra A is said to be indecomposable
if A is not isomorphic to a direct product of two
nontrivial right S-Boolean algebras

(ii) An S-Boolean algebra A is called subdirectly irre-
ducible, if A is trivial or there is a minimum con-
gruence in Con(A)\{A} (i.e., the intersection of all
nontrivial congruences is nontrivial)

By [15], Corollary I1.7.7, an S-Boolean algebra A is
indecomposable if and only if the only factor congruences
on A are A and V. Unlike the case of Boolean algebras, in
which every simple, subdirectly irreducible, and in-
decomposable algebras are equal to 2, in the category Boo-
S, these mentioned concepts are not necessary to be equal
(example 2 and 3). Also, example 1 shows that, we can
construct a simple S-Boolean algebra of each Boolean
algebra.

Theorem 5. An S-Boolean algebra A is indecomposable if
and only if Fix (A) = {1, T}.

Proof. Let A be an indecomposable S-Boolean algebra and
a € A a fixed element such that a ¢ {1, T}. We define the
binary relation 6 and p as follows:

xfyoxAy<a,and xpyoxAy<a. 9

Then, 0,p € Con(A). We only show the transitive
property for 6. Let xAy<a and yAz<a. So, XAz =
(xpz )N (yvy) = [xA(yVy)Inz = [(xAy)Az [V[(xA - y)
ANz )< (yAz WV (xAy ) < (yAz)V(xAy)<ava =a, and
similarly x'Az <a. Thus, xAz <a.

It is clear that afl and apl. Thus, 0#A#p. If
(x,y) € 0np, then xAy<ana = L and hence x = y. Thus,
0np =A. Now, we consider ©® = 6Vp; the congruence
generated by O U p. For each x, y € A we have the following
equation:



x0(xva)0 (xV (yAa))p ((xVy)Aa)p (yV (xAa))By.  (10)

Thus, x@y, by transitivity. So, ® = V. Next, we showed
that p°0 = 6°p. Let (x, y) € 6'p. Then, there exists c € A such
that x0cpy, and hence xAc<a and yAc<a'. Consider
d= (x/\a)v(y/\a’). So, xAd <a' and x'Ad <a’, which im-
plies xAd <a’ and similarly, dAy <a. Hence, (x,y) € p°0
and 6’pcped. In a similar way, we concluded p’6<6°p.
Therefore, p, 0 is a pair of factor congruences on A, which is
a contradiction. Thus, Fix(A) = {1, T}.

For the converse, let A be a decomposable S-Boolean
algebra. So, there exists a pair of nontrivial factor congru-
ences p,6 on A. By [15], Th. IL5.9, Corollary I1.7.7,
V = pVvO = p°0. Thus, there exists nontrivial element ¢ € A
with LpcOT. Hence, for each s €S, cspLpcOTOcs which
deduces (cs,c) € pnO. Thus, cs = ¢, a contradiction.

As we mentioned before, each indecomposable Boolean
algebra is isomorphic to 2 (see [15]). Theorem 5 is a gen-
eralization for that results. Indeed, if we consider the
Boolean algebra B, then by the note just after Definition 1, B
is a right S-Boolean algebra with trivial action. Clearly, in
this S-Boolean algebra each element is a fix element. So,
Theorem 5 implies that B is an indecomposable S-Boolean
algebra iff B = {1, T}.

Using [15], Theorem. II.8.5, each simple algebra is
subdirectly irreducible and each subdirectly irreducible al-
gebra is indecomposable. In what follows, we introduce two
examples to show the converse is not generally true.

Let X be a subset of a poset (P<). Then, |X: =
{xeP|x<p,IpeP} and TX: ={xeP|p<x,3IpeP}.
Moreover, if X = {p}, then we use | p (Tp) instead of |{p}
(T{p}), for simplicity. O

Example 4. There is a four elements subdirectly irreducible
right S-Boolean algebras, which is not simple. Consider S an
arbitrary  semigroup and the Boolean algebra
A= {J_, a,a, T} by the action as = 1 and a's = T. It is not
difficult to show that A has only one nontrivial S-ideal
I = |a. So, by Theorem 4, A has only one nontrivial con-
gruence. Thus, A is subdirectly irreducible which is not
simple.

Example 5. If a Boolean algebra B has at least two atoms,
then there is an action on B such that B is an in-
decomposable and not subdirectly irreducible S-Boolean
algebra. Let b € B be an atom. The subsets Tb and b are
a partition of B. Consider two elements left zero semigroup

{I,s} with 1 an identity and define an action
xs=q{%+ %f x €lb By this action B is a right S-Boolean
T if xeTb

algebra. Now, Bisindecomposable by using Theorem 5. For

each atom a, the subset |a’ is a right ideal of B. Let A be the

set of all atoms of B. Since ﬂA la’ = {1}, Bis not subdirectly
ae

irreducible.
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4. Coproduct

In [16], R. Lagrange studied the Amalgamation and epi-
morphisms in the category of .#-complete Boolean algebras.
After that, Banaschewski [17] introduced the structure of
strong amalgamations of Boolean algebras. In this section,
we showed, based on [17], the coproduct (free product) of
a family of right S-Boolean algebras exists and consequently,
the pushout of two S-Boolean homomorphisms with same
domain, exists as a qoutient of their coproduct.

Using [17], for Boolean algebras B and C, we consider the

lattice £ ={UcBxC||U=U} by the following
requirements:
(VS,c) € U whenever S x{c}cU, (12)
(b,VvT) € U whenever{b} x TcU,
for all finite SCB and T'<C. Also, the maps
A B— Zx— | (x,Te) UL (Tp Le) (13)

p: C— Zoyp— (T y)U L (Lp Te)s

are bounded lattice embeddings so that Im(1) = B and
Im (p) = C are sublattices of & consisting of complemented
elements.

Coproduct of Boolean algebras B and C is a sublattice .#
of a lattice & generated by A (B) Uy (C) in which both B and
C are embedded.

Furthermore, for each beB and ceC,
AN (c) = L (b,c)U [ (Tg, L) U L (L Te). So
A(b) = A(L)Au(Te) and p(c) = A(T,)Au(c). Also, if b = 1y
or ¢ = 1, then

A () = A(Lp)nu (L)

(14)
= l(TpLo)Ul(LpTe) = La

and if b, and ¢, are not bottom and A(b))Ay
(c;) = A(by)Au(c,), then b, and ¢, are not bottom as well as
b,=b, and ¢, =¢,.

Now, if B and C are right S-Boolean algebras, for each
be B, ceC which are not bottoms and s €S, define
[A(B)Au(c)]s = A(bs)Au(cs) and if b= Ly or ¢ = L, then
[A(B)Au(e)]ls =L 4. Also, for each y = V,-(/\jxij) € M in
which x;; € A(B) U (C), we defined ys = V;(A;x;;s). Using
these actions, in the following, we deduced that ./ is an
S-Boolean algebra which is a coproduct of B and C, and both
A and y are S-Boolean monomorphisms.

The abovementioned actions are well defined. Assume
that seS, b;,b,e€B, ¢,c,€C, and A(b)Nu(c)) =
A(by)Au(c,). Let by and ¢, are not bottom. Then, b, and ¢,
are not bottom and b, = b, and ¢, = ¢,. Thus, b;s = b,s and
€18 = ¢,s, which implies that A (b;s)Au (¢ s) = A (bys)Au (c,$).
If b, or ¢, are bottom, then b, or ¢, are bottom too and hence
A(bys)Au(cys) = Ly = A(bys)Au(c,ys). Thus, the action
A (B)Au ()]s = A(bs)Au(cs) is well defined.

We will show the action V; (/\]-xij)s =V (/\]-xijs) is well
defined. Let s € Sand x = VI, (/\;-l"zlxij) =V (NE ) =y
in which x;;, yiy € A(B)Uu(C). Thus, x;; =A(b;)Nu(c;j)
such that b;; € B and ¢; € C. Using the fact that,
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(A BN (e)IV (A(by)Au(cy)) = A(byVby)Au (e Vey), we
have the following equation:

= Vi (N (A (B (i) (15)

_ n n; b n
=M j/:\l i )M Y ]/\l Gij |

ekl)/\“ (Vi (N2 fra)- T

"
je1bij)s Vil (NLep)s ViL
(ANkey), and VI (A fig) is bottom, then x =y =1 ,,.
Now, let the mentioned elements are not bottoms. Then,
Vity (/\?leij) = Vil (Alrzklekl) and Vi, (A?;lcij) = Vit (Alrzkl
f11) and by using the previous paragraph and the fact that B
and C are right S-Boolean algebras, we have the following
equation:

= (§(Am) ) )w((ﬂ(ﬁcv))s) »
(SR )

Similar calculations show that (xVy)s=xsVys and
(xs) = x's. Therefore, ./ is an S-Boolean algebra.

Also . is an S-Boolean coproduct of B and C. For, let
f: B— Aand g: C — A be two S-Boolean maps. Since
A is a coproduct in the category of Boolean algebras, there
exists Boolean homomorphism h: /# — A such that hA =
fand hu = g. Consider s € Sand x = VI, (/\;-l"zlxij) in which
x;j € AB)uu(C). If x;j € A(B), then h(xij)s = hA (bij)s =
f(b )s = hA(b is) = h(x;;s) and similarly for the case

;€ y(C) So h(x)s = [h(VL, (/\] 1xi)]s = VL, (/\ h(xlj,
s)) =hvi, (/\] 1x],s) h(xs). Thus, h is an S- Boolean
homomorphlsm Also, h is unique.

As a corollary of the existence of coproducts, it is natural
to consider the pushouts in the category of right S-Boolean
algebras.

and in a similar way y = A (V{L, (/\
one of the elements V7 (A"

Lemma 3. Pushout of the following diagram exists.

Proof. Let (7;, A;] [A,) be the coproduct of the pair (A, A,)
and I be a right ideal of A;[]A, generated by the set
{r1h; (c)AT,h, (c) | c € C}. We consider Q = A,[[A,/p;, in
which p; is a congruence generated by IxI and
p; = n1;: A; — Q, where 7 is a canonical map. Now, it is
not difficult to show that (Q, p;, p,) is a pushout of the
diagram. For ceC, T hy (€)Ant,hy (c) =
n(11hy (c)ATyh, () = Lg. Thus, pihy = P,h,. To prove the
universal property of pushouts, let f;: A, — A be ho-
momorphisms such that f,h; = f,h,. So, there is a homo-
morphism h: A|[[A, — A satisfying hr; =h;. On the
other hand, h(z,hy (c)AT,h,(c)) = htih, (c)AhT,h, () =
fih (©)Af,h, ()= fil()Afih (c)=1 Thus,
ICK (h) = {x € A|]]A, |h(x) = L}, and hence there is
a homomorphism f: Q — A such that fr = h. It follows
that fp; = f;. Moreover, f is uniquely determined, which
implies that Q is a pushout of the diagram in Figure 1.

In [17], Banacshewski has shown that, in the category of
Boolean algebras, the pushout of the previous diagram is
a qoutient of the coproduct as A;[[A,/p, in which ] is an
ideal generated by the set {Tlh1 (c)ATyhy (c) | c € C}. It is not
difficult to show that I =], and hence p; =p;. Thus,
A 1TA,/p; is also a coproduct of the diagram in Figure 1.

Finally, we showed that pushouts preserve mono-
morphisms, that is, in the pushout diagram of Lemma 3, p,
is a monomorphism whenever ki, is a monomorphism. Let
x# Ly and p, (x) = Lq. Then, 717, (x) = (L 11,) and by
Corollary 3.7, there exists wu€l such that
T, (x)Vu = L, 114,V = u which implies 7, (x) <u. Hence,
T, (X)ATy (TAI) = 1,(x) € I, and by [17], there exists c € C
such that 7, (x)A1,; (TAl) <1, (h, (c))AT; (b (c"). So, by [17],
comparison principle, x<h,(c) and T, <h, (c') which
deduces T, =h,(c). Thus, h,(c) =
Hence,

14, and since hy is
x<hy(Le) =1y,
a contradiction, showing that p, is a monomorphism. O

a monomorphism, c¢= L.

5. Free S-Boolean Algebras and
Adjoint Situations

By an act — free (Boolean — free) right S-Boolean algebra on
a right S-act (Boolean algebra) X we mean an S-Boolean
algebra F(X) with an S-map (Boolean homomorphism)
y: X — F which has the following universal property. For
each S-Boolean algebra A and an S-map (Boolean homo-
morphism) f: X — A there exists a unique right
S-Boolean homomorphism f: F — Asuchthat fy = f.In
particular, a set — free right S-Boolean algebra on a set X is
an act-free by taking the set X to be an S-act with trivial
action (each element is fixed).

Lemma 4. If X is a right S-act, the power set Boolean algebra
P (X) with the following action is a left S-Boolean algebra. For
each s € Sand U € P(X), sU = {x € X|xs € U}.

Note that, by a similar argument, Lemma 4 is also true
for a left S-act.

Lemma 5. Let X be an infinite right S-act. Then, there exists
an act-free S-Boolean algebra on X.

Proof. Consider a map y: X — P(P(X)) defined by,
y(x) ={U|xeU e P(X)}. By twice using Lemma 4,
P(P(X))isaright S-act. At first, we showed that y is an S-act
monomorphism. It is clear that y is well defined. Note that,
for each x € X and s € S,

y(xs) ={U|xs e U € P(X)}
={U|x € sU € P(X)},

y(xs) ={W € P(X) |sW € y(x)}
={WeP(X)|xesW}

(17)

If y(x;)=y(x,), then x; € {x;} € y(x;) = y(x,) and
hence x, € {x,} which implies x; = x,. Thus, y is a right
S-act monomorphism. Also, y(x) s = y(xs) , since
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y(x),s :{W e P(X)|sW e y(x),}

={W e P(X)|x ¢ sW}
={W e P(X)|xs ¢ W}

(18)

= y(xs),.

We showed that {(y (X)), the sub-S-Boolean algebra of
P(P(X)) generated by y(X), is a free S-Boolean algebra
generated by X. By Theorem 1, each y € {y(X)) is of the
form y=yVy,v...Vy, in which each y;=y%
(xj1)s AP (x5)s A Y (xjnj)sjnj such that y% (x ;)
€ {y(xﬁ),y(xﬁ) } For an S-Boolean algebra A and an
S-map f: X— A, we considered the map
fi y(X)y — A, defined by f(y)=Vh, (/\?J_f:1 f %
(x:i;s:i:)). To show f is well defined, we proved the fol-

gl
lowing steps: O

Step 1. For every different elements x;,x,,...,x, €

X (n>1), we have y* (x)A--- Ay* (x,)#L,x) =@. Oth-
erwise, consider YU (x)A---AY*(x,) =1, =0 If
o (xl) =p(x;),..,p%(x,) =y(x,), then y(x;)A---A
y(x,) =@ and hence X = {x;,...,x,}, which is a contra-
diction. So, we can partite the set {x;,...,x,} in to two
subsets {y;,...,¥,} and {y,.-...y,} such that
{y1>--. ¥,u} isanonempty setand y% (y;) = y(y,), 1 <i<m.
Thus,

PO )A AP (%) = Y (A AY (D )AY D)
ANy (y,) = 2.
(19)

Obviously — {y1,- s ¥} € Y (YDA AP (7 )AY (D)
A---Ny(y,) =, which is a contradiction and hence

PR IN - Ay (x,) # Lyx)=9. We concluded that if
PI (%A Ay* (x,,) = &, then there exists i, j € {1,...,n}
such that x; = x; and o; # ;.

Step 2. Let y =z e (y(X)). Then, yAz =1 and hence
yAZ = L and zAy = L. Applying Theorem 1, consider y =
which y] = /\ZJ=1thjij (yji}-)sjij =

n; i . .
/\ij]:ﬁ%j (yﬁ]_sjij) and z=VLlz in which each

Vj?zl y; in each

_ Al (7 A 19
2= Ny V0 (2 )si, = NV (2 sye) and
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!

r
—\/h 0)
zZ =V; lviZ:I .

L=

!
g & i
< Vi (v 1(211'1511'1) Ny Z(ZZiZSZiz)

A= Ny <Zqiq5qiql )
(20)
Sinc:e‘/\‘;?:1 (yj/\z') = yAZ = 1, we have yj/\z’ =1 for
each 1< j< p. Thus,

n n " q % ' —
ViiVip—p - - - Viqq:1<J’j/\</\t:1V ”(Ztitstit) >) =1, (21

and hence for each (iy,...,i,) € Z, X Z, x--- X 2, which
Zn={1,2,...,n}, and y; = /\ijlyaf’f (¥ji8ji,)» e obtained

the following equation:

By Step 1, there exist 1<i;<n; and 1<t<q such that
¥ji Sji, = %St and i # O, Thus, fi(y jiS jij) A
f e (z“-tsn-l') =1 and hence ?(yj)/\ (AL, foi (ztilstit)’) =
(/\::_":1 £ (y i Sii A (AL, f i (ztitstl-t),) = 1. By distributive
FOPNVLVEL - Vi N (2450) ) =
?(yj)/\f(z)’ = 1. So, ?(y)/\?(z), = 1 and in a similar way
f(y) Af(z) = Lwhichimplies f (y) = f (2). Therefore, f is
well defined. _

Routine calculations show that f is an S-Boolean ho-

momorphism and unique under the universal property of
free objects.

low,

Proposition 4. If X is a right S-act, then there exists an act-
free S-Boolean algebra on X.

Proof. If X is an infinite S-act, then we are done by using
Lemma 5. Let X be a finite S-act. Consider X*, the free word
semigroup over X. The semigroup X* by the action, for each
X1, %p, .. %, € X and ses, (x5 x,)s =
(x,5) (x,8) - -+ (x,,5), is an S-act. Let A be an S-Boolean al-
gebra and f: X — A an S-map. The map f: X* — A
defined by f, (x;x,---x,) = f (x IAf (x)A---Af (x,) is an
S-act homomorphism. So there exists a unique S-Boolean
algebra homomorphism f,: F(X*) — A such that
f2y = f1- Consider F(X), the sub S-Boolean algebra of
F(X™) generated by y(X) and f: F(X) — A defined by
f = falp)- Itis clear that fy|y = f. Let g: F(X) — Abe
an S-Boolean homomorphism such that gy|y = f. Using the
S-Boolean homomorphism defined in the proof of Lemma 5,

T(V?:l (/\Zf:n/“f-f (xjijsji;))) =/ (V?ﬂ (Azjzlyaﬁj (xfifsf"f)))
(s )

(23)

and on the other hand,



Journal of Mathematics

o o))< o)
(V?:l (/\ZLI (gy)ajij (xﬁjsﬁj>))
(V?Z1 (/\:lef“f,j (xjijsﬁj))),

(24)

which means f = g. Therefore, F(X) is a free S-Boolean
algebra on the S-act X.

Using the fact that, for each nonempty set X the S-act
X x S, with the action (x, s)t = (x, st), is a set-free S-act on
X, we have the following theorem: O

Theorem 6. Let X be a set and F(X) an act-free S-Boolean
algebra on the S-act X x S. Then, F (X) is a set-free S-Boolean
algebra on X.

In what follows, we give adjoined pairs between the
category Boo-S and categories Act-S, Boo, and Set. Applying
Proposition 4 and Theorem 6, we have Theorem 7.

Theorem 7
(i) The  act-free  functor F: Act-S —Boo-
Sisaleftadjointto the forgetful functor U: Boo - S
—> Act-S§

(ii) The set-free functor F: Set — Boo-S is a left adjoined
to the forgetful functor U: Boo-S — Set

Let X be a set and F 5 (X) a set-free Boolean algebra on X,
which exists by [11]. Also consider F(X) to be a set-free
S-Boolean algebra on X. The following theorem shows that we
can consider F(X) as a Boolean-free S-Boolean algebra
on Fp(X).

Theorem 8. For a set X, F(X) is a Boolean-free S-Boolean
algebra on Fy(X).

Proof. Suppose that y,: X — F(X) and y,: X — F3(X)
are set-free extensions. Since F (X) is a Boolean algebra and
Fy(X) is set-free Boolean algebra, there is a Boolean ho-
momorphism f: Fz(X) — F(X) such that fy,=1y,.
Now, let B be an S-Boolean algebra and g: Fz(X) — B
a Boolean homomorphism. Since F(X) is set-free on X,
there exists g: F(X) — B such that gy, = gy, and hence
gf = g. Obviously, g is unique. Thus, F (X) is a Boolean-free
S-Boolean algebra on Fj (X). O

Theorem 9. For each A € Boo and B € Boo-S, there is a one
to one correspondence between the sets Hom (F(A),B) of
S-Boolean algebra homomorphisms and Hom (Fy (A), B) of
Boolean homomorphisms.

Proof. Suppose that y1: A— Fp(A) and
y,: Fg(A) — F(A) are set free and Boolean-free exten-
sions, respectively. The set map

y: Hom (F (A), B) — Hom (F (A), B),
y(f)=fy» is an

given by
inverse of the set map

¢: Hom (F5(A), B) — Hom (F (A), B), given by ¢(g) = g,
defined in Theorem 8. O
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