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Te aim of this paper is to defne generalized rational contractions in the setting of graphical b-metric spaces and obtain some
fxed-point theorems. Our results are signifcant generalizations and extensions of some well-known results in the existing theory.
We also supply a nontrivial example to show the validity of the obtained theorems. As applications, we obtain some results on
rational expressions in the background of graphical metric spaces.

1. Introduction

In the context of fxed-point theory, the underlying space
and contractive mapping play an important and crucial role.
One of the pillars in this theory is the concept of metric space
which was introduced by Frechet [1]. In this theory, the
pioneer result is the well-known Banach contraction prin-
ciple [2] which states that if (M, d) is a complete metric
space and R: M⟶M is a mapping satisfying the
condition

d Rϑ1,Rϑ2( 􏼁≤ λd ϑ1, ϑ2( 􏼁,∀ϑ1, ϑ2 ∈M, (1)

where 0≤ λ< 1, then R has a unique fxed point.
Due to the simplicity and signifcance of the notion of

metric space, it has been improved, extended, and gener-
alized in various directions. Te famous extension of the
concept of metric spaces has been done by Bakhtin [3] which
was formally defned by Czerwik [4] in 1993. Jachymski [5]
replaced the order structure on a metric space with a graph
structure and gave the graphic version of the Banach con-
traction principle. In 2017, Shukla et al. [6] introduced the
concept of graphical metric spaces by proposing the
graphical structure on metric spaces. Subsequently,
Chuensupantharat et al. [7] combined the notions of

b-metric spaces and graphical metric spaces and gave the
concept of graphical b-metric spaces.

On the other hand, Fisher [8] and Dass and Gupta [9]
introduced rational expression in the contractive condition
and generalized the famous Banach contraction principle.
Isik et al. [10] proved some fxed-point theorems for rational
contractions endowed with a graph and investigated the
solution of a system of integral equations as applications.

In this article, we introduce Fisher’s graph contraction
and Dass–Gupta’s graph contraction in the setting of
graphical b-metric spaces and obtain some fxed-point re-
sults. Based on this structure, we show that every
Dass–Gupta’s contraction is Dass–Gupta’s graph contrac-
tion, but the converse is not generally true. Some nontrivial
and signifcant examples are also provided, equipped with
some worthy graphs to show the authenticity of established
outcomes.

2. Preliminaries

Frechet [1] initiated the theory of metric space in the fol-
lowing manner.

d Rϑ1,Rϑ2( 􏼁≤ λd ϑ1, ϑ2( 􏼁, (2)
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for all ϑ1, ϑ2 ∈M, there exists a unique point ϑ∗ ∈M such
that Rϑ∗ � ϑ∗.

Defnition 1 (see [1]). Let M≠∅ (nonempty set) and
d: M × M⟶ [0,∞) be a function satisfying

(m1) d(ϑ, θ) � 0 if and only if ϑ � θ
(m2) d(ϑ, θ) � d(θ, ϑ)

(m3) d(ϑ,φ)≤ d(ϑ, θ) + d(θ, φ)

for all ϑ, θ,φ ∈M.
Ten, (M, d) is called a metric space.
Banach [2] obtained a fxed-point result in 1922 in the

following way.

Theorem 2. Let (M, d) be a complete metric space and
R: M⟶M. If there exists a nonnegative constant
λ ∈ [0, 1) such that

In 1980, Fisher [8] presented the following result.

d Rϑ1,Rϑ2( 􏼁≤ λ1d ϑ1, ϑ2( 􏼁 + λ2
d ϑ1,Rϑ1( 􏼁d ϑ2,Rϑ2( 􏼁

1 + d ϑ1, ϑ2( 􏼁
,

(3)

for all ϑ1, ϑ2 ∈M, there exists a unique point ϑ∗ ∈M such
that Rϑ∗ � ϑ∗.

Theorem 3. Let (M, d) be a complete metric space and
R: M⟶M. If there exist nonnegative constants
λ1, λ2 ∈ (0, 1/2] with λ1 + λ2 < 1 such that

Dass and Gupta [9] established a result in the following
way.

d Rϑ1,Rϑ2( 􏼁≤ λ1d ϑ1, ϑ2( 􏼁 + λ2
1 + d ϑ1,Rϑ1( 􏼁􏼂 􏼃d ϑ2,Rϑ2( 􏼁

1 + d ϑ1, ϑ2( 􏼁
,

(4)

for all ϑ1, ϑ2 ∈M, there exists a unique point ϑ∗ ∈M such
that Rϑ∗ � ϑ∗.

Theorem 4. Let (M, d) be a complete metric space and
R: M⟶M. If there exist nonnegative constants
λ1, λ2 ∈ (0, 1/2] with λ1 + λ2 < 1 such that

Czerwik [4] presented the idea of b-metric space as
follows.

Defnition 5 (see [4]). Let M≠∅, s≥ 1 be a constant and
db: M × M⟶ [0,∞) be a function satisfying

(b1) db(ϑ, θ) � 0 if and only if ϑ � θ
(b2) db(ϑ, θ) � db(θ, ϑ)

(b3) db(ϑ,φ)≤ s[db(ϑ, θ) + db(θ, φ)]

for all ϑ, θ,φ ∈M.
Ten, the pair (M, db) is considered as a b-metric space.
Some concepts from graph theory given by Jachymski [5]

will be presented here. Let ∆ denotes the diagonal ofM × M,
where M is any nonempty set. Let G � (V(G), E(G)) be

a directed graph such that V(G) is the set of its vertices, that
is, V(G) corresponding toM and E(G) is the set of its edges,
that is, E(G) which contains all loops, i.e., ∆⊆E(G). If we
alter the direction of the edges of G, the resultant graph is
represented by G− 1. Moreover, the letter 􏽥G represents
a directed graph with symmetric edges. Specifcally, we
defne

E(􏽥G) � E(G)∪E G
−1

􏼐 􏼑. (5)

If ℏ and ς are vertices in a graph G, then a path from ℏ to
ς in G of length m is a sequence θi􏼈 􏼉

m
i�0 of m + 1 vertices such

that θ0 � ℏ, θm � ς, (θn−1, θn) ∈ E(G), and ∀i � 1, · · · , m. A
graph G is connected if any two vertices of G have a path
between them. Moreover, a graph G is weakly connected if
there is a path between each two vertices in undirected graph
G. We say G∗ � (V(G∗), E(G∗)) is a subgraph of
G � (V(G), E(G)) if V(G∗)⊆V(G) and E(G∗)⊆E(G).

Motivated by Shukla et al. [6], we represent

[w]
l
G � Z ∈M: there exists a direct path fromw to ℏwith length l􏼈 􏼉.

(6)

Moreover, a relation P on M is such that

(wPℏ)G. (7)

If there is a direct path in G fromw to ℏ, and ς ∈ (wPℏ)G

if ς is in the path (wPℏ)G. If θn􏼈 􏼉 in M with (θnPθn+1)G,
∀n ∈ N, then θn􏼈 􏼉 is said to be a G-termwise connected
(shortly G-TWC) sequence.

Shukla et al. [6] introduced the notion of graphical
metric space in the following way.

Defnition 6 (see [7]). Let M≠∅ and dgm: M × M⟶
[0,∞) is a function satisfying

(gm1) dgm(ϑ, θ) � 0 if and only if ϑ � θ
(gm2)dgm (ϑ, θ) � dgm(θ, ϑ)

(gm3) (ϑPφ)G and θ ∈ (ϑPφ)G implies dgm(ϑ,φ)≤
dgm(ϑ, θ) + dgm(θ, φ)

for all ϑ, θ,φ ∈M. Ten, the pair (M, dgm) is said to be
a graphical metric space.

Example 7. Every metric space (M, d) is a graphical metric
space with graph G, where V(G) � X and E(G) � M × M.

In 2019, Chuensupantharat et al. [7] gave the notion of
graphical b-metric space as a generalization of b-metric
space as follows:

Defnition 8 (see [7]). Let M≠∅ and s≥ 1 be a constant
and dgb: M × M⟶ [0,∞) be a function satisfying

(gb1) dgb(ϑ, θ) � 0 if and only if ϑ � θ
(gb2) dgb(ϑ, θ) � dgb(θ, ϑ)

(gb3) (ϑPφ)G and θ ∈ (ϑPφ)G implies dgb(ϑ,φ)≤ s

[dgb(ϑ, θ) + dgb(θ,φ)]
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for all ϑ, θ, φ ∈M. Ten, the pair (M, dgb) is said to be
a graphical b-metric space with coefcient s≥ 1 on M.

Remark 9. Te notion of graphical b-metric space is a real
generalization of graphical metric space because if we take
s � 1 in the above defnition, then we can get the notion of
a graphical metric space.

Example 10 (see [7]). Let M � 1, 2, 3, 4{ } and dgb: M×

M⟶ [0,∞) is defned by

dgb ϑ1, ϑ2( 􏼁 �

0, if ϑ1 � ϑ2,

3η, if ϑ1, ϑ2 ∈ 1, 2{ } and ϑ1 ≠ ϑ2,

η, if ϑ1 or ϑ2 ∉ 1, 2{ } and ϑ1 ≠ ϑ2,

⎧⎪⎪⎨

⎪⎪⎩
(8)

where η> 0 is constant. Ten, it is very simple to prove that
(M, dgb) is a graphical b-metric space with coefcient
s � 3/2, where G � (V(G), E(G)) and V(G) � M and E(G)

as shown in Figure 1.
Notice that it is not a graphical metric space because

dgb(1, 2) � 3η> 2η

· dgb(1, 3) + dgb(3, 2).
(9)

Defnition 11. Let (M, dgb) be a graphical b-metric space,
and θn􏼈 􏼉 be a sequence in M, then

(i) θn􏼈 􏼉 is said to be a convergent sequence if there exists
a point θ ∈M such that limn⟶∞dgb(θn, θ) � 0

(ii) θn􏼈 􏼉 is said to be a Cauchy sequence if
limn,m⟶∞dgb(θn, θm) � 0

For more characteristics in the direction of graphic
contractions, graphical metric spaces, and graphical
b-metric spaces, we refer the readers to [10–21].

3. Results and Discussion

Let HG be a subgraph of graph G such that ∆⊆E(HG) and
moreover suppose that HG is a weighted graph. Let ϑn􏼈 􏼉 be
a sequence with initial point ϑ0 inM. Ten, ϑn􏼈 􏼉 is said to be
an R-Picard sequence (R-PS) for R: M⟶M if
ϑn � Rϑn−1, for all n ∈ N.

Now, we state a property (P) given by Shukla et al. [6] in
the following way.

(P) A graph HG � (V(HG), E(HG)) satisfes the
property (P) if a G-termwise connected R-PS ϑn􏼈 􏼉 con-
verging in M guarantees that there is a limit θ ∈M of ϑn􏼈 􏼉

and n0 ∈ N such that (ϑn, θ) ∈ E(HG) or (θ, ϑn) ∈ E(HG)

for all n> n0.
Now, we defne Fisher-type graph contraction in

a graphical b-metric space.

Defnition 12. Let (M, dgb) be a graphical b-metric space
and R: M⟶M. Ten, R is said to be an Fisher-type
graph contraction for HG on (M, dgb) if

(i) HG is graph preserving, i.e., for each ϑ1, ϑ2 ∈M if
(ϑ1, ϑ2) ∈∈E(HG) implies (Rϑ1,Rϑ2) ∈ E(HG),

(ii) Tere exist nonnegative constants λ1, λ2 with λ1 +

λ2 < 1/s such that for every ϑ1, ϑ2 ∈M with (ϑ1, ϑ2)
∈E(HG), we have

dgb Rϑ1,Rϑ2( 􏼁≤ λ1dgb ϑ1, ϑ2( 􏼁

+ λ2
dgb ϑ1,Rϑ1( 􏼁dgb ϑ2,Rϑ2( 􏼁

1 + dgb ϑ1, ϑ2( 􏼁
.

(10)

Remark 13. Any Fisher contraction is Fisher graph con-
traction along with HG � G defned by V(HG) � M and
E(HG) � M × M.

(i) If R be a Fisher graph contraction with parameters
λ1, λ2 and λ2 � 0, then R is a Banach graph con-
traction for graphs in (M, dgb).

(ii) Since every graphical b-metric space is graphical
metric space and also every (M, d) is (M, dgm), thus
our theorems in this paper are precise generaliza-
tions of some of the results regarding Fisher con-
traction (see e.g., [8]).

Theorem 14. Let (M, dgb) be an HG-complete graphical
b-metric space such that dgb is continuous functional and let
R: M⟶M be a Fisher graph contraction. Suppose that
these assertions hold:

(i) G satisfes the property (P)

(ii) Tere exists ϑ0 ∈M with Rϑ0 ∈ [ϑ0]
r
HG

for some
r ∈ N

Ten, there exists ϑ∗ ∈M such that the R-PS ϑn􏼈 􏼉 with
initial point ϑ0 ∈M isHG-TWC and ϑn⟶ ϑ∗ as n⟶∞.

Proof. Let ϑ0 ∈M be such that Rϑ0 ∈ [ϑ0]
r
HG

, for some
r ∈ N. As ϑn􏼈 􏼉 is a R-PS originating from ϑ0, there is a path
(θi)

r
i�0 such that ϑ0 � θ0 andRϑ0 � θr and (θi−1, θi) ∈E(HG)

for i � 1, 2, · · · , r. Now, by assumption (i), we have
(Rθi−1,Rθi) ∈E(HG) for i � 1, 2, · · · , r. It yields that
(Rθi)

r
i�0 is a path from Rθ0 � Rϑ0 � θ1 to Rθr � R2ϑ0 �

θ2 having length r and therefore ϑ2 ∈ [ϑ1]
r
HG

. Continuing in

1 2

4 3

Figure 1: Graph depicting graphical b-metric space.
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this way, we get (Rnθi)
r
i�0 is a path fromRnθ0 � Rnϑ0 � θn

to Rnθr � RnRϑ0 � ϑn+1 of length r, and hence,
ϑn+1 ∈ [ϑn]r

HG
, for all n ∈ N. Hence, we have ϑn􏼈 􏼉 which is

aHG-TWC sequence. Tus, (Rnθi−1,R
nθi) ∈E(HG) for i �

1, 2, · · · , r and n ∈ N. Now, by (ii), we have

dgb R
nθi−1,R

nθi( 􏼁 � dgb R R
n− 1θi−1􏼐 􏼑,R R

n− 1θi􏼐 􏼑􏼐 􏼑

≤ λ1dgb R
n− 1θi−1,R

n− 1θi􏼐 􏼑

+ λ2
dgb R

n− 1θi−1,R R
n− 1θi−1􏼐 􏼑􏼐 􏼑dgb R

n− 1θi,R R
n− 1θi􏼐 􏼑􏼐 􏼑

1 + dgb R
n−1θi−1,R

n−1θi􏼐 􏼑

� λ1dgb R
n− 1θi−1,R

n− 1θi􏼐 􏼑

+ λ2
dgb R

n− 1θi−1,R
n− 1θi􏼐 􏼑dgb R

nθi−1,R
nθi( 􏼁

1 + dgb R
n−1θi−1,R

n−1θi􏼐 􏼑

≤ λ1dgb R
n− 1θi−1,R

n− 1θi􏼐 􏼑 + λ2dgb R
nθi−1,R

nθi( 􏼁,

(11)

which yields that

dgb R
nθi−1,R

nθi( 􏼁≤
λ1

1 − λ2
􏼠 􏼡dgb R

n− 1θi−1,R
n− 1θi􏼐 􏼑.

(12)

Since λ1 + λ2 < 1/s, so taking λ1/1 − λ2 � c ∈ [0, 1/s), it
follows from the above inequality that

dgb R
nθi−1,R

nθi( 􏼁≤ cdgb R
n− 1θi−1,R

n− 1θi􏼐 􏼑, (13)

where c ∈ [0, 1/s). Repeating in this way, we have

dgb R
nθi−1,R

nθi( 􏼁≤ c
n
dgb θi−1, θi( 􏼁. (14)

As the sequence ϑn􏼈 􏼉 is a HG-TWC sequence and G is
a subgraph of G, so by using inequality (14) and the tri-
angular inequality, we have

dgb θn, θn+1( 􏼁 � dgb R
nϑ0,R

n+1ϑ0􏼐 􏼑

� dgb R
nθ0,R

nθr( 􏼁

≤ s dgb R
nθ0,R

nθ1( 􏼁 + dgb R
nθ1,R

nθr( 􏼁􏽨 􏽩

≤ s dgb R
nθ0,R

nθ1( 􏼁􏽨 􏽩 + s
2
dgb R

nθ1,R
nθ2( 􏼁􏽨 􏽩 + · · · + s

n
dgb R

nθr−1,R
nθr( 􏼁􏽨 􏽩

≤ sc
n
dgb θ0, θ1( 􏼁 + s

2
c

n
dgb θ1, θ2( 􏼁 + s

3
c

n
dgb θ2, θ3( 􏼁 + · · · + s

r
c

n
dgb θr−1, θr( 􏼁

� sc
n

􏽘

r

k�1
s

k−1
dgb θk−1, θk( 􏼁.

(15)

Setting ℵr
b � 􏽐

r
k�1s

k− 1dgb(θk−1, θk) in inequality (15), we
have

dgb θn, θn+1( 􏼁≤ sc
n ℵr

b( 􏼁. (16)
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Again ϑn􏼈 􏼉 is a HG-TWC sequence, so for all m, n ∈ N,
(m> n), we have

dgb ϑn, ϑm( 􏼁≤ s dgb ϑn, ϑn+1( 􏼁 + dgb ϑn+1, ϑm( 􏼁􏽨 􏽩

≤ s dgb ϑn, ϑn+1( 􏼁􏽨 􏽩 + s
2
dgb ϑn+1, ϑn+2( 􏼁􏽨 􏽩 + s

2
dgb ϑn+2, ϑm( 􏼁􏽨 􏽩

≤ s dgb ϑn, ϑn+1( 􏼁􏽨 􏽩 + s
2
dgb ϑn+1, ϑn+2( 􏼁􏽨 􏽩 + · · · + s

m− n
dgb ϑm−1, ϑm( 􏼁􏽨 􏽩

� 􏽘
m−1

k�p

s
k− n+1

dgb ϑk, ϑk+1( 􏼁􏽨 􏽩

≤ s 􏽘
m−1

k�n

s
k− n+1

c
kℵr

b􏽨 􏽩

� s
2
c

n
􏽘

m−1

k�n

(sc)
k− n⎡⎣ ⎤⎦ℵr

b

≤ s
2
c

n
􏽘

∞

k�1
(sc)

k− 1⎡⎣ ⎤⎦ℵr
b

≤ s
2
c

n 1
1 − sc

􏼠 􏼡ℵr
b.

(17)

Since c ∈ [0, 1/s), so we obtain

lim
n,m⟶∞

dgb ϑn, ϑm( 􏼁 � 0. (18)

Tus, ϑn􏼈 􏼉 is a Cauchy sequence in M. Also, since M is
HG-complete, so ϑn􏼈 􏼉 converges in M and by assumption,
there exists ϑ∗ ∈M and n0 ∈ N such that (ϑn, ϑ∗) ∈∈E(G) or
(ϑ∗, ϑn) ∈∈E(HG) for every n> n0 and

lim
n⟶∞

dgb ϑn, ϑ∗( 􏼁 � 0, (19)

which shows that ϑn􏼈 􏼉 converges to ϑ∗. □

Theorem 15. If assumptions given in Teorem 14 are sat-
isfed and, in addition, we assume that the graph HG is
weakly connected, then the fxed point of R is unique.

Proof. By Teorem 14, we have ϑn􏼈 􏼉 is a R-PS with initial
point ϑ0 converges to ϑ

∗ ∈M. By assumption, (ϑ∗PRϑ∗)HG

or (Rϑ∗Pϑ∗)HG
and thus, we obtain

dgb ϑ∗,Rϑ∗( 􏼁≤ s dgb ϑ∗, ϑn( 􏼁 + dgb ϑn,Rϑ∗( 􏼁􏽨 􏽩

� s dgb ϑ∗, ϑn( 􏼁 + dgb Rϑn−1,Rϑ∗( 􏼁􏽨 􏽩.
(20)

By (ii), we have

dgb ϑ∗,Rϑ∗( 􏼁≤ s

dgb ϑ∗, ϑn( 􏼁 + λ1dgb ϑn−1, ϑ
∗

( 􏼁

+λ2
dgb ϑn−1,Rϑn−1( 􏼁dgbϑ

∗
,Rϑ∗􏼑

1 + dgb ϑn−1, ϑ
∗

( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� s

dgb ϑ∗, ϑn( 􏼁 + λ1dgb ϑn−1, ϑ
∗

( 􏼁

+λ2
dgb ϑn−1, ϑn( 􏼁dgbϑ

∗
,Rϑ∗􏼑

1 + dgb ϑn−1, ϑ
∗

( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(21)

Letting n⟶∞ and using the fact that λ1 + λ2 < 1/s, we
have dgb(ϑ∗,Rϑ∗) � 0. Tus, ϑ∗ � Rϑ∗ and therefore ϑ∗ is
a fxed point ofR. Now, we suppose that ϑ/ is another fxed
point of R. Assume that (ϑ∗Pϑ/)HG

, there exists (ϑj)
r

j�0 in

such a way that ϑ0 � ϑ∗ and ϑr � ϑ/ with (ϑj, ϑj+1) ∈E(HG)

for j � 1, 2, · · · , r. Now, sinceR is Fisher graph contraction,
so by using assumption (i) repeatedly, we have
(Rnϑj,R

nϑj+1) ∈E(HG) for all n ∈ N. Now, using (ii) as we
did in Teorem 14, we have

dgb R
nϑj,R

nϑj+1􏼐 􏼑≤ c
n
dgb ϑj, ϑj+1􏼐 􏼑, (22)

where c ∈ [0, 1/s). Now, by using the triangle inequality, we
have
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dgb R
nϑ∗,Rnϑ/􏼐 􏼑 � dgb R

nϑ0,R
nϑr( 􏼁

≤ s dgb R
nϑ0,R

nϑ1( 􏼁 + dgb R
nϑ1,R

nϑr( 􏼁􏽨 􏽩

≤ s 􏽘
r

k�1
s

k− 1
dgb R

nϑk−1,R
nϑk( 􏼁􏽨 􏽩

≤ sc
n

􏽘

r

k�1
s

k− 1
dgb ϑk−1, ϑk( 􏼁􏽨 􏽩.

(23)

Since ϑ∗, ϑ/ ∈ Fix(R), so this implies that Rnϑ∗ � ϑ∗
andRnϑ/ � ϑ/. Now, letting the limit as n⟶∞, we obtain
ϑ∗ � ϑ/. Tus, ϑ∗ is the unique fxed point. □

Corollary 1 . Let (M, d) be an HG-complete graphical
b-metric space and let R: M⟶M. Suppose that there
exists nonnegative constant λ ∈ [0, 1) such that for every
ϑ1, ϑ2 ∈M with (ϑ1, ϑ2) ∈E(HG), we have

d Rϑ1,Rϑ2( 􏼁≤ λd ϑ1, ϑ2( 􏼁, (24)

(i) G satisfes the property (P)

(ii) Tere exists ϑ0 ∈M with Rϑ0 ∈ [ϑ0]
r
HG

for some
r ∈ N

Ten, there exists ϑ∗ ∈M such that the R-PS ϑn􏼈 􏼉 with
initial point ϑ0 ∈M isHG-TWC and ϑn⟶ ϑ∗ as n⟶∞.

Proof. Take λ1 � λ and λ2 � 0 in Teorem 14. □

Remark 17. If s � 1 in Defnition 8, then a graphical
b-metric space reduced to a graphical metric space, so the
following result is a direct consequence of Teorem 14.

Corollary 18. Let (M, d) be an HG-complete graphical
metric space and let R: M⟶M. Suppose that there exist
nonnegative constants λ1, λ2 with λ1 + λ2 < 1 such that for
every ϑ1, ϑ2 ∈M with (ϑ1, ϑ2) ∈E(HG), we have

d Rϑ1,Rϑ2( 􏼁≤ λ1d ϑ1, ϑ2( 􏼁 + λ2
d ϑ1,Rϑ1( 􏼁d ϑ2,Rϑ2( 􏼁

1 + d ϑ1, ϑ2( 􏼁
,

(25)

(i) G satisfes the property (P)

(ii) Tere exists ϑ0 ∈M with Rϑ0 ∈ [ϑ0]
r
HG

for some
r ∈ N

Ten, there exists ϑ∗ ∈M such that the R-PS ϑn􏼈 􏼉 with
initial point ϑ0 ∈M isHG-TWC and ϑn⟶ ϑ∗ as n⟶∞.

Corollary 19 (see [6]). Let (M, d) be an HG-complete
graphical metric space and let R: M⟶M. Suppose that
there exists nonnegative constant λ ∈ [0, 1) such that for every
ϑ1, ϑ2 ∈M with (ϑ1, ϑ2) ∈∈E(HG), we have

d Rϑ1,Rϑ2( 􏼁≤ λd ϑ1, ϑ2( 􏼁, (26)

(i) G satisfes the property (P)

(ii) Tere exists ϑ0 ∈M with Rϑ0 ∈ [ϑ0]
r
HG

for some
r ∈ N

Ten, there exists ϑ∗ ∈M such that the R-PS {ϑn} with
initial point ϑ0 ∈M isHG-TWC and ϑn⟶ ϑ∗ as n⟶∞.

Proof. Take λ1 � λ and λ2 � 0 in Corollary 18.
Now, we state Dass–Gupta graph contraction in the

background of a graphical b-metric space. □

Defnition 20. Let (M, dgb) be a graphical b-metric space
andR: M⟶M. Ten,R is said to be Dass–Gupta graph
contraction for HG on (M, dgb) if

(i) HG is edge preserving, i.e., for each ϑ1, ϑ2 ∈M if
(ϑ1, ϑ2) ∈∈E(HG) implies (Rϑ1,Rϑ2) ∈ E(HG)

(ii) Tere exist nonnegative constants λ1, λ2 with λ1 +

λ2 < 1/S such that for every ϑ1, ϑ2 ∈M with (ϑ1, ϑ2)
∈E(HG), we have

dgb Rϑ1,Rϑ2( 􏼁≤ λ1dgb ϑ1, ϑ2( 􏼁

+ λ2
1 + dgb ϑ1,Rϑ1( 􏼁􏽨 􏽩dgb ϑ2,Rϑ2( 􏼁

1 + dgb ϑ1, ϑ2( 􏼁
.

(27)

Example 21. LetM � 0, 1, 2, 3, 4, 5, 6{ } be equipped with dgb
which is defned by

dgb ϑ1, ϑ2( 􏼁 �
ϑ1 − ϑ2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
, if ϑ1 ≠ ϑ2,

0, if ϑ1 � ϑ2.

⎧⎨

⎩ (28)

Ten, (M, dgb) is a graphical b-metric space with the
coefcient s � 2. Defne R: M⟶M by R

Rϑ �
1, if ϑ ∈ 0, 1{ },

2, if ϑ ∈ 2, 3, 4, 5, 6{ }.
􏼨 (29)

Now, taking HG such that M � V(HG) and

E HG( 􏼁 �
(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (1, 3), (1, 4), (1, 5), (1, 6),

(2, 3), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6), (4, 5), (4, 6), (5, 6)
􏼨 􏼩∪∆. (30)

Ten, R is a Dass and Gupta graph contraction for λ1 �

1/3 and λ2 � 1/12. It is shown in Figure 2.
Observe that, R is not a Dass–Gupta contraction, as

dgb(R1,R2) � 1> λ1dgb(1, 2) + λ2
1 + dgb(1,R1)􏽨 􏽩dgb(2,R2)

1 + dgb(1, 2)
.

(31)
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Remark 22. Any Dass–Gupta contraction is Dass–Gupta
graph contraction along with HG � G and defned by
V(HG) � M and E(HG) � M × M.

(i) If R is a Dass–Gupta graph contraction with pa-
rameters λ1, λ2 and λ2 � 0, thenR is a Banach graph
contraction in (M, dgb).

(ii) Since every (M, dgb) is a (M, dgm) and also every
(M, d) is a (M, dgm), thus our theorems in this
paper are precise generalizations of some of the
results regarding Dass–Gupta contraction (see
e.g., [9]).

Now, we present our leading theorem regarding
Dass–Gupta graph contraction in the following way.

Theorem 23. Let (M, dgb) be an HG-complete graphical
b-metric space and let R: M⟶M be a Dass and Gupta’s
graph contraction. Suppose that these assertions hold:

(i) G satisfes the property (P)

(ii) Tere exists ϑ0 ∈M with Rϑ0 ∈ [ϑ0]
r
HG

for some
r ∈ N

Ten, there exists ϑ∗ ∈M such that the R-PS ϑn􏼈 􏼉 with
initial point ϑ0 ∈M isHG-TWC and ϑn⟶ ϑ∗ as n⟶∞.

Proof. Let ϑ0 ∈M be such that Rϑ0 ∈ [ϑ0]
r
HG

, for some
r ∈ N. As ϑn􏼈 􏼉 is a R-PS originating from ϑ0, there is a path
(θi)

r
i�0 such that ϑ0 � θ0 andRϑ0 � θr and (θi−1, θi) ∈E(HG)

for i � 1, 2, · · · , r. Now, by assumption (i), we have
(Rθi−1,Rθi) ∈∈E(HG) for i � 1, 2, · · · , r. It yields that
(Rθi)

r
i�0 is a path from Rθ0 � Rϑ0 � θ1 to Rθr � R2ϑ0 �

θ2 having length r and therefore ϑ2 ∈ [ϑ1]
r
HG

. Continuing in
this way, we get (Rnθi)

r
i�0 is a path fromRnθ0 � Rnϑ0 � θn

to Rnθr � RnRϑ0 � ϑn+1 of length r, and hence,
ϑn+1 ∈ [ϑn]r

HG
, for all n ∈ N. Hence, ϑn􏼈 􏼉 is a HG-TWC

sequence. Tus, (Rnθi−1,R
nθi) ∈E(HG) for i � 1, 2, · · · , r

and n ∈ N. Now, by (ii), we have

dgb R
nθi−1,R

nθi( 􏼁 � dgb R R
n− 1θi−1􏼐 􏼑,R R

n− 1θi􏼐 􏼑􏼐 􏼑

≤ λ1dgb R
n− 1θi−1,R

n− 1θi􏼐 􏼑

+ λ2
1 + dgb R

n− 1θi−1,R R
n− 1θi−1􏼐 􏼑􏼐 􏼑􏽨 􏽩dgb R

n− 1θi,R R
n− 1θi􏼐 􏼑􏼐 􏼑

1 + dgb R
n−1θi−1,R

n−1θi􏼐 􏼑

� λ1dgb R
n− 1θi−1,R

n− 1θi􏼐 􏼑

+ λ2
1 + dgb R

n− 1θi−1,R
n− 1θi􏼐 􏼑􏽨 􏽩dgb R

nθi−1,R
nθi( 􏼁

1 + dgb R
n−1θi−1,R

n−1θi􏼐 􏼑

� λ1dgb R
n− 1θi−1,R

n− 1θi􏼐 􏼑 + λ2dgb R
nθi−1,R

nθi( 􏼁,

(32)

0 6

5 1

2

3

4

Figure 2: Graph associated with Dass–Gupta contraction.
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which yields that

dgb R
nθi−1,R

nθi( 􏼁≤
λ1

1 − λ2
􏼠 􏼡dgb R

n− 1θi−1,R
n− 1θi􏼐 􏼑.

(33)

Since λ1 + λ2 < 1/s, so taking λ1/1 − λ2 � c ∈ [0, 1/s), it
follows from the above inequality that

dgb R
nθi−1,R

nθi( 􏼁≤ cdgb R
n− 1θi−1,R

n− 1θi􏼐 􏼑, (34)

where c ∈ [0, 1/s). Repeating in this way, we have

dgb R
nθi−1,R

nθi( 􏼁≤ c
n
dgb θi−1, θi( 􏼁. (35)

As the sequence ϑn􏼈 􏼉 is a HG -TWC sequence and G is
a subgraph of G, so by using inequality (35) and the tri-
angular inequality, we have

dgb θn, θn+1( 􏼁 � dgb R
nϑ0,R

n+1ϑ0􏼐 􏼑

� dgb R
nθ0,R

nθr( 􏼁

≤ s dgb R
nθ0,R

nθ1( 􏼁 + dgb R
nθ1,R

nθr( 􏼁􏽨 􏽩

≤ s dgb R
nθ0,R

nθ1( 􏼁􏽨 􏽩 + s
2
dgb R

nθ1,R
nθ2( 􏼁􏽨 􏽩 + · · · + s

n
dgb R

nθr−1,R
nθr( 􏼁􏽨 􏽩

≤ sc
n
dgb θ0, θ1( 􏼁 + s

2
c

n
dgb θ1, θ2( 􏼁 + s

3
c

n
dgb θ2, θ3( 􏼁 + · · · + s

r
c

n
dgb θr−1, θr( 􏼁

� sc
n

􏽘

r

k�1
s

k−1
dgb θk−1, θk( 􏼁.

(36)

Setting ℵr
b � 􏽐

r
k�1s

k− 1dgb(θk−1, θk) in inequality (36), we
have

dgb θn, θn+1( 􏼁≤ sc
n ℵr

b( 􏼁. (37)

Again ϑn􏼈 􏼉 is a HG-TWC sequence, so for all m, n ∈ N,
(m> n), we have

dgb ϑn, ϑm( 􏼁≤ s dgb ϑn, ϑn+1( 􏼁 + dgb ϑn+1, ϑm( 􏼁􏽨 􏽩

≤ s dgb ϑn, ϑn+1( 􏼁􏽨 􏽩 + s
2
dgb ϑn+1, ϑn+2( 􏼁􏽨 􏽩 + s

2
dgb ϑn+2, ϑm( 􏼁􏽨 􏽩

≤ s dgb ϑn, ϑn+1( 􏼁􏽨 􏽩 + s
2
dgb ϑn+1, ϑn+2( 􏼁􏽨 􏽩 + · · · + s

m− n
dgb ϑm−1, ϑm( 􏼁􏽨 􏽩

� 􏽘
m−1

k�p

s
k− n+1

dgb ϑk, ϑk+1( 􏼁􏽨 􏽩

≤ s 􏽘
m−1

k�n

s
k− n+1

c
kℵr

b􏽨 􏽩

� s
2
c

n
􏽘

m−1

k�n

(sc)
k− n⎡⎣ ⎤⎦ℵr

b

≤ s
2
c

n
􏽘

∞

k�1
(sc)

k− 1⎡⎣ ⎤⎦ℵr
b

≤ s
2
c

n 1
1 − sc

􏼠 􏼡ℵr
b.

(38)

Since c ∈ [0, 1/s), so we obtain
lim

n,m⟶∞
dgb ϑn, ϑm( 􏼁 � 0. (39)
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Tus, ϑn􏼈 􏼉 is a Cauchy sequence in M. Also, since M is
HG-complete, so ϑn􏼈 􏼉 converges in M and by assumption,
there exists ϑ∗ ∈M and n0 ∈ N such that (ϑn, ϑ∗) ∈E(G) or
(ϑ∗, ϑn) ∈E(HG) for every n> n0 and

lim
n⟶∞

dgb ϑn, ϑ∗( 􏼁 � 0, (40)

which shows that ϑn􏼈 􏼉 converges to ϑ∗. □

Theorem 24. If assumptions given in Teorem 23 are sat-
isfed and, in addition, we assume that the graph HG is
weakly connected, then the fxed point of R is unique.

Proof. By Teorem 23, we have ϑn􏼈 􏼉 is a R-PS with initial
point ϑ0 converges to ϑ

∗ ∈M. By assumption, (ϑ∗PRϑ∗)HG

or (Rϑ∗Pϑ∗)HG
and thus, we obtain

dgb ϑ∗,Rϑ∗( 􏼁≤ s dgb ϑ∗, ϑn( 􏼁 + dgb ϑn,Rϑ∗( 􏼁􏽨 􏽩

� s dgb ϑ∗, ϑn( 􏼁 + dgb Rϑn−1,Rϑ∗( 􏼁􏽨 􏽩.
(41)

By (ii), we have

dgb ϑ∗,Rϑ∗( 􏼁≤ s

dgb ϑ∗, ϑn( 􏼁 + λ1dgb ϑn−1, ϑ
∗

( 􏼁

+λ2
1 + dgb ϑn−1,Rϑn−1( 􏼁􏽨 􏽩dgbϑ

∗
,Rϑ∗􏼑

1 + dgb ϑn−1, ϑ
∗

( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� s

dgb ϑ∗, ϑn( 􏼁 + λ1dgb ϑn−1, ϑ
∗

( 􏼁

+λ2
1 + dgb ϑn−1, ϑn( 􏼁􏽨 􏽩dgbϑ

∗
,Rϑ∗

1 + dgb ϑn−1, ϑ
∗

( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(42)

Taking the limit as n⟶∞ and using the fact that
λ1 + λ2 < 1/s, we have dgb(ϑ∗,Rϑ∗) � 0.Tus, ϑ∗ � Rϑ∗ and
therefore ϑ∗ is a fxed point ofR. Now, we suppose that ϑ/ is
another fxed point of R. Assume that (ϑ∗Pϑ/)HG

, there
exists (ϑj)

r

j�0 in such a way that ϑ0 � ϑ∗ and ϑr � ϑ/ with
(ϑj, ϑj+1) ∈E(HG) for j � 1, 2, · · · , r. Now, since R is
Dass–Gupta graph contraction, so by using assumption (i)
repeatedly, we have (Rnϑj,R

nϑj+1) ∈∈E(HG) for n ∈ N.
Now, using (ii) as we did in Teorem 23, we have

dgb R
nϑj,R

nϑj+1􏼐 􏼑≤ c
n
dgb ϑj, ϑj+1􏼐 􏼑, (43)

where c ∈ [0, 1/s). Now, by using the triangle inequality, we
have

dgb R
nϑ∗,Rnϑ/􏼐 􏼑 � dgb R

nϑ0,R
nϑr( 􏼁

≤ s dgb R
nϑ0,R

nϑ1( 􏼁 + dgb R
nϑ1,R

nϑr( 􏼁􏽨 􏽩

≤ s 􏽘
r

k�1
s

k− 1
dgb R

nϑk−1,R
nϑk( 􏼁􏽨 􏽩

≤ sc
n

􏽘

r

k�1
s

k− 1
dgb ϑk−1, ϑk( 􏼁􏽨 􏽩.

(44)

Since ϑ∗, ϑ/ ∈ Fix(R), so this implies that Rnϑ∗ � ϑ∗
andRnϑ/ � ϑ/. Now, letting the limit as n⟶∞, we obtain
ϑ∗ � ϑ/. Tus, ϑ∗ is a unique fxed point. □

Remark 25. If s � 1 in Defnition 8, then the graphical
b-metric space reduced to a graphical metric space, then
following result is a direct consequence of Teorem 23.

Corollary 2 . Let (M, d) be an HG-complete graphical
metric space and let R: M⟶M. Suppose that there exist
nonnegative constants λ1, λ2 with λ1 + λ2 < 1 such that for
every ϑ1, ϑ2 ∈M with (ϑ1, ϑ2) ∈E(HG), we have

d Rϑ1,Rϑ2( 􏼁≤ λ1d ϑ1, ϑ2( 􏼁 + λ2
1 + d ϑ1,Rϑ1( 􏼁􏼂 􏼃d ϑ2,Rϑ2( 􏼁

1 + d ϑ1, ϑ2( 􏼁
,

(45)

(i) G satisfes the property (P)

(ii) Tere exists ϑ0 ∈M with Rϑ0 ∈ [ϑ0]
r
HG

for some
r ∈ N

Ten, there exists ϑ∗ ∈M such that the R-PS ϑn􏼈 􏼉 with
initial point ϑ0 ∈M isHG-TWC and ϑn⟶ ϑ∗ as n⟶∞.

Example 27. Let M � 1/3n: n ∈ N{ }∪ 0{ } be equipped with
G � HG such that V(G) � M and

E(G) � ∆∪ ϑ1, ϑ2( 􏼁 ∈M × M: ϑ1Pϑ2( 􏼁, ϑ2 ≤ ϑ1􏼈 􏼉. (46)

Defne the graphical b-metric dgb by

dgb ϑ1, ϑ2( 􏼁 �
ϑ1 − ϑ2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
, if ϑ1 ≠ ϑ2,

0, if ϑ1 � ϑ2.

⎧⎨

⎩ (47)

Clearly, (M, dgb) is a graphical b-metric space with the
coefcient s � 2. Defne R: M⟶M by

Rϑ �
ϑ
3
, (48)

for all ϑ ∈M. Tere exists ϑ0 � 1/3 such that
R(1/3) � 1/9 ∈ [1/3]1HG

, that is, ((1/3)P(1/9))HG
and the

condition (27) is satisfed for λ1 � 1/3 and λ2 � 1/12. Hence,

κ x

τ

ρ

σb

v

μ

Figure 3: Weighted graph for V/(HG), where dgb(ϑ1, ϑ2) �weight
of edge (ϑ1, ϑ2).
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R is Dass–Gupta graph contraction on M. Hence, all as-
sumptions of Teorem 23 are satisfed and 0 is the required
fxed point of mapping R.

Figure 3 exemplifes the weighted graph for V/(HG) �

κ, σ, ρ, μ, ], τ, ♭, ϰ􏼈 􏼉⊆V(HG), where the value of dgb(ϑ1, ϑ2) is
equal to the weight of edge (ϑ1, ϑ2) and κ, σ, ρ, μ, ], τ, ♭, ϰ􏼈 􏼉 �

1/3, 1/32, 1/33, 1/34, 1/􏼈 35, 1/36, 1/37, 0}.

4. Conclusion

In this article, we have introduced the notion of Dass–Gupta
graph contraction in the background of graphical b-metric
spaces and established some fxed-point theorems. We also
supplied some nontrivial examples to show the validity of
obtained results. We hope that the obtained theorems in this
article will make new relations for those people who are
employing in graphical b-metric spaces.

Te prospective work in this direction will focus on
fnding the common fxed points of self-mappings and set
valued mappings in the context of graphical b-metric spaces.
Diferential and integral inclusions can be investigated as
applications of these results.
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operators in graphical metric spaces,” Mathematics, vol. 7,
no. 5, p. 445, 2019.

[16] R. P. Agarwal, M. Meehan, and D. O’Regan, Fixed Point
Teory and Applications, Cambridge University Press,
Cambridge UK, 2001.

[17] P. Debnath, N. Konwar, and S. Radenović,Metric Fixed Point
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