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Let A be a class of some right R-modules that is closed under isomorphisms, and let M be a right R-module. Ten M is called
A-D3 if, whenever N and K are direct summands of M with M � N + K and M/K ∈ A, then N∩K is also a direct summand of
M; M is called anA-D4module, if whenever M � B⊕A where B and A are submodules of M and A ∈ A, then every epimorphism
f: B⟶ A splits. Several characterizations and properties of these classes of modules are investigated. As applications, some new
characterizations of semisimple Artinian rings, quasi-Frobenius rings, von Neumann regular rings, semiregular rings, perfect
rings, semiperfect rings, hereditary rings, semihereditary rings, and PP rings are given.

1. Introduction

A right R-module M is called direct projective [1] if for any
submodule N of M with M/N is isomorphic to a direct
summand of M, then N is a direct summand of M. In [2, 3],
direct projective modules are also called D2modules. A right
R-module M is called a D3 module [2, 3] if, whenever N and
K are direct summands of M with � N + K, N∩K is also
a direct summand of M. In [4], Ding et al. generalized the
concept of D3 modules to D4 modules. According to [4],
a right R-module M is called a D4 module, if whenever A

and B are submodules of M with M � A⊕B and f: A⟶ B

is an epimorphism, then Kerf ⊆ ⊕ A. D3 modules and D4
modules have several interesting characterizations and
properties (see [2–4]). In [3, 4], some important rings such
as semisimple Artinian rings, semiperfect rings, right perfect
rings, and semiregular rings are characterized by D3
modules and D4 modules, respectively. It is natural to ex-
tend these classes of modules.

In this paper, we shall generalize the concepts of Di
modules (i � 2, 3, 4) to A-Di modules (i � 2, 3, 4), re-
spectively, and give some interesting results on these
modules. As applications, some new characterizations of
several well-known classes of rings will be given in terms of
A-D4 modules. Te concepts of A-Di modules (i � 2, 3, 4)

are the dual concepts of A-Ci modules (i � 2, 3, 4) [5],
respectively.

Troughout R is an associative ring with identity, all
modules are unitary, unless otherwise specifed, andA is a class
of some right R-modules that is closed under isomorphisms.
For a module M, we write N ⊆ ⊕M if N is a direct summand
of M, and N≪M if N is a small submodule of M. We refer to
[6] for the undefned notions in this paper.

2.A-D2 Modules and A-D3 Modules

Recall that a right R-module M is called pseudo-projective if
for every submodule K of M, any epimorphism
φ: M⟶M/K lifted to an endomorphism of M, that is,
there exists an endomorphism s of M such that φ � πs,
where π: M⟶M/K is the canonical homomorphism. We
extend the concept of pseudo-projective modules as follows.

Defnition 1. LetA be a class of some right R-modules, and
let M and N be two right R-modules. Ten M is called
pseudo-A-N-projective if, for every submodule K of N with
N/K ∈ A, every epimorphism φ: M⟶ N/K lifted to
a homomorphism from M to N. M is called pseudo-
A-projective if it is pseudo-A-M-projective.
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Example 1

(1) Let A be the class of all right R-modules. Ten M is
pseudo-A-projective if and only if it is pseudo-
projective.

(2) Let A be the class of right R-modules that is iso-
morphic to a submodule of M. Ten M is pseudo-
A-projective if and only if it is quasi-pseudo-
principally projective [7, Defnition 1].

(3) We call a right R-module M pseudo-S-projective
(resp., pseudo-Inj-projective, pseudo-Flat-projective,
pseudo-FP-projective, pseudo-F-projective, pseudo-P-
projective, and pseudo-Soc-projective) if it is pseudo-
A-projective for the class A of all simple (resp., in-
jective, fat, fnitely presented, fnitely generated, cyclic,
and semisimple) right R-modules, and we call a right
R-module M pseudo-I-projective (resp., pseudo-FI-
projective and pseudo-PI-projective) if it is pseudo-
A-projective for the classA of all right R-modules that
is isomorphic to a right ideal (resp., a fnitely generated
right ideal and a principal right ideal) of R.

Proposition 2. LetA be a class of some right R-modules, M,
N be two right R-modules, and N′ be a factor module of N. If
M is pseudo-A-N-projective, then

(1) Every direct summand ofM is pseudo-A-N-projective.
(2) M is pseudo-A-N′-projective.

Proof

(1) Let M � M1 ⊕M2. Let π1: M⟶M1 be the the
projection and ι1: M1⟶M be the injection. Ten
for every factor module N/K ∈ A of N and every
epimorphism f of M1 to N/K, let π: N⟶ N/K be
the the canonical homomorphism. Since M is
pseudo-A-N-projective, there exists a homomor-
phism g: M⟶ N such that π1 � πg . Tus, gι1 is
a homomorphism of M1 to N and � π(gι1), and so
M1 is pseudo-A-N-projective.

(2) It is obvious.

By Proposition 2, we have immediately the following
corollary. □

Corollary 3. Let A be a class of some right R-modules. Ten
every direct summand of a pseudo-A-projective module is
pseudo-A-projective.

Now we extend the concepts of D2 modules and D3
modules as follows.

Defnition 4

(1) Let A be a class of some right R-modules that is
closed under isomorphisms, and let M be a right
R-module. Ten M is called A-D2 if, for every
submodule K ⊆ M with M/K isomorphic to a direct
summand of M and M/K ∈ A, K is a direct

summand of M; M is called A-D3 if, whenever N

and K are direct summands of M with M � N + K

and M/K ∈ A, N∩K is also a direct summand of M.
(2) A right R-module M is called S-Di (resp., Inj-Di,

Flat-Di, FP-Di, F-Di, P-Di, and Soc-Di) if it is A-Di
for the class A of all simple (resp., injective, fat,
fnitely presented, fnitely generated, cyclic, and
semisimple) right R-modules; a right R-module M is
called I-Di (resp., FI-Di and PI-Di) if it is A-Di for
the classA of all right R-modules that is isomorphic
to a right ideal (resp., a fnitely generated right ideal
and a principal right ideal of R), i� 2, 3.

Theorem 5. LetA be a class of some right R-modules that is
closed under isomorphisms, and let M be a right R-module.
Ten the following conditions are equivalent:

(1) M is an A-D2 module.
(2) If A and B are direct summand of M and A ∈ A, then

any exact sequence B⟶
f

A⟶ 0 splits.

Proof
(1)⟹ (2). Let M � B⊕B′. Ten M/(Kerf⊕B′) �

(B⊕B′)/(Kerf⊕B′) � B/Kerf � A ∈ A. Since M is
A-D2, Kerf⊕B′ is a direct summand of M. Hence,
Kerf is a direct summand of B.
(2)⟹ (1). Let K ⊆ M, M/K ∈ A, and
M/K �

σ
A ⊆ ⊕M. Ten we have an exact sequence

M⟶σ π A⟶ 0, where π: M⟶M/K is the ca-
nonical epimorphism. By (2), Ker(σπ) ⊆ ⊕M, i.e.,
K ⊆ ⊕M. Terefore, M is A-D2. □

Corollary 6. Every direct summand of an A-D2 module
is A-D2.

Proof. It follows from Teorem 5. □

Theorem 7. LetA be a class of some right R-modules that is
closed under isomorphisms, and let M be a right R-module.
Consider the following conditions:

(1) M is pseudo-A-projective.
(2) M is A-D2.
(3) M is A-D3.

Ten we always have (1)⟹ (2)⟹ (3).

Proof
(1)⟹ (2). Let MR be pseudo-A-projective with
S � End(MR). If K is a submodule of M, M/K ∈ A,
and M/K � eM, where e2 � e ∈ S, then eM is pseudo-
A-M-projective by Proposition 2 (1) and hence M/K is
also pseudo-A-M-projective, and it shows that K is
a direct summand of M. Tis proves (2).
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(2)⟹ (3). Let N and K be direct summands of M

with M � N + K and M/K ∈ A. Let M � K⊕L for
some submodule L of M. Ten
N/(N∩K) � (N + K)/K � M/K � L ∈ A, and so we

have an exact sequence N⟶
f

L⟶ 0 with
Kerf � N∩K. Since M is A-D2, by Teorem 5, we
have that N∩K ⊆ ⊕N. Tis proves (3). □

Proposition 8. LetA be a class of some right R-modules that
is closed under factor modules, and let ∈∈A. Ten M is a D2
module if and only if M is an A-D2 module and M is a D3
module if and only if M is an A-D3 module.

Proof. Te proof is obvious. □

Corollary 9

(1) If M is a fnitely generated module, then M is a D2
module if and only if it is a F-D2 module and M is
a D3 module if and only if it is a F-D3 module.

(2) If M is a cyclic module, then M is a D2 module if and
only if it is a P-D2 module and M is a D3 module if
and only if it is a P-D3 module.

Proposition 10. A direct summand of an A-D3 module is
again an A-D3 module.

Proof. Let M be an A-D3 module and N ⊆ ⊕M. We prove
that N is alsoA-D3. Let B and C be two direct summands of
N with N � B + C and N/C ∈ A. Write N � B′ ⊕C and
M � N′ ⊕N. Ten M � (N′ ⊕C)⊕B′ � (N′ ⊕C) + B, and
M/(N′ ⊕C) � (N′ ⊕N)/(N′ ⊕C) � N/C ∈ A. Since M

is A-D3, (N′ ⊕C)∩B ⊆ ⊕M. Write M � (N′ ⊕C)∩B⊕K.
Ten N � M∩N � ((N′ ⊕C)∩B⊕K)∩N � (N′ ⊕C)∩
B⊕ (K∩N) � (B∩C)⊕ (K∩N), as required. □

Theorem 11. LetA be a class of some right R-modules that is
closed under isomorphisms, and let M be a right R-module.
Consider the following conditions:

(1) M is an A-D3 module.
(2) If B ⊆ ⊕M, C ⊆ ⊕M, M/C ∈ A and M � B + C, then

there exist B1 ⊆B and C1 ⊆C such that M � B1 ⊕C

� B⊕C1.
(3) If B ⊆ ⊕M, C ⊆ ⊕M, B + C ⊆ ⊕M, and M/C ∈ A,

then B∩C ⊆ ⊕M.

Ten we always have (3)⟹ (1)⟺(2).
Moreover, if A is closed under direct summands, then

the above three conditions are equivalent.

Proof
(1)⟹ (2). Let B ⊆ ⊕M, C ⊆ ⊕M, M/C ∈ A and M �

B + C. Ten by (1), B∩C ⊆ ⊕M, and so
M � (B∩C)⊕K for a submodule K⊆M. Write
B1 � B∩K, C1 � C∩K. Ten we have B1 ⊆B, C1 ⊆C,
and M � B + C � B + ((B∩C)⊕K)∩C�B+((B∩C)⊕

(C∩K))� B⊕ (C∩K) � B⊕C1. In the same way, we
have also that M � B1 ⊕C.
(2)⟹ (1). Let B ⊆ ⊕M, C ⊆ ⊕M, M/C ∈ A and M �

B+ C. Ten by (2), we have M � B1 ⊕C � B⊕C1 for
some submodules B1 ⊆B and C1 ⊆C. Since
C � C∩M � C∩ (B⊕C1) � C1 ⊕ (B∩C), we have
M � B1 ⊕C � (B1 ⊕C1)⊕ (B∩C), as required.
(3)⟹ (1). It is clear.

Now suppose thatA is closed under direct summands, we
need to prove (1)⟹ (3). Let K � B + C. Since
B ⊆ ⊕M, C ⊆ ⊕M, we have B ⊆ ⊕K, C ⊆ ⊕K. Let M � K⊕K′.
Ten K/C⊕ (K′ + C)/C � M/C ∈ A, and so K/C ∈ A by
hypothesis. Since K ⊆ ⊕M and M isA-D3, by Proposition 10,
K is also A-D3. So, B∩C ⊆ ⊕K, and hence B∩C ⊆ ⊕M. □

Lemma 12. (see [8, Lemma 2.6 (1) (2)]). Let M � B⊕A,

X≤B, and f: X⟶ A. Ten

(1) X⊕A � 〈f〉⊕A, where 〈f〉 � x − f(x) ∣ x ∈ X􏼈 􏼉.
(2) Kerf � 〈f〉∩B.

Theorem 13. Let A be a class of right R-modules that is
closed under isomorphism. If M is an A-D3 module, M �

B⊕A for some submodules B and A, where A ∈ A, and
f: B⟶ A is an R-homomorphism. Ten

(1) If f is an epimorphism, then Kerf ⊆ ⊕B.
(2) IfA is closed under direct summands and Imf ⊆ ⊕A,

then Kerf ⊆ ⊕B.

Proof
(1) By Lemma 12 (1), M � 〈f〉⊕A � 〈f〉⊕ Imf. Let

m ∈M and write m � b + f(b′) where b, b′ ∈ B.
Ten m � b + f(b′) � (b + b′) + (−b′ − f(−b′)) ∈
B + 〈f〉. Tis shows that M � B + 〈f〉. Since M is
A-D3 and M/B � A ∈ A, B∩ 〈f〉 ⊆ ⊕M. Hence, by
Lemma 12 (2), Kerf ⊆ ⊕M, and thus Kerf ⊆ ⊕B.

(2) Let A � Imf⊕A′. Ten M � (B⊕ Imf)⊕A′, and so
by Proposition 10, B⊕ Imf is anA-D3 module. Since
A is closed under direct summands and A ∈ A,
Imf ∈ A. By (1), we have that Kerf ⊆ ⊕B. □

3. A-D4 Modules

Now we extend the concept of D4 modules as follows.

Defnition 14. LetA be a class of some right R-modules that
is closed under isomorphisms. A right R-module M is called
anA-D4 module, if, whenever M � B⊕A where B and A are
submodules of M and A ∈ A, every epimorphism
f: B⟶ A splits.

Defnition 15. A right R-module M is called S-D4 (resp., Inj-
D4, Flat-D4, FP-D4, F-D4, P-D4, and Soc-D4) if it is A-D4
for the class A of all simple (resp., injective, fat, fnitely
presented, fnitely generated, cyclic, and semisimple) right
R-modules; a right R-module M is called I-D4 (resp., FI-D4
and PI-D4) if it is A-D4 for the class A of all right
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R-modules that is isomorphic to a right ideal (resp., a fnitely
generated right ideal and a principal right ideal) of R.

By Teorem 13 (1), it is easy to see that every A-D3
module is A-D4.

Theorem 16. Let A be a class of right R-modules that is
closed under isomorphisms, and let M be a right R-module.
Ten the following conditions are equivalent:

(1) M is an A-D4 module.
(2) If M � B⊕A where B and A are submodules of M

with A ∈ A and f: B⟶ A is an epimorphism, then
Kerf ⊆ ⊕B.

(3) If B and C are submodules of M with M/B ∈ A,
M � B + C, B ⊆ ⊕M, and M/B � M/C, then B∩C is
a direct summand of M.

(4) If B and C are direct summands of M with M/B ∈ A,
M � B + C, and M/B � M/C, then B∩C is a direct
summand of M.

(5) If B and C are submodules of M with M/B ∈ A,
M � B + C, B ⊆ ⊕M, and M/B � M/C, then C is
a direct summand of M.

(6) If M � B⊕B′ � C⊕C′ � B + C � B + C′, where
B, B′, C, C′ are submodules of M, and M/B ∈ A, then
B∩C is a direct summand of M.

(7) If B and C are direct summands of M with M/B ∈ A,
M � B + C, and B � C, then B∩C is a direct sum-
mand of M.

Proof
(1)⟺(2); (3)⟹ (4). Tese are obvious.
(2)⟹ (3). Let B and C be submodules of M with
M/B ∈ A, M � B + C, B ⊆ ⊕M, and M/B � M/C.
Write M � B⊕A where A⊆M. Since
A � M/B � M/C � (B + C)/C � B/(B∩C), we have an
epimorphism f: B⟶ A with Kerf � B∩C. By (2),
B∩C � Ker f ⊆ ⊕B, and so B∩C ⊆ ⊕M.
(4)⟹ (2). Let M � B⊕A where B and A are sub-
modules of M with A ∈ A, and let f: B⟶ A be an
epimorphism. Ten M � 〈f〉⊕A � 〈f〉 + B by
Lemma 12 (1), and Kerf � 〈f〉∩B by Lemma 12 (2).
Tus, we have 〈f〉 ⊆ ⊕M, B ⊆ ⊕M, M � 〈f〉 + B and
M/B � M/ 〈f〉 � A ∈ A. By (4), 〈f〉∩B ⊆ ⊕M, and so
〈f〉∩B ⊆ ⊕B, i.e., Kerf ⊆ ⊕B.
(3)⟹ (5). Let B and C be submodules of M with
M/B ∈ A, M � B + C, B ⊆ ⊕M, and M/B � M/C. By
(3), B∩C ⊆ ⊕M. Write M � (B∩C)⊕K where K⊆M.
Ten by the modular law, B � (B∩C)⊕ (B∩K) and
C�(B∩C)⊕ (C∩K). Tus, M � B + C � [(B∩C)⊕ (B

∩K)]+[(B∩C)⊕ (C∩K)]�(B∩K) + [(B∩C)⊕ (C∩
K)]. Since B∩C∩K � 0, (B∩K)∩ [(B∩C)⊕ (C∩
K)]�0.Terefore, M� (B∩K)⊕ [(B∩C)⊕ (C∩K)] �

(B∩K)⊕C, so C is a direct summand of M.
(5)⟹ (2). Let M � B⊕A where B and A are sub-
modules of M with A ∈ A, and let f: B⟶ A be an
epimorphism. Ten B ⊆ ⊕M, M/(Kerf⊕A) �

(B⊕A)/ (Kerf⊕A) � B/Kerf � A ∈ A, and M � B +

(Kerf⊕ A). By (5), (Kerf⊕A) ⊆ ⊕M, so Kerf ⊆ ⊕M,
and thus Kerf ⊆ ⊕B.
(2)⟹ (6). We need to show that if M � B⊕B′

� C⊕C′ � B + C � B + C′, where B, B′, C, C′ are sub-
modules of M, and M/B ∈ A, then B∩C is a direct
summand of M. Let πB′ : M⟶ B′ and πC: M⟶ C

be the natural projections, and let f � (πB′πC)B: B

⟶ B′. Ten we have πB′(B + C) � πB′(B + C′), πC(B

+ C)� πC(B + C′), so πB′(C) � πB′(C′) and C � πC(B),
and hence B′ � πB′(M) � πB′(C) + πB′(C′) � πB′(C)

+ πB′(C) � πB′(C) � πB′(πC(B)). Tis shows that f is
epic. It is easy to check that Kerf � (B∩C)⊕ (B∩C′).
Note that B′ � M/B ∈ A, and by (2), Kerf ⊆ ⊕B, and
therefore B∩C ⊆ ⊕M.
(6)⟹ (2). Let M � B⊕C where B and C are sub-
modules of M with M/B ∈ A, and let f: B⟶ C be an
epimorphism. Ten M � 〈f〉⊕C � 〈f〉 + B by
Lemma 12 (1). By (6), 〈f〉∩B ⊆ ⊕M. But
Kerf � 〈f〉∩B by Lemma 12 (2), so Kerf ⊆ ⊕M, and
it shows that Kerf ⊆ ⊕B.
(2)⟹ (7). Let B and C be direct summands of M with
M/B ∈ A, M � B + C, and B�

σ
C. Write M � B⊕B′

where B′ ⊆M. Ten B′ ∈ A, and the isomorphism B′ �

M/B � (B + C)/B � C/(B∩C) induces an epi-
morphism f: C⟶ B′ with Kerf � B∩C. Ten
fσ: B⟶ B′ is an epimorphism with Ker(fσ) � σ− 1

(Kerf) � σ− 1(B∩C). Set X � σ− 1(B∩C). Ten
σ(X) � B∩C, and by (2), X ⊆ ⊕B. So, B � X⊕Y for
some submodule Y of B. Now C � σ(B) � σ(X⊕Y) �

σ(X)⊕ σ(Y) � (B∩C)⊕ σ(Y). Note that C is a direct
summand of M, and we have that B∩C is a direct
summand of M.
(7)⟹ (2). Let M � B⊕A where B and A are sub-
modules of M with A ∈ A, and let f: B⟶ A be an
epimorphism. Ten M � 〈f〉⊕A � 〈f〉 + B by
Lemma 12 (1), and Kerf � 〈f〉∩B by Lemma 12 (2).
Since 〈f〉 ⊆ ⊕M, M � B + 〈f〉, B � M/A � 〈f〉, and
M/B � A ∈ A, by (7), 〈f〉∩B ⊆ ⊕M, so 〈f〉∩B ⊆ ⊕B,
i.e., Kerf ⊆ ⊕B. □

Theorem 17. Let A be a class of right R-modules that is
closed under isomorphism and direct summands, and let M

be a right R-module. Ten the following conditions are
equivalent:

(1) M is an A-D4 module.
(2) If M � B⊕A for some submodules B and A where

A ∈ A and f: B⟶ A is an R-homomorphism such
that Imf ⊆ ⊕A, then Kerf ⊆ ⊕B.

Proof
(1)⟹ (2). Let M � B⊕A where B and A are sub-
modules of M with A ∈ A, and let f: B⟶ A be an
R-homomorphism with Imf ⊆ ⊕A. We need to show
that Kerf ⊆ ⊕B. Write A � A1 ⊕ Imf where A1 ⊆A.
Ten by hypothesis, M � B⊕A � (B⊕A1)⊕ Imf and
Imf ∈ A. Let π: B⊕A1⟶ B be the natural projection,
and then fπ: B⊕A1⟶ Imf is an epimorphism with
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Ker(fπ) � Kerf⊕A1. Since M is an A-D4 module, by
Teorem 16 (2). Kerf⊕A1 ⊆ ⊕B⊕A1, so Kerf ⊆ ⊕M,
and hence Kerf ⊆ ⊕B, as required.
(2)⟹ (1). It follows from Teorem 17 (2). □

Corollary 18. If A is closed under isomorphisms and direct
summands, M is an A-D4 module, and M ∈ A, then M is
a D4 module.

Proof. It follows from Teorem 17. □

Corollary 19. Every cyclic (resp., fnitely generated, fnitely
presented, semisimple, injective, and fat) P-D4 (resp., F-D4,
FP-D4, Soc-D4, Inj-D4, and Flat-D4) module is a D4 module.

Recall that a right R-module M is called simple-direct-
projective [9, Proposition 2.1 (2), Defnition 2.2] if M �

M1 ⊕M2 with M2 simple, and f: M1⟶M2 is an R-ho-
momorphism, then Kerf ⊆ ⊕M1.

Example 2. ByTeorem 16 (2), a module M is simple-direct-
projective if and only if it is S-D4. By [9, Corollary 2.8 (2)] and
Teorem 5, a module M is simple-direct-projective if and only
if it is S-D2. So, in the case of A being the class of all simple
right R-modules, A-Di modules are the same for i � 2, 3, 4.

Proposition 20

(1) A direct summand of an A-D4 module is again an
A-D4 module.

(2) If M⊕M is an A-D4 module, then M is an A-D2
module.

(3) Let M � B⊕A be an A-D4 module, A ∈ A. If there
exists an epimorphism f: B⟶ A, then A is an
A-D2 module.

Proof

(1) LetM be anA-D4module,K ⊆ ⊕M, andM � K⊕N.
Suppose K � B⊕A, A ∈ A and f: B⟶ A is an
epimorphism. Ten M � (B⊕N)⊕A, A ∈ A, and
fπ: B⊕N⟶ A is an epimorphism with
Ker(fπ) � Kerf⊕N, where π: B⊕N⟶ B is the
natural projection. Since M is an A-D4 module,
Ker(fπ) ⊆ ⊕B⊕N, i.e., (Kerf⊕N) ⊆ ⊕B⊕N. Write
B⊕N � (Kerf⊕N)⊕L. Ten M � (B⊕N)⊕A �

Kerf⊕ (N⊕ L⊕A) and so Kerf ⊆ ⊕B by themodular
law. Tis follows that K is an A-D4 module.

(2) Suppose that M⊕M is anA-D4 module. Let A ∈ A,
A, B ⊆ ⊕M, and B⟶

f
A⟶ 0 be exact. We need to

prove that f splits. Since A, B ⊆ ⊕M, (B⊕A) ⊆ ⊕
M⊕M. But M⊕M is an A-D4 module, and by (1),
B⊕A is also A-D4, and so f splits, as required.

(3) Since M is an A-D4 module and f: B⟶ A is an
epimorphism, Kerf ⊆ ⊕B. Write B � Kerf⊕C.Ten
C � A. So A⊕A � C⊕A ⊆ ⊕M. By (1), A⊕A is an
A-D4 module. So, by (2), A is anA-D2 module. □

Theorem 21. Te following statements are equivalent for
a ring R:

(1) Every A ∈ A is projective.
(2) Every right R-module is an A-D4 module.
(3) Every A ∈ A is an A-D4 module, and every direct

sum of two A-D4 modules is an A-D4 module.
Moreover, if every A ∈ A is n-generated, then the
above conditions are equivalent to

(4) Every 2n-generated right R-module is an A-D4
module.

Proof
(1)⟹ (2)⟹ (3) and (2)⟹ (4) are clear.
(3)⟹ (1). Let A ∈ A. Ten there exists an epi-
morphism f: P⟶ A, where P is projective. By hy-
pothesis, P⊕A is an A-D4 module, so f is split, and
hence A is projective.
(4)⟹ (1). It is similar to the proof of (3)⟹ (1).

Recall that that a ring R is semisimple Artinian if and
only if every simple module is projective, a ring R is
a quasi-Frobenius ring if and only if every injective right
R-module is projective, a ring R is right perfect if and only
if every fat right R-module is projective, a ring R is von
Neumann regular if and only if every fnitely presented
right R-module is projective, a ring R is right hereditary if
every right ideal I of R is projective, a ring R is right
semihereditary if every fnitely generated right ideal I of R

is projective, a ring R is called right PP if every principal
right ideal I of R is projective. Based on these facts, by
Teorem 21 and Corollary 18, we have the following
corollaries. □

Corollary 22

(1) A ring R is a semisimple Artinian ring if and only if
every 2-generated right R-module is a simple-direct-
projective module if and only if every direct sum of two
simple-direct-projective modules is a simple-direct-
projective module.

(2) A ring R is a quasi-Frobenius ring if and only if every
right R-module is an Inj-D4 module if and only if
every injective right R-module is a D4 module and
every direct sum of two Inj-D4 modules is an Inj-D4
module.

(3) A ring R is a right perfect ring if and only if every right
R-module is an Flat-D4 module if and only if every
fat right R-module is a D4 module and every direct
sum of two Flat-D4 modules is a Flat-D4 module.

(4) A ring R is a von Neumann regular ring if and only if
every right R-module is an FP-D4 module if and only
if every fnitely presented right R-module is a D4
module and every direct sum of two FP-D4 modules is
a FP-D4 module.

(5) A ring R is a right hereditary ring if and only if every
right R-module is an I-D4 module if and only if every
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right ideal is a D4 module and every direct sum of two
I-D4 modules is an I-D4 module.

(6) A ring R is a right semihereditary ring if and only if
every right R-module is an FI-D4 module if and only if
every fnitely generated right ideal is a D4 module and
every direct sum of two FI-D4 modules is an FI-D4
module.

(7) A ring R is a right PP ring if and only if every right
R-module is a PI-D4 module if and only if every
principal right ideal is a D4 module and every direct
sum of two PI-D4 modules is an PI-D4 module.

Defnition 23. An R-epimorphism φ: P⟶M is called an
A-D4 cover of the right R-module M, if P is an A-D4
module, and Kerφ≪P. If A is the class of all cyclic (resp.,
fnitely generated) right R-modules, then an A-D4 cover is
called a P-D4 cover (resp., F-D4 cover).

Theorem 2 . Te following statements are equivalent for
a ring R:

(1) R is semiperfect.
(2) Every fnitely generated right R-module has

a D4 cover.
(3) Every fnitely generated right R-module has a P-

D4 cover.
(4) Every 2-generated right R-module has a D4 cover.
(5) Every 2-generated right R-module has a P-D4 cover.

Proof
(1)⟹ (2)⟹ (3)⟹ (5) and (1)⟹ (4)⟹ (5)

are clear.
(5)⟹ (1). We need only to show that every cyclic
right R-module M has a projective cover. Let
g: R⟶M be a epimorphism, f: P⟶ R⊕M be
a P-D4 cover of R⊕M, and π1: R⊕M⟶ R be the
natural projection. Ten π1f: P⟶ R is epic. Since R

is projective, there exists a homomorphism λ: R⟶ P

such that (π1f)λ � 1R, and so P � Imλ⊕K, where
K � Ker(π1f). Let π2: R⊕M⟶M be the natural
projection and h � π2f | K: K⟶M. Ten for any
m ∈M, there is p � λ(r) + k,where r ∈ R and k ∈ K,
such that (0, m) � f(p) � fλ(r) + f(k), so
0 � π1(0, m) � π1fλ(r) + π1f(k) � r + 0 � r, and this
follows that (0, m) � f(p) � f(k) and hence
m � π2f(k) � h(k). Tus, h is epic. Moreover, it is easy
to see that Kerh � K∩Kerf. Next we show that
Kerh≪K. To see this, let X + Kerh � K for some
submodule X ⊆ K. We need to show that X � K. Since
P� Imλ⊕K�

(Imλ⊕X) + Kerh⊆ (Imλ⊕X) + Kerf⊆P, we have
that P � (Imλ⊕X) + Kerf. But Kerf≪P, we infer
that P � Imλ⊕X, and then X � K. Now, we show that
K is projective. Since h: K⟶M is an epimorphism

and g: R⟶M is a homomorphism, by the projec-
tivity of R, there exists a homomorphism φ: R⟶ K

such that g � hφ. It is easy to check that
K � Imφ + Kerh, so K � Imφ is cyclic and φ is epic.
Note that R⊕K � Imλ⊕K � P is P-D4, φ is split, and
so K is projective. Tus, h: K⟶M is a projective
cover of M. Terefore, R is semiperfect.

Recall that a ring R is called semiregular [1] if, for any
a ∈ R, there exists e2 � e ∈ aR such that (1 − e)a ∈ J(R). By
[1, Teorem 2.9], a ring R is semiregular if and only if every
fnitely presented right R-module has a projective cover. □

Theorem 25. Te following statements are equivalent for
a ring R:

(1) R is semiregular.
(2) Every fnitely presented right R-module has an F-

D4 cover.

Proof
(1)⟹ (2). It is clear.
(2)⟹ (1). We need only to show that every fnitely
presented right R-module M has a projective cover. Let
g: F⟶M be an epimorphism with F a fnitely
generated free right R-module. Ten F⊕M is again
fnitely presented. If f: P⟶ F⊕M is an F-D4 cover
of F⊕M and K � Ker(π1f) where π1: F⊕M⟶ F is
the natural projection, then we can use an argument
that similar to the proof of Teorem 24 to show that
π2f | K: K⟶M is a projective cover of M, where
π2: F⊕M⟶M is the natural projection. Terefore,
R is semiregular. □

Example 3. Let R be a von Neumann regular ring but not
a semisimple Artinian ring, and let
A � A: A � R/Ra for some a ∈ R{ }.Ten byTeorem 21, an
A-D4 module need not be a D4 module. Moreover, by
Corollary 22, we can obtain a series ofA-D4 modules which
are not D4 modules for some diferent classes of modulesA.

Question 26. Is there an A-D4 module which is not an
A-D3 module?
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