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Selecting the most suitable activation function is a critical factor in the efectiveness of deep learning models, as it infuences their
learning capacity, stability, and computational efciency. In recent years, the Gaussian error linear unit (GELU) activation
function has emerged as a dominant method, surpassing traditional functions such as the rectifed linear unit (ReLU) in various
applications. Tis study presents a rigorous mathematical investigation of the GELU activation function, exploring its difer-
entiability, boundedness, stationarity, and smoothness properties in detail. In addition, we conduct an extensive experimental
comparison of the GELU function against a broad range of alternative activation functions, utilizing a residual convolutional
network trained on the CIFAR-10, CIFAR-100, and STL-10 datasets as the empirical testbed. Our results demonstrate the superior
performance of GELU compared to other activation functions, establishing its suitability for a wide range of deep learning
applications.Tis comprehensive study contributes to a more profound understanding of the underlying mathematical properties
of GELU and provides valuable insights for practitioners aiming to select activation functions that optimally align with their
specifc objectives and constraints in deep learning.

1. Introduction

Deep learning has gained signifcant attention in recent years
[1–5], leading to substantial progress in various felds such as
computer vision [6–8], healthcare [9–11], and fnance
[12, 13]. However, the efectiveness and robustness of deep
learning models are highly dependent on the choice of an
appropriate activation function. Te activation function
plays a crucial role in introducing nonlinearities to the
neural network, allowing it to capture complex patterns and
relationships in the input data. Consequently, the selection
of an activation function that aligns optimally with the
specifc task and data characteristics is a crucial consider-
ation for practitioners.

Although several activation functions have been pro-
posed in the literature [14, 15], each possessing unique
properties and advantages, the rectifed linear unit (ReLU)
has emerged as the most widely used activation function due
to its simplicity, efciency, and efectiveness in various
applications. However, recent studies have shown that the

ReLU function may sufer from the dying ReLU problem
[16], where a large fraction of the neurons can become
inactive and unresponsive, hindering the learning process.
Terefore, researchers have proposed and investigated al-
ternative activation functions that address this limitation
and ofer improved performance.

Amidst the plethora of activation functions that have
been proposed, certain variants have attained widespread
popularity due to their compelling theoretical properties and
empirical success. Te Gaussian error linear unit (GELU)
activation function [17] is one such instance that has rapidly
gained traction as a popular choice for a broad spectrum of
deep learning applications. Te burgeoning interest in
GELU can be attributed to its desirable attributes, including
its smoothness, diferentiability, and ability to approximate
the widely used ReLU function. Te GELU activation
function has been successfully integrated into several state-
of-the-art neural network architectures, such as BERT [18],
ViT [19], and GPT [20], demonstrating its versatility and
efectiveness.

Hindawi
Journal of Mathematics
Volume 2023, Article ID 4229924, 13 pages
https://doi.org/10.1155/2023/4229924

https://orcid.org/0000-0003-2562-172X
mailto:mlee@cau.ac.kr
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/4229924


Despite the widespread adoption of GELU activation
and normalization methods in deep learning, a compre-
hensive mathematical understanding of their combined
efects on the training dynamics of deep neural networks
remains an area of open investigation. In this paper, we
address this gap by providing a rigorous mathematical
analysis of the properties of GELU activation and nor-
malization methods in deep learning, with a focus on their
impact on the optimization process and generalization
performance of deep neural networks.

In this research endeavor, we aim to unravel the intricate
interactions between GELU activation and normalization
techniques, investigating their impact on the optimization
landscape of deep neural networks. To achieve this goal, we
undertake a rigorous mathematical analysis of their com-
bined efects, drawing on advanced mathematical formu-
lations to elucidate their infuence on the convergence and
generalization performance of neural network models.
Trough this endeavor, we hope to ofer valuable insights
that empower practitioners to make informed decisions
when selecting activation functions, ultimately driving more
efcient and efective deep learning models.

Our analysis delves into the nuances of GELU activation’s
mathematical properties, including its diferentiability,
boundedness, stationarity, and smoothness. In addition, we
undertake a comprehensive empirical comparison of the
GELU function against a diverse array of alternative activation
functions, employing a residual convolutional network and the
CIFAR-10, CIFAR-100, and STL-10 datasets as our testbed. By
evaluating the efcacy of each function on this benchmark
dataset, we gain a deeper understanding of their relative
strengths and weaknesses, thereby informing our insights into
the broader implications of activation function selection.

2. Background

2.1. Deep Learning Models. Tis section presents a formal
mathematical description of deep learning, focusing on the
key components and operations involved in training deep
neural networks. We use precise notations and rigorous
mathematical expressions to represent the neural network
architecture, activation functions, and learning mechanisms.

2.1.1. Neural Network Architecture. A deep neural network
can be modeled as a composition of functions, representing
a sequence of interconnected layers. Let L denote the total
number of layers in the network, with L1, L2, . . . , LL rep-
resenting the individual layers. Each layer Li consists of ni

neurons, where i ∈ 1, . . . ,L. Te weights and biases asso-
ciated with layer Li are denoted by Wi ∈ Rni×ni− 1 and bi ∈ Rni ,
respectively.

Given an input vector x ∈ Rn0 , the output of the network
can be represented as a composition of functions:

f(x) � fL fL− 1 . . . f2 f1(x)( 􏼁 . . .( 􏼁( 􏼁, (1)

wherefi: R
ni− 1⟶ Rni denotes the transformation function

associated with layer Li. Te transformation function fi can
be expressed as follows:

fi(z) � ϕi Wiz + bi( 􏼁, (2)

where ϕi: R
ni⟶ Rni denotes the activation function at

layer Li and z ∈ Rni− 1 represents the input to layer Li.
In essence, these equations capture how the input is

transformed across the layers of a deep neural network. Tis
is achieved by frst transforming the input with a linear
function and then applying a nonlinear activation function
to obtain the output of the layer. Te composition of these
functions across multiple layers results in a complex map-
ping that enables the network to learn intricate data
representations.

2.1.2. Activation Functions. Activation functions are pivotal
in instilling nonlinearities into the network, thereby facili-
tating the learning of intricate patterns. Common activation
functions encompass the ReLU, hyperbolic tangent (tanh),
and GELU. It is important to note that the GELU function
defned below is an approximation, given by the following
equation:

ReLU(x) � max(0, x),

tanh(x) �
e

x
− e

− x

e
x

+ e
− x ,

GELU(x) � 0.5x 1 + tanh
��
2
π

􏽲

x + 0.044715x
3

􏼐 􏼑􏼠 􏼡􏼠 􏼡.

(3)

Nonlinearity enables neural networks to learn complex,
hierarchical representations from the input data, enabling
the network to model more sophisticated relationships
between the input and output. Without nonlinearity, neural
networks would simply be limited to linear transformations,
severely constraining their modeling capabilities.

Te introduction of nonlinearity in neural networks has
enabled signifcant progress in a wide range of applications,
including computer vision, natural language processing, and
speech recognition. Te ability to learn nonlinear re-
lationships has allowed deep neural networks to achieve
state-of-the-art performance on complex tasks such as image
classifcation, object detection, and language translation.

However, nonlinearity can also introduce challenges in
the training of deep neural networks, such as the vanishing
gradient problem and the exploding gradient problem.
Nonlinear activation functions can lead to the amplifcation
or attenuation of gradients during backpropagation, making
it difcult to update the weights and biases of the neural
network. Consequently, a careful selection of activation
functions is critical to ensure stable and efcient training of
deep neural networks.

2.1.3. Loss Function and Optimization. To optimize the
neural network, a loss function L(y, 􏽢y) that measures the
discrepancy between the predicted output 􏽢y � f(x) and the
true output y is required. Te choice of loss function is
dependent on the task at hand. For regression tasks,
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common loss functions include the mean squared error
(MSE), mean absolute error (MAE), and Huber loss:

MSE(y, 􏽢y) �
1
n

􏽘

n

i�1
yi − 􏽢yi( 􏼁

2
,

MAE(y, 􏽢y) �
1
n

􏽘

n

i�1
yi − 􏽢yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

Huber(y, 􏽢y) �
1
n

􏽘

n

i�1

1
2

yi − 􏽢yi( 􏼁
2
, if yi − 􏽢yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ δ,

δ yi − 􏽢yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 −

1
2
δ􏼒 􏼓, otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

where yi is the true output for the i-th sample and 􏽢yi is the
predicted output.

For classifcation tasks, the cross-entropy loss is com-
monly used. Other loss functions include the hinge loss for
support vector machines (SVMs) and the triplet loss for
metric learning:

CrossEntropy(y, 􏽢y) � − 􏽘
n

i�1
yilog 􏽢yi( 􏼁,

Hinge(y, 􏽢y) � max(0, 1 − y􏽢y),

Triplet(a, p, n) � max(0, d(a, p) − d(a, n) + α),

(5)

where yi is the true class label for the i-th sample, 􏽢yi is the
predicted probability of the i-th sample belonging to the true
class, a, p, and n represent the anchor, positive, and negative
samples, respectively, and d denotes the distance metric used
for embedding the samples.

Te choice of the loss function is a critical factor in deep
learning, as it acts as the objective function that the optimizer
endeavors tominimize during the training process.Te selection
of an appropriate loss function depends on various factors such
as the problem’s nature, the output type, and the performance
metric of interest.Te optimization process strives to reduce the
loss function by modifying the neural network parameters via
optimization algorithms such as SGD and Adam.

It is crucial to choose a suitable loss function that is
tailored to the problem, as selecting an unsuitable one can
negatively impact the neural network’s learning dynamics.
Inefective loss functions can lead to inadequate conver-
gence, underftting, or overftting. On the other hand,
selecting an appropriate loss function can expedite con-
vergence rates, enhance generalization performance, and
mitigate the risk of overftting.

Researchers have proposed various modifcations and
extensions of the standard loss functions to address specifc
scenarios [21]. For instance, focal loss [22] bestows higher
weights to hard-to-classify instances and has shown to be
efective in imbalanced classifcation problems. On the other
hand, adversarial loss [23] seeks to enhance the neural
network’s resilience to adversarial attacks and has been
employed in security-critical applications such as image and

text classifcation. Te selection of an appropriate loss
function hinges on the problem’s characteristics and the task
objectives. To ensure the neural network’s optimal perfor-
mance, it is crucial to carefully evaluate and consider dif-
ferent loss functions.

To minimize the loss function, we utilize optimization
algorithms [24] that update the weights and biases of the
network iteratively. Te most common optimization algo-
rithm is gradient descent, which updates the parameters θ �

Wi, bi􏼈 􏼉
L
i�1 by following the negative gradient of the loss

function with respect to the parameters:

θ⟵ θ − η∇θL(y, 􏽢y), (6)

where η> 0 is the learning rate and∇θL(y, 􏽢y) represents the
gradient of the loss function with respect to the parameters.

Te gradient of the loss function can be computed using
the backpropagation algorithm, which applies the chain rule of
calculus to compute the gradients in a layer-wise manner,
starting from the output layer and propagating backward
through the network.Te gradients with respect to the weights
and biases of layer Li are given by the following equation:

zL(y, 􏽢y)

zWi

� δiz
⊤
i− 1,

zL(y, 􏽢y)

zbi

� δi,

(7)

where δi ∈ Rni denotes the error at layer Li and zi− 1 ∈ Rni− 1

represents the input to layer Li. Te error term δi can be
computed recursively using the error term of the subsequent
layer δi+1:

δi � δi+1Wi+1( 􏼁⊙ϕi
′ zi( 􏼁, (8)

where ⊙ denotes the element-wise product and ϕi
′(zi)

represents the element-wise derivative of the activation
function at layer Li with respect to its input zi.

Te Adam optimizer [25] is a sophisticated and widely
used optimization algorithm in deep learning that combines
the advantages of adaptive learning rates with the momentum
method. It has been demonstrated to be efective in training
deep neural networks due to its ability to adapt the learning
rate for each parameter individually, leading to faster con-
vergence and improved generalization performance.

Te Adam optimizer operates by maintaining an ex-
ponential moving average of the frst and second moments
of the gradients. Let gt denote the gradient of the loss
function L(y, 􏽢y) with respect to the parameters θ at iter-
ation t. Te frst moment, mt and the second moment, vt, are
updated as follows:

mt � β1mt− 1 + 1 − β1( 􏼁gt,

vt � β2vt− 1 + 1 − β2( 􏼁g
2
t ,

(9)

where β1 and β2 are the exponential decay rates for the frst
and second moments, respectively, and g2

t denotes the
element-wise square of the gradient. Typically, the values of
β1 and β2 are set to 0.9 and 0.999, respectively.
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Te frst and second moments are initialized to zero,
which can result in biased estimates during the initial it-
erations. To mitigate this, Adam employs bias correction to
obtain unbiased estimates of the frst and second moments,
denoted as 􏽢mt and 􏽢vt:

􏽢mt �
mt

1 − βt
1

,

􏽢vt �
vt

1 − βt
2

,

(10)

where t represents the current iteration.
With the unbiased estimates of the frst and second

moments, the Adam optimizer updates the parameters θ as
follows:

θ⟵ θ − η
􏽢mt��

􏽢vt

􏽰
+ ϵ

, (11)

where η is the learning rate and ϵ is a small constant added to
prevent division by zero, typically set to 10− 8.

2.2. GELU Activation Function. Te GELU activation
function, introduced by [17], is a smooth and diferentiable
approximation of the rectifer function. It has gained pop-
ularity in deep learning due to its desirable properties, such
as nonlinearity, diferentiability, and smoothness. As a re-
sult, GELU has been employed in various state-of-the-art
architectures [26–29], including BERT [18], ViT [19], and
GPT [20].

2.2.1. Motivation. Te impetus for the development of the
GELU activation function is to ofer a smooth and difer-
entiable alternative to the widely used ReLU activation
function, without compromising its inherent benefts. Te
ReLU function, denoted as ReLU(x) � max(0, x), imparts
nonlinearities to the network; however, it is non-
diferentiable at x � 0. Tis nondiferentiability can result in
complications during gradient-based optimization, such as
dead neurons or erratic training dynamics.

In order to mitigate these concerns, the GELU activation
function is devised as a smooth approximation to the ReLU
function, ensuring diferentiability at every point while
preserving the requisite nonlinear properties for deep
learning applications. Te GELU function draws inspiration
from the Gaussian cumulative distribution function (CDF),
which is characterized by its inherent smoothness and
diferentiability properties.

2.2.2. Derivation of the GELU Function. Te GELU acti-
vation function is primarily derived from the Gaussian CDF,
which can be defned as follows:

Φ(x) �
1
���
2π

√ 􏽚
x

− ∞
e

− t2/2dt, (12)

where Φ(x) signifes the likelihood of a random variable
with a standard normal distribution taking a value less than

or equal to x. Te GELU function can be expressed as
a product of the input x and the Gaussian CDF:

GELU(x) � x ·Φ(αx), (13)

where α> 0 acts as a scaling factor, modulating the
smoothness of the GELU function. Typically, α � 1.

To further simplify the GELU function and enhance
computational efciency, an approximation of the Gaussian
CDF is commonly used in practice:

Φ(αx) ≈
1
2

1 + tanh β(αx + c(αx)
3
􏼑􏼐 􏼑􏼐 􏼑, (14)

where β> 0 and c ∈ R are constants, selected to minimize
approximation error. Substituting this approximation into
the GELU function, we arrive at the fnal approximate form
of the GELU activation function (Figure 1):

GELU(x) � 0.5x 1 + tanh
��
2
π

􏽲

x + 0.044715x
3

􏼐 􏼑􏼠 􏼡􏼠 􏼡.

(15)

Tis version of the GELU function is smooth, difer-
entiable, and computationally efcient, rendering it suitable
for deployment in deep learning architectures.

2.3. NormalizationMethods. Normalization methods aim to
mitigate the internal covariate shift in deep neural networks
by normalizing the inputs at each layer. Tese methods
result in more stable training dynamics and allow for faster
convergence by reducing the dependence of gradients on the
input distribution. Normalization methods have become an
essential component of modern deep learning architectures,
as they enable training deeper networks with larger
learning rates.

2.3.1. Batch Normalization. Batch normalization (BN) [30]
is a widely used normalization technique that reduces in-
ternal covariate shift by normalizing activations across
a minibatch during training. Given a minibatch
B � x1, x2, . . . , xm of m input activations at a particular
layer, BN computes the mean μB and variance σ2B of the
minibatch as follows:

μB �
1
m

􏽘

m

i�1
xi,

σ2B �
1
m

􏽘

m

i�1
xi − μB( 􏼁

2
.

(16)

Te input activations are then normalized using the
computed mean and variance:

􏽢xi �
xi − μB

������

σ2B + ϵ
􏽱 , (17)

where ϵ> 0 is a small constant added for numerical stability.
Finally, BN applies a learned afne transformation to the
normalized activations:
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yi � c􏽢xi + β, (18)

where c and β are learnable parameters of the same shape as
the input activations, allowing the model to learn the ap-
propriate scale and shift for the normalized activations.

2.3.2. Layer Normalization. Layer normalization (LN) [31] is
another normalization technique that addresses some of the
limitations of BN, such as the dependence on minibatch size
and reduced performance in recurrent networks. Unlike BN,
which normalizes activations across a minibatch, LN nor-
malizes activations across the feature dimension at each layer.

Given an input activation x ∈ Rd at a particular layer, LN
computes the mean μx and variance σ2x of the input acti-
vation as follows:

μx �
1
d

􏽘

d

i�1
xi,

σ2x �
1
d

􏽘

d

i�1
xi − μx( 􏼁

2
.

(19)

Similar to BN, LN normalizes the input activations using
the computedmean and variance and applies a learned afne
transformation:

􏽢xi �
xi − μx�����

σ2x + ϵ
􏽱 ,

yi � c􏽢xi + β,

(20)

where ϵ> 0 is a small constant added for numerical stability,
and c and β are learnable parameters of the same shape as the
input activations.

2.3.3. Group Normalization. Group normalization (GN)
[32] is a normalization technique that generalizes BN and
LN by dividing the feature channels into groups and nor-
malizing within each group. GN addresses some of the
limitations of BN and LN, such as reduced performance in
small minibatches and the need to choose between nor-
malizing across the batch or feature dimensions.

Given an input activation x ∈ RC×H×W, where C is the
number of channels and H and W are the spatial di-
mensions, GN divides the channels into G groups, with each
group containing C/G channels. For each group
g ∈ 1, . . . , G, GN computes the mean μg and variance σ2g of
the input activations within the group as follows:

μg �
1

C/G · H · W
􏽘

C/G

i�1
􏽘

H

j�1
􏽘

W

k�1
xg,i,j,k,

σ2g �
1

C/G · H · W
􏽘

C/G

i�1
􏽘

H

j�1
􏽘

W

k�1
xg,i,j,k − μg􏼐 􏼑

2
,

(21)

where xg,i,j,k denotes the activation value of the i-th channel
in the g-th group at spatial location (j, k).

GN then normalizes the input activations within each
group using the computed mean and variance and applies
a learned afne transformation:

􏽢xg,i,j,k �
xg,i,j,k − μg

�����
σ2g + ϵ

􏽱 ,

yg,i,j,k � cg􏽢xg,i,j,k + βg,

(22)

where ϵ> 0 is a small constant added for numerical stability
and cg and βg are learnable parameters of the same shape as
the input activations within the group.

3. Comprehensive Mathematical Analysis

We delve into a thorough mathematical examination of the
GELU activation function and normalization methods,
concentrating on their diferentiability, boundness, statio-
narity, and smoothness properties.

3.1. Diferentiability. Here, we ofer a mathematical ex-
ploration of the diferentiability of the GELU activation
function. Te diferentiability of an activation function
holds paramount importance for gradient-based opti-
mization algorithms, as it guarantees the existence and
computability of the gradients essential for
backpropagation.

3.1.1. Derivative of the GELU Function. Now, we determine
the derivative of the GELU activation function con-
cerning its input x. Te diferentiability of the GELU
function plays a crucial role in gradient-based optimi-
zation algorithms, as it ensures the existence and com-
putability of the gradients necessary for
backpropagation.

As shown in the previous sections, the GELU function
can be represented in terms of the Gaussian CDF as given in
equation (13). To compute the derivative of the GELU
function with respect to its input x, we apply the chain rule
of calculus:

1 2

−1

1

2

3

x

−2 −1

GELU (x)

Figure 1: Te GELU function defned in equation (15).
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dGELU(x)

dx
�

d(x ·Φ(αx))

dx
� x ·

dΦ(αx)

dx
+Φ(αx).

(23)

Now, we need to compute the derivative of the Gaussian
CDF with respect to its argument, dΦ(αx)/dx. SinceΦ(x) is
the integral of the Gaussian probability density function
(PDF), we can diferentiate the Gaussian CDF to obtain the
Gaussian PDF scaled by the factor α:

dΦ(αx)

dx
�

α
���
2π

√ e
− (αx)2/2

. (24)

Substituting this result back into the expression for the
derivative of the GELU function, we obtain the following
eqaution:

dGELU(x)

dx
�

αx
���
2π

√ e
− (αx)2/2

+Φ(αx). (25)

As we utilize an approximation of the Gaussian CDF in
equation (15), this approximation enables us to compute an
approximate derivative of the GELU function. By employing
the chain rule and the product rule, we can calculate the
derivative of the GELU function with respect to x in the
following manner:

dGELU(x)

dx
� 0.5 1 + tanh

��
2
π

􏽲

x + 0.044715x
3

􏼐 􏼑􏼠 􏼡􏼠 􏼡

+ 0.5x ·
d tanh

���
2/π

√
x + 0.044715x

3
􏼐 􏼑􏼐 􏼑

dx

� 0.5 1 + tanh
��
2
π

􏽲

x + 0.044715x
3

􏼐 􏼑􏼠 􏼡􏼠 􏼡

+ 0.5x · sech2
��
2
π

􏽲

x + 0.044715x
3

􏼐 􏼑􏼠 􏼡

·
d

���
2/π

√
x + 0.044715x

3
􏼐 􏼑􏼐 􏼑

dx
.

(26)

Now, we compute the derivative of���
2/π

√
(x + 0.044715x3) with respect to x:

d
���
2/π

√
x + 0.044715x

3
􏼐 􏼑􏼐 􏼑

dx
�

��
2
π

􏽲

1 + 3 · 0.044715x
2

􏼐 􏼑.

(27)

Substituting this expression back into the derivative of
the GELU function, we obtain

dGELU(x)

dx
� 0.5 1 + tanh

��
2
π

􏽲

x + 0.044715x
3

􏼐 􏼑􏼠 􏼡􏼠 􏼡

+ 0.5x · sech2
��
2
π

􏽲

x + 0.044715x
3

􏼐 􏼑􏼠 􏼡

·

��
2
π

􏽲

1 + 3 · 0.044715x
2

􏼐 􏼑.

(28)

Figure 2 shows the GELU function and its derivative
with respect to x. As can be seen, the GELU function is
diferentiable at all points in its domain, ensuring the ex-
istence and computability of the gradients required for
gradient-based optimization. Also, note that derivatives can
be negative in some points. In deep learning, the optimi-
zation process seeks to minimize the loss function L(y, 􏽢y)

by updating the parameters of the model θ. Tis is carried
out by iteratively adjusting the parameters in the negative
direction of the gradient, as shown in equation (6). Now, let
us analyze the implications of negative derivative values in
the context of deep learning training. If we denote fl as the
output of the l-th layer before the activation, then the output
after applying GELU activation is gl � GELU(fl). During
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backpropagation, we calculate the gradient of the loss
function with respect to the output of each layer:

δl �
zL(y, 􏽢y)

zgl

. (29)

Using the chain rule, we can calculate the gradient of the
loss function with respect to the input of the activation
function:

zL(y, 􏽢y)

zfl

� δl

dGELU fl( 􏼁

dfl

. (30)

Negative derivative values of the GELU activation
function indicate that the gradient of the activation function
is negative, i.e., dGELU(fl)/dfl < 0. Tis implies that
a small positive increment in fl would lead to a decrease in
the value of gl. In this case, the gradient update for the
parameters would be:

θ⟵ θ − ηδl

zfl

zθ
dGELU fl( 􏼁

dfl

. (31)

Since dGELU(fl)/dfl < 0, the update step becomes:

θ⟵ θ + ηδl

zfl

zθ
−

dGELU fl( 􏼁

dfl

􏼠 􏼡. (32)

Tis implies that the model parameters will be updated
in the direction opposite to the gradient of fl concerning θ.
Tis update will have the efect of augmenting the value of
the loss function, as θ will be modifed to attain a higher
value of the loss function. Notably, the negative derivative
values of the GELU activation function are minimal, which
can be advantageous for deep learning training, particularly
during the initial stages. At the onset of the training process,
the values of x are generally zero-centered due to the ini-
tialization of weights and biases. In this scenario, negative
derivative values can aid the model in escaping local minima
in the earlier stage, resulting in more efective optimization.

For minuscule values of x, the negative derivative values
remain small, and the update step in the optimization

process assists the model in evading local minima. As the
training progresses, the variance of the values of x enlarges,
and negative values of x produce gradients close to zero.Tis
leads to stable training, as the update step in the optimi-
zation process diminishes, preventing substantial alterations
in the model parameters.

3.2. Boundness. In the present investigation, an analysis of
the boundness property of the GELU activation function is
conducted. Activation functions that exhibit boundedness
are known to aid in circumventing the issue of vanishing or
exploding gradients, which may arise during the training
process by constraining the activations within
a predetermined range.

3.2.1. Boundness of the GELU Function. To analyze the
boundness of the GELU activation function, we examine the
limits of the function as the input x approaches positive or
negative infnity:

lim
x⟶ − ∞

GELU(x) � lim
x⟶ − ∞

0.5x 1 + tanh
��
2
π

􏽲

x + 0.044715x
3

􏼐 􏼑􏼠 􏼡􏼠 􏼡 � 0,

lim
x⟶∞

GELU(x) � lim
x⟶∞

0.5x 1 + tanh
��
2
π

􏽲

x + 0.044715x
3

􏼐 􏼑􏼠 􏼡􏼠 􏼡 �∞.

(33)

To ascertain the minimum value of the GELU activation
function, we can study the frst derivative of GELU(x) with
respect to x, identifying critical points where the derivative
equates to zero. Solving dGELU(x)/dx � 0 delivers the
minimum value of GELU(x), approximately − 0.17, occur-
ring at x ≈ − 0.75.

By taking into account these limits and conducting an
analysis of the critical points, it can be inferred that the

GELU activation function has a lower bound of approxi-
mately − 0.17 and is unbounded in the positive direction.
Tis property, combined with the insights discussed in the
following section regarding the practical upper bound,
ensures that the activations are confned within a specifc
range during training. Consequently, this characteristic
assists in mitigating the challenge of the vanishing or
exploding gradient problem.

1 2

1

2

3

x

y

−1

−2 −1

Diff of GELU (x)
GELU (x)

Figure 2: Te GELU function and its derivative with respect to x.
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3.2.2. Upper-Boundness of the GELU Function. Te present
work furnishes a mathematical proof that establishes the
upper-bound property of the combination of normali-
zation methods and the GELU activation function. In
particular, the study focuses on a layer constituted by
a linear transformation operation followed by a nor-
malization method, and fnally, a GELU activation
function.

Let Li denote a layer in the neural network with input
zi ∈ Rni− 1 , weights Wi ∈ Rni×ni− 1 , and biases bi ∈ Rni . We frst
apply the linear transformation to the input:

zi
′ � Wizi + bi. (34)

Next, we apply a normalization method to the trans-
formed input zi

′. For simplicity, we will use generic nor-
malization denoted by the function N(zi

′). Te normalized
input is then

zi
″ � N zi

′( 􏼁. (35)

We apply the GELU activation function to the nor-
malized input:

zi+1 � GELU zi
″( 􏼁. (36)

To show that the combination of normalization methods
and GELU is upper-bounded, we need to fnd an upper-
boundM> 0 such that for any input zi, we have zi+1 ≤M.

Since the normalization method is applied before the
GELU activation function, we know that zi

″ has a fxed
range, typically with mean 0 and variance 1. As a result, there
exists a constant K> 0 such that |zi

″|∞≤K.
Te GELU function is upper-bounded by x:

GELU(x)≤x. (37)

Tus, we have

zi+1 � GELU zi
″( 􏼁≤ zi
″

≤ zi
″

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌∞

≤K.

(38)

Hence, we have shown that the combination of nor-
malization methods and the GELU activation function is
upper-bounded, with the upper bound being M � K. Tis
property ensures that the activations remain within a fxed
range during training, further helping to mitigate the
vanishing or exploding gradient problem.

However, without normalization, the transformed input
zi
′ in equation (34) can become larger as the learning
progresses, which can lead to larger values of x in
GELU(x)≤ x.

As learning progresses, the weights Wi and biases bi are
updated, and their magnitudes may increase. Consequently,
the magnitudes of zi

′ can also increase, resulting in larger
values of x:

x � zi
′⟹ |x|≤ Wi zi

����
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + bi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (39)

where | · | denotes an appropriate norm, e.g., the Euclidean
norm. As the magnitudes of Wi and bi grow, the bound on
|x| can also grow.

When there are multiple layers, this efect can deepen.
Consider a deep neural network with N layers and let zj

′
denote the transformed input at layer j, j ∈ 1, 2, . . . , N.
Without normalization, the transformed input at layer j can
be expressed as follows:

zj
′ � Wjzj− 1 + bj. (40)

For j � 1, 2, . . . , N, the bound on the magnitudes of zj
′

can be recursively computed as follows:

zj
′

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ Wj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 z
′
j− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + bj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (41)

As learning progresses and the magnitudes of Wj and bj

increase, the bound on |zj
′| can grow, leading to larger values

of x in GELU(x)≤x at each layer. Tis growth in the bound
of |zj
′| can compound across multiple layers, potentially

leading to undesirable efects such as the vanishing or
exploding gradient problem.

3.3. Stationarity. Te present investigation concerns an
analysis of the stationarity of the GELU activation function,
with particular emphasis on its continuity, diferentiability,
and Lipschitz continuity properties. Te stationarity of an
activation function is of utmost signifcance as it aids in
maintaining a well-behaved optimization landscape, which,
in turn, facilitates more efcient convergence during the
training process.

3.3.1. Continuity and Diferentiability. Te GELU activation
function, as defned in equation (15), is a continuous
function for all x ∈ R. Since the composition of continuous
functions is also continuous, we observe that the GELU
function is continuous, given that both the scalar multi-
plication, addition, and the hyperbolic tangent function are
continuous. Furthermore, the GELU function is diferen-
tiable everywhere, as shown in Section 3.1.

3.3.2. Lipschitz Continuity. Lipschitz continuity is a stronger
form of continuity that provides an upper bound on the rate
of change of a function [33]. A function is said to be Lip-
schitz continuous if there exists a constant L> 0 such that for
all x, y ∈ R, the following inequality holds:

|GELU(x) − GELU(y)|≤ L|x − y|. (42)

For the GELU activation function to exhibit Lipschitz
continuity, we need to show that its derivative is bounded.
As per equation (25), the derivative of the GELU function
with α � 1 is given by the following equation:

dGELU(x)

dx
� x ·

1
���
2π

√ e
− x2/2

+Φ(x). (43)

We aim to fnd a constant L> 0 such that for all x ∈ R,
we have |dGELU(x)/dx|≤ L.
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We use the second derivative to establish a tight bound
on the derivative. Te second derivative of the GELU
function is given by the following equation:

d2GELU(x)

dx
2 �

d
dx

x ·
1
���
2π

√ e
− x2/2

+Φ(x)􏼠 􏼡,

�
1
���
2π

√ e
− x2/2 1 − x

2
􏼐 􏼑 +

1
���
2π

√ e
− x2/2

,

�
1
���
2π

√ e
− x2/2 2 − x

2
􏼐 􏼑.

(44)

Setting the second derivative equal to zero and solving
for x, we obtain two critical points at x � −

�
2

√
and x �

�
2

√
.

Evaluating the frst derivative at x �
�
2

√
, we fnd:

dGELU(x)

dx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌x�
�
2

√ �
e
���
2π

√ ≈ 1.084. (45)

Tus, we have found that the absolute value of the de-
rivative of the GELU function is bounded by
L � e/

���
2π

√
≈ 1.084, thereby proving its Lipschitz continuity.

3.4. Smoothness of Feature Space. Te present study un-
dertakes a thorough and rigorous investigation of the
smoothness of the feature space that is induced by the GELU
activation function. Te property of smoothness is highly
desirable for activation functions, as it plays a crucial role in
achieving well-conditioned optimization landscapes,
thereby facilitating more efcient convergence during the
training phase. Te smoothness of the GELU function is
examined in this work by scrutinizing its higher-order
derivatives and employing the concept of Holder continuity.

3.4.1. Higher-Order Derivatives. To analyze the smoothness
of the GELU activation function, we frst examine its higher-
order derivatives. Higher-order derivatives provide insights
into the local curvature and smoothness of a function. Te
frst derivative of the GELU function with respect to its input
x is given by equation (43). To compute the second de-
rivative, we diferentiate the frst derivative with respect to x,
as in equation (44).

Te second derivative gives information about the
concavity of the GELU function. Since the second derivative
is continuous, it implies that the GELU function is twice
diferentiable, and therefore, smooth.

3.4.2. Holder Continuity. Another measure of smoothness is
the Holder continuity of a function [34]. A function
f: R⟶ R is said to be Holder continuous with exponent
α ∈ [0, 1] if there exists a constant C> 0 such that for all
x, y ∈ R, the following inequality holds:

|f(x) − f(y)|≤C|x − y|
α
. (46)

Te larger the Holder exponent α, the smoother the
function. If α � 1, the function is Lipschitz continuous, and
if 1< α≤ 2, the function is twice continuously diferentiable.

We have already shown in Section 3.3 that the GELU
activation function is Lipschitz continuous, which implies
that it is also Holder continuous with exponent α � 1.
Furthermore, the existence of the second derivative, as
shown in the previous section, implies that the GELU
function is Holder continuous with an exponent α ∈ [1, 2].
Tis result demonstrates the smoothness of the feature space
induced by the GELU activation function.

4. Experimental Comparison

In this section, we present a comprehensive experimental
comparison of various activation functions within the
context of residual convolutional networks trained on the
CIFAR-10, CIFAR-100, and STL-10 datasets. Te objective
is to investigate the impact of diverse activation functions
and compare the activation functions empirically.

Te activation functions under scrutiny encompass
a wide range of popular and efective choices, including
ELU, Hardshrink, Hardsigmoid, Hardtanh, Hardswish,
LeakyReLU, LogSigmoid, PReLU, ReLU, ReLU6, RReLU,
SELU, CELU, GELU, Sigmoid, Softplus, Softshrink, Soft-
sign, Tanh, and Tanhshrink [14, 15]. Several activation
functions are displayed in Figure 3. For each activation
function, the same training procedure was followed,
employing cross-entropy loss as the criterion and the Adam
optimizer for parameter updates. We trained the residual
network for 20 epochs with a batch size of 128 and
a learning rate of 0.001.

Te residual network operates by ingesting a tensor of 3-
channel images and feeding it through a sequence of con-
volutional layers. Each of these layers incorporates both BN
and nonlinear activation. Te residual blocks, which form
the building blocks of the network, are composed of two
convolutional layers and a skip connection. We used
a preactivated residual network, where each block consists of
two layers of BN, nonlinear activation, and a convolutional
operation in order.

Te architecture of the network includes an initial
convolutional layer that enlarges the dimension, followed by
six residual blocks, an adaptive pooling layer, and a fully
connected layer for classifcation. Consequently, the net-
work consists of 14 layers in total. Te stride in the third and
ffth residual blocks is set to 2, which efectively reduces the
spatial dimensions of the feature maps.

An in-depth analysis of the results on the CIFAR-10
dataset presented in Table 1 and Figure 4 reveals intriguing
patterns and trends among the activation functions. Te test
loss and test accuracy, which serve as the primary evaluation
metrics, provide valuable insights into the efcacy of each
activation function in the context of the residual convolu-
tional network.

Several activation functions exhibit commendable per-
formance, with GELU standing out as the top-performing
function, achieving the lowest test loss of 0.3685 and the
highest test accuracy of 89.52%. Hardswish and ReLU6
follow closely behind, registering test accuracies of 88.77%
and 88.70%, respectively. Tese results suggest that GELU,
Hardswish, and ReLU6 may be more suitable for this
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particular network architecture and dataset, delivering su-
perior performance in comparison to other activation
functions.

Conversely, Sigmoid emerges as the least efective ac-
tivation function, with a test loss of 3.2102 and a markedly
low test accuracy of 33.90%. Tis result underlines the
limitations of the Sigmoid function, which may sufer from
issues such as vanishing gradients, particularly in deeper
networks. Te relatively poor performance of Sigmoid
highlights the importance of selecting appropriate activation
functions for the task at hand.

Other activation functions, such as ELU, LeakyReLU,
and PReLU, exhibit satisfactory performance, with test ac-
curacies ranging between 85% and 87%. Tese functions
demonstrate their potential utility in deep learning appli-
cations, though they may not be the optimal choices for this
specifc network and dataset.

Te disparities in performance among the activation
functions can be attributed to various factors, including the
nature of the dataset, the architecture of the network, and the
inherent properties of the activation functions themselves.
Tese results emphasize the signifcance of conducting
empirical comparisons to identify the most suitable acti-
vation functions for a given deep learning problem.

In order to further substantiate the superior perfor-
mance of the GELU activation function, we conducted
additional experiments on two benchmark datasets,
CIFAR-100 and STL-10, which are known for their com-
plexity and diversity. In these additional experiments, we

selected several activation functions that have shown
promising results on the CIFAR-10 dataset. Table 2 presents
the test loss and test accuracy for diferent activation
functions, including GELU, on these two datasets. Te re-
sults demonstrate that GELU consistently outperforms its
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Figure 3: Comparison of various activation functions.

Table 1: Test loss and test accuracy for diferent activation
functions on CIFAR-10 dataset.

Activations Test loss Test accuracy (%)
ELU 0.4232 86.22
Hardshrink 1.1266 60.81
Hardsigmoid 1.4296 54.00
Hardtanh 0.5573 82.01
Hardswish 0.3921 88.77
LeakyReLU 0.4036 87.93
LogSigmoid 0.5755 81.42
PReLU 0.5552 86.33
ReLU 0.4478 87.19
ReLU6 0.4145 88.70
RReLU 0.4308 85.91
SELU 0.4983 83.37
CELU 0.4260 86.21
Sigmoid 3.2102 33.90
Softplus 0.5762 80.82
Softshrink 0.5626 81.93
Softsign 0.6819 78.33
Tanh 0.5318 82.91
Tanhshrink 0.5776 80.78
GELU 0. 685 89.52
∗Bold indicates the best performance; italic indicates the second-best.
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counterparts in terms of test accuracy, thereby reinforcing
the assertion that it is a highly efective activation function
for deep learning applications.

For the CIFAR-100 dataset, the GELU activation
function achieved the highest test accuracy of 64.71%,
surpassing the second-best performance of 64.12% achieved
by the Hardswish activation function.Te test loss for GELU
was marginally higher than that of Hardswish, with values of
1.3351 and 1.3122, respectively. However, considering the
higher test accuracy, GELU still demonstrates a more
consistent performance across both evaluation metrics.
Other activation functions, such as ReLU, LeakyReLU, and
RReLU, exhibited competitive performance, with test ac-
curacies ranging between 59.81% and 61.84%. Nevertheless,
their performance remained inferior to that of GELU,
further highlighting its efcacy in the context of the
CIFAR-100 dataset.

Similarly, on the STL-10 dataset, the GELU activation
function outperformed all other activation functions,
achieving the highest test accuracy of 58.48%. LeakyReLU
secured the second-best performance with a test accuracy of
56.26%. However, in terms of test loss, GELU was slightly
higher at 1.1853, compared to the best value of 1.1650 ob-
served for LeakyReLU. Despite this minor discrepancy, the
overall performance of GELU remains superior, as evi-
denced by its higher test accuracy. Other activation func-
tions, such as ReLU and Hardswish, showcased relatively
competitive performance but ultimately fell short of the
performance exhibited by GELU.

Tese additional experiments on the CIFAR-100 and
STL-10 datasets reinforce the notion that GELU is a highly
efective activation function for deep learning models. Its
consistently superior performance across multiple evalua-
tion metrics and datasets attests to its robustness and
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Figure 4: Experimental comparison of activation functions with respect to training epoch.

Table 2: Test loss and test accuracy for selected activation functions on CIFAR-100 and STL-10 datasets.

Datasets Activation Test loss Test accuracy (%)

CIFAR-100

ELU 1.5609 57.26
Hardswish 1. 122 64.12
LeakyReLU 1.4248 61.71

ReLU 1.4223 61.84
ReLU6 1.4185 61.58
RReLU 1.4509 59.81
SELU 1.8315 51.09
GELU 1.3351 64.71

STL-10

ELU 1.5533 41.78
Hardswish 1.2457 54.40
LeakyReLU 1.1650 56.26

ReLU 1.2105 54.86
ReLU6 1.5044 47.01
RReLU 1.2814 51.25
SELU 1.5221 41.18
GELU 1.1853 58.48

∗Bold indicates the best performance; italic indicates the second-best.
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adaptability, making it a compelling choice for practitioners
seeking optimal activation functions for their deep learning
applications. Moreover, the results of this empirical analysis
complement our earlier mathematical investigation of
GELU’s properties, together ofering a comprehensive un-
derstanding of its performance and suitability in a wide
range of deep learning scenarios.

5. Conclusion

In this comprehensive study, we have embarked upon an
intricate exploration of the GELU activation function and its
mathematical properties, including diferentiability,
boundness, stationarity, and smoothness. Our analysis
elucidates the unique characteristics that contribute to
GELU’s efcacy in the context of deep learning architectures.
GELU’s smoothness, diferentiability, and well-behaved
optimization landscape have cemented its position as an
indispensable asset in state-of-the-art models such as BERT
and GPT.

Furthermore, we have conducted a rigorous experi-
mental comparison of various activation functions within
the context of residual convolutional networks trained on
the CIFAR-10, CIFAR-100, and STL-10 datasets. Our
fndings reinforce the exceptional performance of the GELU
activation function, which attains the highest test accuracy
and lowest test loss among the activation functions in-
vestigated. Other activation functions, such as Hardswish
and ReLU6, exhibit commendable performance as well,
highlighting their potential applicability in diverse deep
learning scenarios.

Looking forward, the mathematical properties of the
GELU activation function as derived in this study ofer
promising directions for the generalization analysis of deep
neural networks. Specifcally, our results regarding the
Lipschitz continuity and smoothness of GELU contribute
towards theoretical understanding of the fexibility and
adaptivity of deep neural networks, potentially paralleling
the recent studies [35]. In addition, our insights about the
higher-order derivatives andHolder continuity of GELU can
facilitate the analysis of deep learning models in more
complex spaces, such as the unit sphere of high-dimensional
spaces [36]. It is anticipated that the integration of our
mathematical analyses with the theoretical frameworks
proposed in these works could pave the way for a more
robust theoretical foundation of deep learning. We also
recommend future work to investigate the implications of
our fndings for the approximation ability of new activation
functions such as DLU [37].

In conclusion, our in-depth analysis and experimental
evaluation substantiate the GELU activation function’s
prominence in the realm of deep learning. Te GELU
function’s mathematical properties and exemplary perfor-
mance render it a potent choice for a wide array of appli-
cations, providing a foundation for future research and
innovation in the feld of artifcial intelligence. In this paper,
we have presented a comprehensive mathematical analysis
of the GELU activation function and normalization methods
in deep learning, specifcally focusing on diferentiability,

boundness, feature space continuity, stationarity, and
smoothness of the feature space. Our fndings provide in-
sights into the reasons behind the success of these methods
and their impact on the training dynamics of deep neural
networks. We hope that our work contributes to the un-
derstanding of GELU activation and normalization tech-
niques and informs the design of future deep learning
architectures.
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