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For s-convex functions, the Hermite–Hadamard inequality is already well-known in convex analysis. In this regard, this work
presents new inequalities associated with the left-hand side of the Hermite–Hadamard inequality for s-convexity by utilizing
a novel technique based on Green’s function. Also, Hölder, Young, and power-mean inequalities are used to obtain these new
inequalities. Finally, some applications to special means of real numbers are provided. In conclusion, we think that the
methodology used in this work will encourage more research in this feld.

1. Introduction

Convexity is a fundamental idea in both applied and pure
mathematics, acting as a powerful tool for evaluating
functions and sets, proving inequalities, and modeling and
resolving practical issues. In many areas of mathematics and
beyond, this idea is essential for estimating integrals and
setting boundaries. Relevant researchers can access some
articles on convex functions from references [1–9].

Tus, we recall the elementary notation in convex
analysis.

Defnition 1. A set I ⊂ R is said to be convex function if

ζϖ +(1 − ζ)ϕ ∈ I, (1)

for each ϖ,ϕ ∈ I and ζ ∈ [0, 1].

Defnition 2. Te mapping ℘: I⟶ R is said to be
a convex function if the following inequality holds:

℘(ζϖ +(1 − ζ)ϕ)≤ ζ℘(ϖ) +(1 − ζ)℘(ϕ), (2)

for all ϖ, ϕ ∈ I and ζ ∈ [0, 1]. If (− ℘) is convex, then ℘ is
said to be concave. In terms of geometry, this indicates that if

B,U, andZ are three separate locations on the graph of ℘,
with U between B and Z, then U is on or below the
chord BZ.

Inmany diferent felds, convex functions are crucial. For
instance, the concavity of ℘ is described in terms of declining
returns for a production function φ�℘(L) in economics. If
℘ is convex, then increasing returns are shown. In addition,
a convex function applied to the expected value of a random
variable is always limited beyond the convex function’s
expected value, according to the theory of probability. It is
possible to derive other inequalities, including the
geometric-arithmetic mean inequality and Hölder’s in-
equality, using this conclusion, known as Jensen’s inequality.
Te idea of convexity has developed into a rich source of
inspiration and a fascinating topic for scholars because of its
widespread viewpoints, resilience, and plenty of applica-
tions. Mathematicians have developed incredible tools and
numerical methods using the notion of convexity to deal
with and resolve an enormous number of issues that emerge
in the pure and applied sciences. Tis theory has a long and
important history, and for more than a century, mathe-
matics has focused on and concentrated on it. On the other
hand, there are a lot of new issues in applied mathematics
where the idea of convexity is insufcient to adequately
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characterize them in order to have benefcial consequences.
Because of this, the idea of convexity has been expanded
upon and developed in various research studies; see [10–16].

Utilizing various forms of convexity, some important
inequalities have been observed. s-convexity is one of the
several varieties of convexity. Hudzik and Maligranda in
reference [17] took into account, among other things, the
class of functions that are s-convex in the second sense. Te
following is the defnition of this class: a function
℘: [0,∞)⟶ R is s-convex in the second sense if

℘(ζϖ +(1 − ζ)ϕ)≤ ζs℘(ϖ) +(1 − ζ)
s℘(ϕ) (3)

holds for all ϖ,ϕ ∈ [0,∞), ζ ∈ [0, 1] and for some fxed
s ∈ (0, 1]. Te class of s-convexity is frequently denoted by
the symbol K2

s . It is obvious that s � 1 converts s-convexity
into the typical convexity of functions defned on [0,∞].

Te authors of the same paper, namely, [17], demon-
strated that all functions from K2

s , s ∈ (0, 1), are nonnegative
if ℘ ∈ K2

s implies ℘([0,∞))⊆[0,∞).

Example 3. (see [17]). Let s ∈ (0, 1) and l, Z, c ∈ R. We
defne function ℘: [0,∞)⟶ R as follows:

℘(ζ) �
l, ζ � 0,

ℏζs
+ c, ζ > 0.

􏼨 (4)

It can be simply confrmed that

(i) If ℏ ≥ 0 and 0≤ c≤l, then ℘ ∈ K2
s

(ii) If ℏ > 0 and c< 0, then ℘ ∉ K2
s

Remark 4. Troughout the article, the Hermite–Hadamard
inequality will be denoted by H − H inequality.

Recently, there are many studies on s-convexity in the
literature. A few new general H − H type inequalities for
s-convex mappings were developed in [18] by Yildiz et al.
Te Hölder inequality, the power-mean integral inequality,
and certain extensions connected to these inequalities were
utilized to establish these inequalities. In addition, they
compared some inequalities. In [19], a new defnition for
s-convex functions is given and some properties of this
defnition are investigated. In addition, extended versions of
the previously well-known conclusions for harmonically
convex functions, such as H − H, various H − H re-
fnements, and Ostrowski-type inequalities, are developed.
In [20], the expression “extended s -convex functions” was
introduced by the authors, who also developed some in-
equalities of the H − H type for extended s-convex func-
tions. Te authors then used these newly discovered integral
inequalities to deduce certain specifc mean inequalities. In
reference [21], the authors established an equation for
a function whose third derivative is integrable, developed
some novel integral inequalities of the H − H type for
extended s-convex mappings using the Hölder inequality,
and then used these integral inequalities to produce in-
equalities for various kinds of special means. In reference
[22], the authors established some new inequalities of the
H − H type for extended s-convex mappings and obtained

new inequalities with respect to λ and μ using Lemma 2.1.
Finally, utilizing the s-convexity for the Raina function,
diferent inequalities are obtained with fractional integral
operators in reference [23].

Convex mappings and sets have been improved and ex-
panded in many disciplines of mathematics due to their ro-
bustness (as was described above); in particular, the convexity
theory has been used to prove a number of inequalities that are
prevalent in the literature. In the practical literature on
mathematical inequalities, the H − H type integral inequality
is, to the best of our knowledge, a well-known, important, and
incredibly helpful inequality. Tere are several classical in-
equalities that are closely associated with the classical H − H

type integral inequality, such as Simpson, Opial, Hardy,
Hölder, Ostrowski, Minkowski, arithmetic-geometric, Young,
and Gagliardo–Nirenberg inequalities.Tese inequalities are of
pivotal signifcance. Following is a statement of this double
inequality: assume that ℘ is a convex mapping on [ϖ, ϕ] ⊂ R,
where ϖ≠ ϕ. Terefore,

℘
ϖ + ϕ
2

􏼠 􏼡≤
1

ϕ − ϖ
􏽚
ϕ

ϖ
℘(ξ)dξ ≤

℘(ϖ) + ℘(ϕ)

2
. (5)

Te reader who is interested can refer to references
[24–27] for a number of recent fndings pertaining to H −

H inequality.
In [28], the researchers proved a diferent form of H −

H inequality which holds for s-convex mappings in the
second sense.

Theorem 5. Suppose that ℘: [0,∞)⟶ [0,∞) is an
s-convex function in the second sense, where s ∈ [0, 1), and let
ϖ, ϕ ∈ [0,∞), ϖ<ϕ. If ℘ ∈ L[ϖ, ϕ], then the following in-
equalities hold:

2s− 1℘
ϖ + ϕ
2

􏼠 􏼡≤
1

ϕ − ϖ
􏽚
ϕ

ϖ
℘(ξ)dξ ≤

℘(ϖ) + ℘(ϕ)

s + 1
. (6)

In the second inequality in [29], the constant α � 1/(s +

1) is the best possibility.
Te famous Young inequality is defned as follows:

ϖϕ≤
1
p
ϖp

+
1
q
ϕq

, (7)

where ϖ and ϕ are nonnegative numbers, p> 1, and
(1/p) + (1/q) � 1, in [30].

Te reversed version of inequality (7) reads

ϖϕ≥
1
p
ϖp

+
1
q
ϕq

, ϖ,ϕ> 0,0< p< 1,
1
p

+
1
q

� 1. (8)

Te defnition of the Hölder inequality is as follows.
Let p> 1 and (1/p) + (1/q) � 1. If ℘ and κ are real

functions defned on [ϖ, ϕ] such that |℘|p and |κ|q are in-
tegrable functions on [ϖ, ϕ], then

􏽚
ϕ

ϖ
|℘(x)κ(x)|dx ≤ 􏽚

ϕ

ϖ
|℘(x)|

p
dx􏼠 􏼡

(1/p)

􏽚
ϕ

ϖ
|κ(x)|

q
dx􏼠 􏼡

(1/p)

.

(9)
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Te well-known Hölder inequality, one of the most
signifcant inequalities in analysis, was demonstrated in this
way using inequality (7). It makes a signifcant contribution
to many felds of applied and pure mathematics and is es-
sential in helping to solve several issues in the social, cultural,
and natural sciences.

Te most popular form of Young’s inequality, which is
frequently used to demonstrate the well-known inequality
for Lp functions, is as follows:

ϖζϕ1− ζ ≤ ζϖ +(1 − ζ)ϕ, (10)

where ϖ, ϕ> 0 and 0≤ ζ ≤ 1.

2. Preliminaries

Tis paper uses a relatively new approach based on Green’s
function to illustrate the H − H inequalities for s-convex
functions. First, we will start by giving the defnition of
Green’s function.

Let ϖ< ϕ and the following four new Green’s functions
defned on [ϖ,ϕ] × [ϖ, ϕ] are defned by Mehmood et al. in
[31] as follows:

G1(λ, μ) �
ϖ − μ, ϖ≤ μ≤ λ,

ϖ − λ, λ≤ μ≤ ϕ,
􏼨

G2(λ, μ) �
λ − ϕ, ϖ≤ μ≤ λ,

μ − ϕ, λ≤ μ≤ ϕ,
􏼨

G3(λ, μ) �
λ − ϖ, ϖ≤ μ≤ λ,

μ − ϖ, λ≤ μ≤ ϕ,
􏼨

G4(λ, μ) �
ϕ − μ, ϖ≤ μ≤ λ,

ϕ − λ, λ≤ μ≤ ϕ.
􏼨

(11)

In [31], the authors developed the following Lemma,
which we will utilize to demonstrate our main conclusions.

Lemma 6. Let ϖ<ϕ and ℘: [ϖ, ϕ]⟶ R be a twice dif-
ferentiable function and Gκ(κ � 1, 2, 3, 4) be the new Green’s
functions defned by (12). Ten,

℘(ξ) � ℘(ϖ) +(ξ − ϖ)℘′(ϕ) + 􏽚
ϕ

ϖ
G1(ξ, μ)℘″(μ)dμ,

℘(ξ) � ℘(ϕ) +(ϕ − ξ)℘′(ϖ) + 􏽚
ϕ

ϖ
G2(ξ, μ)℘″(μ)dμ,

℘(ξ) � ℘(ϕ) +(ϕ − ϖ)℘′(ϕ) +(ξ − ϖ)℘′(ϖ) + 􏽚
ϕ

ϖ
G3(ξ, μ)℘″(μ)dμ,

℘(ξ) � ℘(ϖ) +(ϕ − ϖ)℘′(ϖ) − (ϕ − ξ)℘′(ϕ) + 􏽚
ϕ

ϖ
G4(ξ, μ)℘″(μ)dμ.

(12)

Proof. By using the procedures of integration by parts in
􏽒
ϕ
ϖG1(ξ, μ)℘″(μ)dμ, the above equation may be easily

computed. Te specifcs of proof are thus left to readers who
are interested. Likewise, a similar method can be used in
other equations. □

Remark 7. Troughout this study, G � G1 will be used.
Tere are many studies on Green’s function in the lit-

erature. In these studies, diferent inequalities were obtained
by using diferent methods as well as Green’s function. For
example, in [32], by utilizing Green’s function, Jensen’s
inequality, convexity, and monotone functions, the authors
developed the left Riemann–Liouville fractionalH − H type
inequalities as well as the extendedH − H type inequalities.
In [33], the H − H inequalities have again been established
using Green’s function and convexity. In [34], the authors
revisited the H − H inequalities for the Riemann–Liouville
fractional operators with the help of Green’s function, and
fnally, in [35], Li et al. established H − H inequalities for
the left generalized fractional integral via Green’s function.

Te aim of this study is to obtain new integral in-
equalities with the use of Green’s function for functions
whose q-th power is s-convex and s-concave. In other words,
it is to develop a new method using Green’s function. In

addition to the defnition of Green’s function, Young,
Hölder, and power-mean inequalities were used to obtain
these new identities. As a consequence, these inequalities are
associated with the left-hand side of H − H inequality.
Finally, new propositions are given for special means.

3. Main Results

Theorem 8. Let ℘: [ϖ, ϕ]⟶ R be a twice diferentiable
and |℘″| be a s − convex function in the second sense on [ϖ, ϕ]

that satisfy the relation given in (13). If ℘ ∈ L[ϖ, ϕ], then the
following inequality holds:

℘
ϖ + ϕ
2

􏼠 􏼡 −
1

ϕ − ϖ
􏽚
ϕ

ϖ
℘(ξ)dξ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
(ϕ − ϖ)2

2s+2
2s+2

− (s + 3)

(s + 1)(s + 2)(s + 3)
℘″(ϖ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + ℘″(ϕ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛

,

(13)

for some fxed s ∈ (0, 1].

Proof. Substituting ξ � (ϖ + ϕ/2) in (12), we have
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℘
ϖ + ϕ
2

􏼠 􏼡 � ℘(ϖ) +
ϕ − ϖ
2

􏼠 􏼡℘′(ϕ) + 􏽚
ϕ

ϖ
G
ϖ + ϕ
2

, μ􏼠 􏼡℘″(μ)dμ. (14)

Integrating both sides of identity (13) with respect to ξ
and multiplying by (1/ϕ − ϖ), we obtain

1
ϕ − ϖ

􏽚
ϕ

ϖ
℘(ξ)dξ � ℘(ϖ) +

ϕ − ϖ
2

􏼠 􏼡℘′(ϕ) +
1

ϕ − ϖ
􏽚
ϕ

ϖ
􏽚
ϕ

ϖ
G(ξ, μ)℘″(μ)dμ dξ. (15)

Subtracting (15) from (14), we have

℘
ϖ + ϕ
2

􏼠 􏼡 −
1

ϕ − ϖ
􏽚
ϕ

ϖ
℘(ξ)dξ

� 􏽚
ϕ

ϖ
G
ϖ + ϕ
2

, μ􏼠 􏼡℘″(μ)dμ −
1

ϕ − ϖ
􏽚
ϕ

ϖ
􏽚
ϕ

ϖ
G(ξ, μ)℘″(μ)dμ dξ

� 􏽚
ϕ

ϖ
G
ϖ + ϕ
2

, μ􏼠 􏼡 −
1

ϕ − ϖ
􏽚
ϕ

ϖ
G(ξ, μ)dξ􏼢 􏼣℘″(μ)dμ.

(16)

Now, from the property of integral and defnition
Green’s function, we obtain

℘
ϖ + ϕ
2

􏼠 􏼡 −
1

ϕ − ϖ
􏽚
ϕ

ϖ
℘(ξ)dξ

� 􏽚
ϖ+ϕ/2

ϖ
G
ϖ + ϕ
2

, μ􏼠 􏼡 −
1

ϕ − ϖ
􏽚
ϕ

ϖ
G(ξ, μ)dξ􏼢 􏼣℘″(μ)dμ

+ 􏽚
ϕ

ϖ+ϕ/2
G
ϖ + ϕ
2

, μ􏼠 􏼡 −
1

ϕ − ϖ
􏽚
ϕ

ϖ
G(ξ, μ)dξ􏼢 􏼣℘″(μ)dμ

� 􏽚
ϖ+ϕ/2

ϖ
(ϖ − μ) −

1
ϕ − ϖ

􏽚
μ

ϖ
(ϖ − ξ)dξ + 􏽚

ϕ

μ
(ϖ − μ)dξ􏼨 􏼩􏼢 􏼣℘″(μ)dμ

+ 􏽚
ϕ

ϖ+ϕ/2

ϖ − ϕ
2

􏼠 􏼡 −
1

ϕ − ϖ
􏽚
μ

ϖ
(ϖ − ξ)dξ + 􏽚

ϕ

μ
(ϖ − μ)dξ􏼨 􏼩􏼢 􏼣℘″(μ)dμ

� −
1

2(ϕ − ϖ)
􏽚
ϖ+ϕ/2

ϖ
(μ − ϖ)2℘″(μ)dμ + 􏽚

ϕ

ϖ+ϕ/2
(ϕ − μ)

2℘″(μ)dμ􏼢 􏼣.

(17)

Using the properties of absolute value and triangle in-
equality for integrals in (17), then we have
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℘
ϖ + ϕ
2

􏼠 􏼡 −
1

ϕ − ϖ
􏽚
ϕ

ϖ
℘(ξ)dξ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
1

2(ϕ − ϖ)
􏽚

ϖ + ϕ
2
ϖ

(μ − ϖ)2 ℘″(μ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌dμ + 􏽚
ϕ
ϖ + ϕ
2

(ϕ − μ)
2 ℘″(μ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌dμ
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(18)

Let μ � ζ] + (1 − ζ)ϕ and dμ � (ϖ − ϕ)dζ in inequality
(18), then we clearly see that

℘
ϖ + ϕ
2

􏼠 􏼡 −
1

ϕ − ϖ
􏽚
ϕ

ϖ
℘(ξ)dξ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
1

2(ϕ − ϖ)
􏽚

1
2
0
ζ2(ϕ − ϖ)3 ℘″(ζ] +(1 − ζ)ϕ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌dζ
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+ 􏽚
1
1
2

(1 − ζ)
2
(ϕ − ϖ)3 ℘″(ζ] +(1 − ζ)ϕ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌dζ
⎤⎥⎥⎥⎥⎥⎦.

(19)

Since |℘″| is s-convex functions in the second sense on
[ϖ, ϕ], we can write inequality (19) as follows:

℘
ϖ + ϕ
2

􏼠 􏼡 −
1

ϕ − ϖ
􏽚
ϕ

ϖ
℘(ξ)dξ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
(ϕ − ϖ)2

2
􏽚

1
2
0
ζ2 ζs ℘″(ϖ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 +(1 − ζ)
s ℘″(ϕ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛dζ
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+ 􏽚
1
1
2

(1 − ζ)
2 ζs ℘″(ϖ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 +(1 − ζ)
s ℘″(ϕ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛dζ⎤⎥⎥⎥⎥⎥⎦

�
(ϕ − ϖ)2

2s+2
2s+2

− (s + 3)

(s + 1)(s + 2)(s + 3)
℘″(ϖ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + ℘″(ϕ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛,

(20)

which is the desired inequality. □

Remark 9. If we choose s � 1 in inequality (20), we obtain
the following result presented in [36] (Corollary 11, in-
equality (2.9)).

℘
ϖ + ϕ
2

􏼠 􏼡 −
1

ϕ − ϖ
􏽚
ϕ

ϖ
℘(ξ)dξ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

(ϕ − ϖ)2

48
℘″(ϖ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + ℘″(ϕ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛.

(21)

Theorem 10. Let ℘: [ϖ, ϕ]⟶ R be a twice diferentiable
and |℘″|q be a s − convex function in the second sense on
[ϖ, ϕ]. If ℘ ∈ L[ϖ, ϕ], then the inequality

℘
ϖ + ϕ
2

􏼠 􏼡 −
1

ϕ − ϖ
􏽚
ϕ

ϖ
℘(ξ)dξ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
(ϕ − ϖ)2

2
1

p(2p + 1)4p +
1
q

℘″(ϖ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
q

+ ℘″(ϕ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
q

s + 1
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

(22)

holds for some fxed s ∈ (0, 1] and p, q> 1 such that
(1/p) + (1/q) � 1.

Proof. Utilizing the defnition of Green’s function, we have
identity (17). From the properties of absolute value and
triangle inequality for integrals in (17), we obtain inequality
(18). By the change of variable in (18), we have

℘
ϖ + ϕ
2

􏼠 􏼡 −
1

ϕ − ϖ
􏽚
ϕ

ϖ
℘(ξ)dξ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
(ϕ − ϖ)2

2
􏽚

(1/2)

0
ζ2 ℘″(ζϖ +(1 − ζ)ϕ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌dζ􏼢

+ 􏽚
1

(1/2)
(1 − ζ)

2 ℘″(ζϖ +(1 − ζ)ϕ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌dζ􏼣.

(23)

Using the Young inequality in (23), we get
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ϖ + ϕ
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􏼠 􏼡 −
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ϕ − ϖ
􏽚
ϕ

ϖ
℘(ξ)dξ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
(ϕ − ϖ)2

2
1
p

􏽚
(1/2)

0
ζ2p

dζ +
1
q

􏽚
(1/2)

0
℘″(ζϖ +(1 − ζ)ϕ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
q
dζ􏼢

+
1
p

􏽚
1

(1/2)
(1 − ζ)

2pdζ +
1
q

􏽚
1

(1/2)
℘″(ζϖ +(1 − ζ)ϕ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
q
dζ􏼣.

(24)

By using the s-convexity of |℘″|q in (24), we have
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℘
ϖ + ϕ
2

􏼠 􏼡 −
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􏽚
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ϖ
℘(ξ)dξ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
(ϕ − ϖ)2

2
1

p(2p + 1)22p+1 +
1
q

􏽚
(1/2)

0
ζs ℘″(ϖ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
q

+(1 − ζ)
s ℘″(ϕ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
q

􏼚 􏼛dζ􏼢

1
p(2p + 1)22p+1 +

1
q

􏽚
1

(1/2)
ζs ℘″(ϖ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
q

+(1 − ζ)
s ℘″(ϕ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
q

􏼚 􏼛dζ􏼣

�
(ϕ − ϖ)2

2
1

p(2p + 1)4p +
1
q

℘″(ϖ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
q

+ ℘″(ϕ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
q

s + 1
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(25)

Tis completes the proof. □

Corollary 11. Let all the assumptions of Teorem 10 be
satisfed and since 0< (1/p(2p + 1)4p)< (1/12), for p> 1, we
obtain

℘
ϖ + ϕ
2

􏼠 􏼡 −
1

ϕ − ϖ
􏽚
ϕ

ϖ
℘(ξ)dξ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
(ϕ − ϖ)2

24
+

(ϕ − ϖ)2

2q

℘″(ϖ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
ϖ

+ ℘″(ϕ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
ϖ

s + 1
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦.

(26)

Corollary 12. If we choose s � 1 in inequality (22), we get
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ϖ + ϕ
2

􏼠 􏼡 −
1

ϕ − ϖ
􏽚
ϕ

ϖ
℘(ξ)dξ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
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1

p(2p + 1)4p +
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q
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􏼌􏼌􏼌􏼌􏼌
q
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􏼌􏼌􏼌􏼌􏼌
q

2
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

≤
(ϕ − ϖ)2

24
+

(ϕ − ϖ)2

2q
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􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
q
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􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
q

2
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦.

(27)

For s-convex maps, the following theorem provides
a new upper bound for the left-hand side of H − H

inequality.

Theorem 13. Let ℘: [ϖ, ϕ]⟶ R be a twice diferentiable
and |℘″|q be a s − convex function in the second sense on
[ϖ, ϕ]. If ℘ ∈ L[ϖ, ϕ], then we have the following inequality:
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ϖ + ϕ
2

􏼠 􏼡 −
1
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􏽚
ϕ

ϖ
℘(ξ)dξ
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􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
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q
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􏼌􏼌􏼌􏼌
q

(s + 1)2s+1
⎡⎣ ⎤⎦

(1/q)⎧⎪⎨

⎪⎩

+
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􏼌􏼌􏼌􏼌
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q
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q

(s + 1)2s+1
⎡⎣ ⎤⎦

(1/q)⎫⎪⎬

⎪⎭
,

(28)

for p> 1 and (1/p) + (1/q) � 1.

Proof. By using the same procedure in Teorem 8, we have
inequality (19) as follows:
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􏽚
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ϖ
℘(ξ)dξ
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≤
(ϕ − ϖ)2
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􏽚
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􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌dζ􏼣.

(29)

Utilizing the Hölder inequality for p> 1 and (1/p) +

(1/q) � 1 in (29), we get

℘
ϖ + ϕ
2

􏼠 􏼡 −
1

ϕ − ϖ
􏽚
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ϖ
℘(ξ)dξ
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⎡⎣
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1
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2pdζ􏼠 􏼡
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􏽚
1
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⎤⎦.

(30)
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Because |℘″|q is s-convex, we have

℘
ϖ + ϕ
2

􏼠 􏼡 −
1

ϕ − ϖ
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⎡⎣ ⎤⎦
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q
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⎡⎣ ⎤⎦

(1/q)⎫⎪⎬

⎪⎭
.

(31)

Hence, the proof is done. □

Corollary 14. Assume that Teorem 13’s assumptions are all
true and since 0< (1/(2p + 1)4p+1)< (1/48), for p> 1, we
obtain
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.

(32)

Corollary 15. Assume that Teorem 13’s assumptions are all
true. Ten,

℘
ϖ + ϕ
2
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􏽚
ϕ
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􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
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(ϕ − ϖ)2

48
1

(s + 1)2s+1􏼠 􏼡

1
q 2s+1

− 1􏼐 􏼑

1
q + 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ℘
″
(ϖ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + ℘″(ϕ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛.

(33)

Proof. Using the fact, we get

􏽘

l

j�1
ϰj + δj􏼐 􏼑

τ
≤ 􏽘

l

j�1
ϰτj + 􏽘

l

j�1
δτj. (34)

For 0< τ < 1, ϰ1, ϰ2, . . . , ϰl ≥ 0 and δ1, δ2, . . . , δl ≥ 0 in
(32), we obtain inequality (33). □

Corollary 16. Let us choose s � 1 in ineqıality (28). Ten, we
obtain
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q
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⎡⎣ ⎤⎦
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⎪⎩

⎫⎪⎬
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48
×
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􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
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+ 3 ℘″(ϕ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
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􏼌􏼌􏼌􏼌
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􏼌􏼌􏼌􏼌
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8
⎡⎣ ⎤⎦

(1/q)⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(35)

Theorem 17. Let ℘: [ϖ,ϕ]⟶ R be a twice diferentiable
and |℘″|q be a s − convex function in the second sense on
[ϖ, ϕ]. If ℘ ∈ L[ϖ, ϕ] and q≥ 1, then we obtain the following
inequality:
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(36)

Proof. Similarly, from the property of the Green function
and inequality (19), we get
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Using the s-convexity and power-mean inequality in
(37), we obtain
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2s+4 − s2 − 7s − 14
(s + 1)(s + 2)(s + 3)2s

℘″(ϕ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
q

⎡⎣ ⎤⎦

(1/q)⎧⎪⎨

⎪⎩

+
2s+4− s2 − 7s − 14

(s + 1)(s + 2)(s + 3)2s
℘″(ϖ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
q

+
℘″(ϕ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

(s + 3)2s
⎡⎣ ⎤⎦

(1/q)⎫⎪⎬

⎪⎭
,

(38)

which is our required inequality. □

Corollary 18. If we choose s � 1 in ineqıality (36), we have
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℘
ϖ + ϕ
2

􏼠 􏼡 −
1

ϕ − ϖ
􏽚
ϕ

ϖ
℘(ξ)dξ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
(ϕ − ϖ)2

16
1
3

􏼒 􏼓
1− (1/q) ℘″(ϖ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

8
+
5 ℘″(ϕ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

24
⎡⎣ ⎤⎦

(1/q)⎧⎪⎨

⎪⎩

+
5 ℘″(ϖ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

24
+
℘″(ϕ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

8
⎡⎣ ⎤⎦

(1/q)⎫⎪⎬

⎪⎭
.

(39)

Theorem 19. Let ℘: [ϖ,ϕ]⟶ R be a twice diferentiable
and |℘″|q be a s − concave function in the second sense on
[ϖ, ϕ]. If ℘ ∈ L[ϖ, ϕ], then we have the following inequality:

℘
ϖ + ϕ
2

􏼠 􏼡 −
1

ϕ − ϖ
􏽚
ϕ

ϖ
℘(ξ)dξ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
(ϕ − ϖ)2

24− s

1
2p + 1

􏼠 􏼡

1/p

℘″
ϖ + 3ϕ

4
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ ℘″

3ϖ + ϕ
4

􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼨 􏼩,

(40)

for p> 1 and (1/p) + (1/q) � 1.

Proof. By using the same procedure in Teorem 13 and the
Hölder inequality for p> 1 and (1/p) + (1/q) � 1 in (29), we
obtain

℘
ϖ + ϕ
2

􏼠 􏼡 −
1

ϕ − ϖ
􏽚
ϕ

ϖ
℘(ξ)dξ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
(ϕ − ϖ)2

2
􏽚

(1/2)

0
ζ2p

dζ􏼠 􏼡

(1/p)

􏽚
(1/2)

0
℘″(ζϖ +(1 − ζ)ϕ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
q
dζ􏼠 􏼡

(1/q)

⎡⎣

+ 􏽚
1

(1/2)
(1 − ζ)

2pdζ􏼠 􏼡

(1/p)

􏽚
1

(1/2)
℘″(ζϖ +(1 − ζ)ϕ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
q
dζ􏼠 􏼡

(1/q)

⎤⎦.

(41)

Because |℘″|q is s-concave, using inequality (6), we have

􏽚
(1/2)

0
℘″(ζρ +(1 − ζ)ϕ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
q
dζ ≤ 2s− 1 ℘″

ϖ + 3ϕ
4

􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

q

(42)

and

􏽚
1

(1/2)
℘″(ζρ +(1 − ζ)ϕ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
q
dζ ≤ 2s− 1 ℘″

3ϖ + ϕ
4

􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

q

. (43)

From (41)–(43), we get

℘
ϖ + ϕ
2

􏼠 􏼡 −
1

ϕ − ϖ
􏽚
ϕ

ϖ
℘(ξ)dξ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
(ϕ − ϖ)2

24− s

1
2p + 1

􏼠 􏼡

(1/p)

℘″
ϖ + 3ϕ

4
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ ℘″

3ϖ + ϕ
4

􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼨 􏼩,

(44)

which completes the proof. □

Corollary 20. If we take s � 1 in ineqıality (40), we have

℘
ϖ + ϕ
2

􏼠 􏼡 −
1

ϕ − ϖ
􏽚
ϕ

ϖ
℘(ξ)dξ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
(ϕ − ϖ)2

8
1

2p + 1
􏼠 􏼡

(1/p)

℘″
ϖ + 3ϕ

4
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ ℘″

3ϖ + ϕ
4

􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼨 􏼩

≤
(ϕ − ϖ)2

8
℘″
ϖ + 3ϕ

4
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ ℘″

3ϖ + ϕ
4

􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼨 􏼩.

(45)

Theorem 21. Let ℘: [ϖ, ϕ]⟶ R be a twice diferentiable
and |℘″|q be a s − concave function in the second sense on
[ϖ, ϕ]. If ℘ ∈ L[ϖ, ϕ], then the inequality

℘
ϖ + ϕ
2

􏼠 􏼡 −
1

ϕ − ϖ
􏽚
ϕ

ϖ
℘(ξ)dξ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
(ϕ − ϖ)2

2
1

p(2p + 1)4p +
2s− 1

q
℘″
ϖ + 3ϕ

4
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

q

+ ℘″
3ϖ + ϕ

4
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

q

􏼨 􏼩􏼨 􏼩

(46)
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holds for some fxed s ∈ (0, 1] and p, q> 1 such that
(1/p) + (1/q) � 1.

Proof. Let p> 1. Similarly, using inequality (19) and Young
inequality, we obtain

℘
ϖ + ϕ
2

􏼠 􏼡 −
1

ϕ − ϖ
􏽚
ϕ

ϖ
℘(ξ)dξ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
(ϕ − ϖ)2

2
1
p

􏽚
(1/2)

0
ζ2p

dζ +
1
q

􏽚
(1/2)

0
℘″(ζϖ +(1 − ζ)ϕ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
q
dζ􏼢

+
1
p

􏽚
1

(1/2)
(1 − ζ)

2pdζ +
1
q

􏽚
1

(1/2)
℘″(ζϖ +(1 − ζ)ϕ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
q
dζ􏼣.

(47)

Since |℘″|q is s-concave functions, from inequality (6),
we can write inequalities (42) and (43). Terefore, we have

℘
ϖ + ϕ
2

􏼠 􏼡 −
1

ϕ − ϖ
􏽚
ϕ

ϖ
℘(ξ)dξ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
(ϕ − ϖ)2

2
1

p(2p + 1)4p +
2s− 1

q
℘″
ϖ + 3ϕ

4
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

q

+ ℘″
3ϖ + ϕ

4
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

q

􏼨 􏼩􏼢 􏼣,

(48)

which concludes all of the proof. □ Corollary 22. In Teorem 21, if we take s � 1, we obtain

℘
ϖ + ϕ
2

􏼠 􏼡 −
1

ϕ − ϖ
􏽚
ϕ

ϖ
℘(ξ)dξ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
(ϕ − ϖ)2

2
1

p(2p + 1)4p +
1
q
℘″
ϖ + 3ϕ

4
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

q

+ ℘″
3ϖ + ϕ

4
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

q

􏼨 􏼩􏼢 􏼣.

(49)

And since 0< (1/p(2p + 1)4p)< (1/12), for p> 1, then

℘
ϖ + ϕ
2

􏼠 􏼡 −
1

ϕ − ϖ
􏽚
ϕ

ϖ
℘(ξ)dξ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
(ϕ − ϖ)2

24
+

(ϕ − ϖ)2

2q
℘″
ϖ + 3ϕ

4
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

q

+ ℘″
3ϖ + ϕ

4
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

q

􏼨 􏼩.

(50)

4. Applications for Special Means

Now, let us look at the means for the random real numbers
σ1 and σ2 (σ1 ≠ σ2).

(1) Arithmeticmean:

A σ1, σ2( 􏼁 �
σ1 + σ2

2
, σ1, σ2 ∈ R

+
. (51)

(2) Logarithmicmean:

L σ1, σ2( 􏼁 �
σ1 − σ2

ln σ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − ln σ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
, σ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≠ σ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, σ1, σ2 ≠ 0, σ1, σ2 ∈ R
+
.

(52)

(3) Generalized log − mean:

Ln σ1, σ2( 􏼁 �
σn+1
2 − σn+1

1
(n + 1) σ2 − σ1( 􏼁

􏼢 􏼣

(1/n)

n ∈ Z\ − 1, 0{ }, σ1, σ2 ∈ R
+ .

(53)

Now, we provide some applications to special means of
real numbers based on the Section 3 results.

Proposition 23. Let 0<ϖ<ϕ and s ∈ (0, 1]. Ten, we have
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A
s
(ϖ,ϕ) − L

s
s(ϖ,ϕ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤

|s(s − 1)|(ϕ − ϖ)2

2s+2
2s+2

− (s + 3)

(s + 1)(s + 2)(s + 3)
|ϖ|s− 2

+|ϕ|
s− 2

􏽮 􏽯. (54)

Proof. Te assumption follows from (13) applied to the
s-convex function ℘: [0, 1]⟶ [0, 1], ℘(ξ) � ξs. □

Proposition 24. Let 0<ϖ< ϕ and s ∈ (0, 1]. Ten, we have

A
s
(ϖ, ϕ) − L

s
s(ϖ, ϕ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≤
|s(s − 1)|(ϕ − ϖ)2

(2p + 1)4p+1
|ϖ|q(s− 2) + 2s+1 − 1( 􏼁|ϕ|q(s− 2)

(s + 1)2s+1􏼢 􏼣

(1/ϖ)
⎧⎨

⎩

+
2s+1 − 1( 􏼁|ϖ|q(s− 2) +|ϕ|q(s− 2)

(s + 1)2s+1
􏼢 􏼣

(1/ϖ)
⎫⎬

⎭.

(55)

Proof. Te assumption follows from (28) applied to the
s-convex function ℘: [0, 1]⟶ [0, 1], ℘(ξ) � ξs. □

5. Results and Discussion

If we use Green’s functions G2, G3, and G4 for various
convexities, we may obtain the same conclusions as in this
article. TeH − H inequality for s-convex functions, as well
as the H − H inequality for fractional operators, preinvex,
co-ordinate convex functions, and so on, may all be studied
using Green’s function or any other new Green’s function.
Readers who are interested in an exercise can utilize the
other three Green’s functions to produce the results that
correspond to them.

6. Conclusion

Producing novel and special integral inequalities is the
primary motivation for inequality theory, one of the most
crucial areas of mathematical analysis. Researchers some-
times utilize novel function classes, sometimes new integral
operators, and sometimes try to obtain modifcations of
a few well-known inequalities in diferent spaces for this aim.
Especially in the last decade, many methods have been
developed with diferent results, and many remarkable re-
fnements, extensions, and generalizations have been ob-
tained. Using these diferent methods, many diferent types
of inequalities, lemmas, and diferent identities can be found
in articles, and relevant researchers can access these studies
in the literature. One of these important methods is the well-
known Green’s function.

In this study, a newmethod was developed using Green’s
function to prove the new results obtained. In addition,
conclusions pertaining to the left-hand side of H − H were
obtained for derivatives of the q-th power of s-convex
functions. Using the identity (2.11) (in [37]) and diferent
types of convexity, researchers can derive both H − H type
and diferent type well-known inequalities. In this sense, we

hope that this study will inspire researchers to obtain further
results.
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