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The alternating direction method of multipliers (ADMM) is one of the most powerful and successful methods for solving various
nonconvex consensus problem. The convergence of the conventional ADMM (i.e., 2-block) for convex objective functions has
been stated for a long time. As an accelerated technique, the inertial effect was used by many authors to solve 2-block convex
optimization problem. This paper combines the ADMM and the inertial effect to construct an inertial alternating direction
method of multipliers IADMM) to solve the multiblock nonconvex consensus problem and shows the convergence under some
suitable conditions. Simulation experiment verifies the effectiveness and feasibility of the proposed method.

1. Introduction

The nonconvex global consensus problem with regulariza-
tion [1] has the following form:

N
i i(x) +g(x)
mln;fx+gx W

s.t.x € X,

where f;: R* — RU{+00},i=1,2,---,N are smooth,
possibly nonconvex functions, while g: R* — Ris a convex
nonsmooth regularization term and X is a closed convex set.
This problem is related to the convex global consensus
problem discussed heavily [2], but it is possible that f;s are
nonconvex.

In many practical applications, f;s need to be handled
by a single agent, such as a thread or a processor. Now, we
transform problem (1) into the following equivalent line-
arly Agonstrained problem under the help of new variables

{xi}iso:

min Zl fi(x;) + g(x)

st.x; =xVi=1,2,---,N,x, € X.

(2)

Note that the problem (2) owns N blocks with different
variables {x;,...,xy} and one globe variable. Then, each
distributed agent can handle a single local variable x; and
a local function f;, respectively.

The augmented Lagrangian function with multipliers
y; € R"i=1,2,---,N of problem (2) is defined as follows:

N N
L, ({xi} x0, ¥) = Z fi(x;) +g(x0) + Z<yi’xi - xp)
* (3)

where p >0 is a penalty parameter and problem (2) can be
solved distributively by the following classical ADMM
procedure:
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xﬁ“ argmin{Lp({xf}, xo,yk)},

xp€X

k+1 . k k1y , P k+1
= angin 1) -5 +
x,

4

i

k+1 k+1 _ k+1

Sy (T -,

[ i=1,2,---,N.
(4)

ADMM was initially introduced in the 1970s [3, 4], and
its convergence properties for convex case have been ex-
tensively studied. However, ADMM or its directly extended
version may not converge when there is a nonconvex
function in the objective. Yang et al. [5] studied the con-
vergence of the ADMM for the nonconvex optimization
model which come from the background/foreground ex-
traction. Hong et al. [6] analyzed the convergence of al-
ternating direction method of multipliers for a family of
nonconvex problems. Guo et al. [7] studied the convergence
of ADMM for multiblock nonconvex separable optimization
models.

Recently, some scholars studied the inertial type of
ADMM for convex optimization. For example, Chen et al.
[8] analyzed a class of inertial ADMM for linearly con-
strained separable convex optimization, and Moudafi and
Elissabeth [9] extended the inertial technique to solve the
maximal monotone operator inclusion problem. The re-
search interests for the nonconvex cases are increasing in
recent years; e.g., Chao et al. [10] proposed and analyzed an
inertial proximal ADMM for a class of nonconvex opti-
mization problems while all the above inertial ADMM al-
gorithms were presented for solving only two-block
optimization problem (not for multiple-block case).
Whether the convergence of the inertial ADMM is assured
when the involved number of blocks is more than two? It is
an important problem to research.

The purpose of the present study is to examine the
convergence of inertial ADMM with multiblocks for non-
convex consensus problem under the assumption that the
potential function satisfies the Kurdyka-Lojasiewicz prop-
erty. The preliminary numerical results show the effective-
ness of the proposed algorithm.

The rest of this paper is organized as follows. In Section
2, some necessary preliminaries for further analysis are
summarized. Section 3 proposes a multiblock nonconvex
inertial ADMM algorithm and analyzes its convergence
under some conditions. In Section 4, we prove the validity of
the algorithm by the numerical experiment. Finally, some
conclusions are drawn in Section 5.

2. Preliminaries

Let R" denote the n-dimensional Euclidean space, R U {+00}
denote the extended real number set, and N denote the
natural number set. ||.|| represents the Euclidean norm. Let
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domf: ={x e R" f(x)< + 0o} denote the domain of
function f: R* — RUoco and {x, y) = Y. | x;y; denote the
inner product. For function if f if f (x) <liminf, . f (x),
we say that f is lower semicontinuous at . If f is lower
semicontinuous at every point x € R", we say that f is lower
semicontinuous function.

For a set S ¢ R” and a point x € R", let d(x,S) = inf
ly —x|% If S = @, we set d(x,S) = +oo for all x € R". yes

The Lagrangian function of (2), with multiplier
Y= (¥ Yoo+ > yn) is defined as

N N
L({x;}, xp, y) = Z fi(x:) +g(xp) + Z<yi>xi —xp). (5
i=1 i=1

Definition 1. If w* = ({x;},x, y*)" such that

infi(x;k) = _y:’

N

3 37 €ag(x), ©
i=1

x; — x5 =0,

then w* is called a critical point or stationary point of the
Lagrange function L ({x;}, x, »).

A very important technique to prove the convergence of
the ADMM for nonconvex optimization problems relies on
the assumption that the potential function satisfying the
following Kurdyka-Lojasiewicz property (KL property)
[11-14].

For notational simplicity, we use ¥, (e, >0) to denote
the set of concave functions ¢: [0,¢,) — (0,+00) such
that

(i) ¢(0) =0, ¢ is continuous differentiable on (0,¢,)
and continuous at 0

(i) ¢ (s)>0,Vs € (0,¢,)

Definition 2 (see [14]) (KL property). Let f: R" — R"U +
00 be a proper lower semicontinuous function. If there exists
&, € (0,+00), a neighborhood U of x*, and a function
¢ € ¥, , such that forallx eUN[f (x*)< f<f(x*)+¢g],
it holds that

¢ (f(x)— f(x"))d(0,0f (x))>1, (7)

then f is said to have the KL property at x*.

3. Algorithm and Convergence Analysis

For convenience, we fix the following notations: w* = ({x*},
e, @F = ([xF), 05 XK [k R L kT Basis on
(4), we propose the following algorithm for solving
problem (2).

Algorithm 1. Inertial ADMM (IADMM). Choose x € R",
yWe RNXYeR,i=1,2,---,N,1,>0,p>0and 6, € [0,1),
Vk > 1. For the given point w* = ({x¥}, y*, xK)", consider the
iterative scheme:
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k1 . &k Lk Pk 2 T k|
x, =argmin{ g(x,) + Z(yi X — Xoy + 3 Z "xi - x0|| + EHXO - zO" (),
xg€X i=1 i=1
) xf“ = argmin{fi (x;) + (yf,xi - x]5+1> + g“"i - xlgﬂ 2 + %“xi - zf("z} (b), (8)
y:c+1 = ! +P( k+1 xl(§+1) + Tk( k+1 )(C)
where k+1 =-V fz( k+1)- (14)
{ Z’(; = xlg + Gk(xk - ngl), (©) Thus,
9
ZF =+ Hk(xk - X ) ”yf“ k” | kH) Vx,.fi(xf‘c)uz
associated with i = 1,2,---, N. Slfi "xi«r1 B xﬂ'z (15)
From the optimality conditions of (8) (a) and (8) (b), we 1 kl2
have <lf||x - 1“ .
0c ag( k+1) Z PZ(x _ xo ) ¥ Tk(xl(;“ _ Zlg), Hence, the result is obtained. O

(10)

0=V f;( k+1)+yl +P( k+1 k+1)+Tk< k+1 fo)’

i=1,2,--,N.
(11)

Remark 1. Compared with the inertial ADMM in [10], each
subproblem in our algorithm has the inertial term, and we
handle multiblock case here.

Subsequently, we will discuss the convergence of Al-
gorithm 1 under the following assumptions.

Assumption 1

(i) g(x) is proper lower semicontinuous, and Vs fi(x;)
is [ /i Lipschitz continuous; i.e.,

[ fi () = Vo fi(x)] < ¥

(ii) p is large enough such that 0<0.<p —l
2p+2, Tk>2lf/(p 2p8, —lf 20,).

(12)

k+1 k“
- X

Lemma 1. For each k € N, define lf = max{lf} we

i)i=1,2,-N’
have

IS Y M 0 M) P

Pr()of Since yv = yh +p(xk+1 k+1) + T, (xk+1 va(),

from (11), one has

Lemma 2. Select p large enough, suppose that Assumption 1
holds. Then, for each k € N,

k+1 Z " '|xk+1 k" +9, ka+1 _ xO"
(16)
<L,(vf) Zyzlix B RO SR b
where y,=1/2(1-6,)— (1/p) + (Tk/2p)lf (14/2p)

and}/z = (Tkgk/Z) + (Tkek/P)

Proof. By the definition of the augmented Lagrangian
function, (8) (c) and (15), we have

LP({fo}, xé“, yk+1) _ Lp({x:'ﬁl} xl(§+1’ y )

k+1 k+1 k+1
_Z<y yl’ i — X >’

N
=;1); S S S AL (G (17)
1 .
(o) 2l e Y-

1 N
g<;+;_;)z;;|x,, I -

From (8) (a) and (8) (b), we obtain
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2 T 2
N

N N
G EDYSHEEEAD RN

and (18)

fi( k+1) Z<yk kel k+1>+P Z|

( ) Z<J’ , k+1>+Pz'|x _xk+1

ktl k+1 k+1 k||2
—

2 T N
+—Z|xi
2 i=1
N
2 T k AL
f IS k-2
2 4
i=1

IN

NG

]
—_

respectively. Then, it is easy to get

ko k|?
i ~ %o

o)~ o(s) + SO = £ 3 |

<5k IIZ—’—’ZHX -

and (19)

2 Tk k1 _Kk|?
0 ~ %0

N . . . p N . o2
th( +1) z ( ) 20’ +1_xi>+iz xi+1_ 0+1
i=1

i=1 i=1

N
2 T
SB E "xf—x’g“ +—k E ”xf<
2 2
i=1 i=1

k+1 k"2
i =z -

k12 Tk <
Y
2
i=1

Therefore, we have

Lo hx™0) - L({i} 20 )
= L ) - L ™) + (k™ ) - Lp({xi‘}’x’é’y")

= ;f,(xf%l) fz( ) Z<yk k+1 - x! >+P z k+1 k+1

Mz

k k+1
|x1 —xon +z<y xo—x0

N N
Sg;nxf_ s fk; an_zZ k+1_zk|| 0
N
rol(5) - ) -2 3 [k + 05 -
e e I |
i=1 —
R k|2 TkekZHx _ k1“2 Tk (1- 6|« k+1 k”

< _jk(l ek)zl

T
S R b
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Adding up (17) and (20), by the Assumption 1 (ii), we
have
() <1, (05) - (-0 Y bt -t T 0, Y [ - - (1 -
i=1 i=1
(L N )
Gafh-a (3o ) bt - AT o St - N
1, () - ( (=60 (32 - B) ot - o (e ) et
(1- Gk)"xk+1 - xo” + = Gk”xo —xh "

which implies that Then, the results are obtained. O

L (wk+1 ZVI ||xk+1 _ xk” n V1| kel “ Remark 2. From Assumption 1 (ii), we know that y; > y,.
g 0 Define the following potential regularized augmented La-
, , (22) grangian function:
< Lp(wk) + ;yz ”x:( - xf»H" + yzuxlg - xlg_l" .
- J 2 2
Lp ({xi}’xo»% {’?i}>20) = Lp ({xi}’xm)’) + Z Yz"xi - 521“ + Yz"xo - ’Aco” > (23)

where w = ({x;}, xo, . {X;}, %)
If we take =7y, -y,>0, " = ({xf.‘},x'g, }Vk> {xf'{_l}’
xf71), then

fp(ﬁ)k) =L ( Zyzux —xk 1" +y2”x0 Xk 1" .
(24)

From Lemma 2, we have

}Eﬂnxkﬂ ~ x!

which implies that the whole sequence {fp (@)
monotonically nonincreasing. It is importance
convergence analysis.

L(a"") + o <L (a), (25)

—-
»

k>1
or our

Lemma 3. If the sequence {w = ({xK}, xk, y )T} is bounded,
then Y ;20 lwk! — wk|* < + o0.

So(3

i=1

Proof. Since the sequence {w*} is bounded,‘ there exists
a subsequence {wkj} such thatlim; (@ ki)l = 0 = it
Since g (x) is lower semicontinuous, f;: R* — RU {+00} is
Lipschitz differentiable, and the function L () is lower
semicontinuous, which leads to

liminf; oL, (@) 2L, (@"); thus, L, (@) is bounded
from below. From Lemma 2, we know that Lp(fi)k) is
nonincreasing; thus, {fp(ﬁ)ki)} is convergent and

L,(@)>L, (@) for each k.
From Lemma 2, it yields

o Bt - o - ) <10 -0

(26)

Hence,

- o =4 )<2,(0) 10 <1(0) T, @) o
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Consequently, Y% wk! — wk|* < + 0. O  Lemmad4. There exists § > 0 such that d (0, aip (@**1)) < 8B,
for each k € N, where

> = 2]

-]+

N
k+1 k k k-1 k k-1
I R | )
i=1

Proof. From the definition of ij (), we have

( aXi p( k+1) v f;( k+1) 5<+1 +P(xi'<+1 _ xlg+1) + zyz(x;ﬁl _ x?)’

N
axoip( k+1) ag(xlgﬂ) _ Z(yfﬁl + p(x:ﬁl _ xlgﬂ)) + 2Yz(x§+1 _ xl(;)’

f+1 & k+1 Ky Tk < k+1 k Tk J k k-1
195 (@) =2 20 i) = 2T - x) + 2 8 (s — ), (29)
i=1 i=1 i=1

i=1

\ a}iﬂ(wkﬂ) = 2p,(x ( k1 xg).

From Lemma 1 and the optimality conditions, we get

0=V f:( k+1) + )’, + P( k+1 k+1) + Tk( k+1 zf))
0e€ ag(x}g“) Zyl pZ(x - xlgﬂ) ( 1(§+1 - zg), (30)
y:c+1 _ y + P( k+1 k+1) + Tk( k+1 Zic)

From (29) and (30), we obtain where

(a]f,a];,oc’;,oci,alg) e oL, (@), (31)

i=1 i=1
_lN k+1_k_3N kel kY Tk < k k-1
oy = Z(J’z yi) Z(xi xi)+ ekZ(xi Xi )’ (32)
= P ia p i
N
ay = -2y, Z(xf“ xk)
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Thus,

k

d(O aL( k“ S||(a’f,oc§,a3,aﬁ,al;)T||. (33)

It follows from Assumption 1 and Lemma 1 that there
exists >0 such that d(0, aL (@) < 0p,, for each
k eN. O

Lemma 5. Let F({@k}) denote the cluster point set of {@k}.
Then, F({ﬁzk}) is a nonempty compact set, and lim; _, _d
@ r({@*}) =0

And if @" = ({x7}, x5, y", (&}, %;)" e T({@"}), then
w* = ({x;}, x5, y*)" is a critical point of the Lagrangian
function L of the problem (2). Moreover, LP () is finite and

constant on F({@k}) and infkeNLp (@) = limkaoLp (@).

K T
( +1> Z<}/l % O+1
o N,k K
Sg(xo)sz(J’i x| = Xy)
i=1

That is, my (x0
Thus,

)<mk (x5).

kit
limsup my, (

j— +c0

o >< limsup . (x5)

J*}‘FOO

) = limsup g(x

j— +o0

= g(xp)-
(35)

Since g(x) is proper lower semicontinuous, we obtain

liminf g<x§j+l) > g(x,)-
J—>t00

(36)
From above, we get
ki+1
lim g(xo )
j—+00

Together with the continuity of f;(i=1,2,...
the closeness of dg, we obtain

infi (xz*) =
Y. yi €0g(x7),

i=1

= 9(xo)-

(37)

,N) and

~yi>

(38)
x; —x5 =0.

Thus, @" is a critical point of the Lagrange function L of

the problem (2).
From (37) and Lemma 5, we have

Proof. In view of the definition of F({I'I)k}), it is true that
I'( {ﬂ)k}) is nonempty and compact, and lim,_ ,  d

@, T{@"}) =0
Let  @° = ({x/}, x5, y", {1, ;)" e T({@*}). Then,
there exists a subsequence {ﬁ)kf”} of {ﬁ)k} converging to

{w*}. Since [w*! —wkII — 0 (k— +00), we have
k+l _ ~x
11m]_)+00w i ket _ a4k
Since y;! =y.’ p(x - )+ T k( -z;), we
have x] — x; = 0.
Let my(xo) =L, (I}, %00 ¥%) + 72010 — 2KII12. From
Lemma 2, we have
P k+1 T k+1 k|2
B R R
(34)
S osf -
-1
lim L (@5 L (o
i L@ L)
=L(w")
Therefore, from (39) and the descent of {Lp (@k)}keN, we
obtain
lim L =1 (@").
k—1>n300 ( ) P(w ) (40)

Thus, L () is constant on T ({ }). Moreover,
1nfk€NL (@ ) =lim, p(wk) O

Theorem 1. Let LP (") be the KL property at each point of
r ({ }) Then, the bounded sequences {w*} converges to
a critical point of L(-). Moreover,

+00
ank“ - wk“ < +0o0. (41)
k=0

Proof. By Lemma 5, we have hmkaL (@) = L (w*),
for all w* € F({ }) We consider the followmg two cases:

(i) If there exist an integer k, such that L (W) =
L (*). From Lemma 2, for all k> k,, we have

o Zhe s =)
i=1

< Ip(wk) h zp(ﬁ’kﬂ)

L(a")-L,(@").

(42)

IA



Thus, for any k > kg, we have x¥*! = xk,i=1,2,...,

N, xé“ = x’g; therefore, for any k > k; + 1, it follows
that @' = @ and the assertion holds.

(ii) Assume that fp(ﬂ)k) >fp (w™*) for all k € N. Since
lim,_,,.d (@, T ({@k})) = 0, it follows that for any
give ¢ >0, there exists k, >0, such that d (@,
I‘({@k})) <g. Again since limkHwOIip (@)
= fp (w"), for give ¢, > 0, there exists k, > 0, such that
L,(@")<L,(@") + &, for all k>k,.

Thus, when k >k = max {k,, k,}, we have

~k ~k = % = [~k = %
d(w ,I“({w })) <ep L, (@) < Lp(w ) <L,(@) +e,
(43)
In view of F({L’Dk}) is nonempty compact set, fp(-) is
constant on T ({@k}). By Definition 2, we have
¢ (C)d(0,0L, (@) = 1, for all k> k.

1

7O <d(0,0L,(@")). (44)

From the concavity of ¢, we have
9"<Ep(wk) - ip (w*)) - ¢(ip(wk+l) - ip (w*))
>9/(L(@") - L, @")(L,(") - L, (@),

Since ¢ (fp (@) - fp (")) >0 and Lemma 2, we obtain

N 2 2
o, —m(Z et okt )

Journal of Mathematics

IN

= ‘%k(q’(ip(wk) - ip (’T’*)) -9 Ap(wkﬂ) - ip (w*)))
(46)

o Let @, =¢(L,(@")-L,(@") - ¢(L,(@") - L,(@")).
us,
S ke K| k1 k20
Z"xi X " +|x0 —x0|| Saﬁkq)k,kﬂ’ (47)
i=1

for all k > k. That is,

S )
i=1

N 2 2 %
<(N+1)VN + 1<Z ||fo” _ xf.‘” +"x§+1 B x;g” >
i=1
3
(48)

for all k> k.
Since a + b>2+vab(a,b>0), we have

(N +1)°8 (N +1)%8
2 T <Pt D, (49)
VB 4(ys =) et Pt gy Pk

From (48) and (49), we obtain

(N +1)%

N
(N+ 1)<;”fo - xf" +| X" - xé") <P+ mq)k,kﬂ' (50)

Summing up the above formula for k =k +1,.. ., p, we
have

k k+1
-]+

P N
Z (N + 1)<Z 'xffﬂ
=k+1 i

k

P 3
_xg")S 3 (ﬁk+M® ) 51
k=k+1

4(y, - 12) ket
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Notice that ¢ (L(@P*') — L(@*)) >0, it is easy to get

5 (et -)

N+1’ /- /%
=Vt i()’:_lz’z) ¢<Lp<@k+l> -
N+1)4 -/ T
Syt —i(y:r 3}2)< <L (w“‘) -
where
Ny ~ ~ ~ ~
Vi = Z xfﬂ - xf.C + xlgﬂ - xlg . (53)
i1
Thus,
x+—x +x+ -x < + 00. (54)
(PR EE)
From Lemma 1, we get
+00
Z”wk“ - wk" < +00. (55)
k=0

By Lemma 5, we conclude that the sequences {w*}
converge to a critical point of L(-).

4. Numerical Experiment

In this section, we present the results of a simple numerical
example to verify the effectiveness of Algorithm 1. We

Xy

k+1

X2

k+1 k+1 k+1 k+1
= (" = X + ()
k+1 k k+1 k+1 k+1
| V2 =t P(xz — X ) + Tk(xz

k+1
X, =
Xo€X
k+1 . k et
X, = argmm«[f1 (x) +Oxy —xg +p||x1 P

x5 alrgmin{f2 (x,) + (5 %, — 2By + P"

(52)

consider the following compressive sense problem, which
takes the following form:
1
mindx, [, + Al +514% - o[,

(56)
st.x;—x,=0,Vi=1,2,x, € X,

where A is a m x n feature matrix, b € R™ is a response
vector, and A is a regular parameter. In general, problem (56)
is NP-hard. In order to overcome this difficulty, one may
relax [, norm to the [;,, norm, considering the following
nonconvex problem:

1
min AJx, 1, + A, + Slaxo ol
(57)
st.x;—x,=0,Vi=1,2,x, € X.
Let  fi(x) =Ml fo(x) =Mkl and

g(xg) = (1/2)|| Ax, —-b|>, X =RN. We now focus on ap-
plying Algorithm 1 to solve problem (57) with the suitable
parameters. The iterative processes are as follows:

N
argmln{ g(x,) + Z(yl X — Xg) + g; "xf< - xo"2 + %"xo - z’é”2 ],,

k+1

2 Tk
+ o -l
2

T k 2
e -l
2

k+1 (58)

k
— Zl))

k
)
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TaBLE 1: Comparison among two algorithms under different parameters.

0 Iter.

Time (s) p T,
Case 1 (ADMM) 191 22 725124
0 .
Case 2 (IADMM) 2 2
12-1;+1/p 137 16.41164 600 313/p - 26p - 15 26
Case 3 (IADMM)
1/3-15+1/p 159 18.777039
Case 4 (ADMM) 191 22926591
O .
Case 5 (IADMM) , "
1/2-1 +1/p 163 19.139843 500 3131p - 20p - I - 26
Case 6 (IADMM)
1/3-15+1/p 178 21.54476
1600
1400 | |
1200 | |
1000 |
= 800 |
T 600 | |
\t
400 b SN ]
S
200 b R |

—03-5
B+1
—— g1
0=3-%
Figure 1: For p = 600and 7; = 3l§c/p —26p - l} -26.
Simplifying the procedures (58), we obtain the closed-
form iterative formulas:
N N
k”—(A A+(Tk+pN)I) ATb+prf+ny+Tkzlg ,
i=1 i=1
k
k+1 -H TkZ1 )1 +px0+1 22
Pt T pET)
; (59)
k
Kl _ g T2 =Yy pxy A
2 pt Ty pr)
k1 k+1 k 1 kel _ _k
A=y (™ =) H (™ - 21),
K+l ktl __k+l kel _ _k
| ¥y =y, +p(x2+ - X" ) + Tk(szr - zz)’
where ZK = xk + O (xk — xk 1), 2k =k + Gi( (xf —xF1),  indicates the soft shrinkage operator imposed on the entries
i=1,2, H(--) is the half shrinkage operator[16 and S(A 3 of A.
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The experimental data are generated as follows. We use
distributed computing toolbox in MATLAB, and the purpose is
to achieve simple distributed computing. Suppose the feature
matrix A is standard normal distribution N (0, 1) m * n. Select
sparse vector a € R" from the N (0, 1) distribution. The pa-
rameters b and A are setas b, = A;a+ eand A = 0.01||AiT by,
where the noise vector € € N (0, 0.01I). The variables x, x;, y;
were initialized to be zero. The primal residual is defined as
rk = YN xK. We employ r* <& as the stopping criteria, where
£ = 10~%. The numerical results are reported in Table 1. We
report the number of iterations (“Iter.”) and the computing
time in seconds (“Time”) for the algorithms with different
parameters under the dimension m = 2500, n=1000.

The values of |r*|| with the iterations are plotted in
Figures 1 and 2.

where [ = max{lfé}i:Lz,-.-,N'

From Table 1, and Figures 1 and 2, we can see that
ADMM converges more slowly than IADMM since “Iter.” of
ADMM bigger than that of IADMM under the same con-
ditions. Finally, numerical results show that the algorithm is
feasible and effective.

5. Conclusion

In this paper, inspired by the application of nonconvex
global consensus problem with regularization, we propose
multiblock inertial ADMM algorithm for solving certain
nonconvex global consensus problems. We have proven its
convergence under some suitable conditions, and it turns
out that any cluster point of the sequence generated by the
proposed algorithm is a critical point. Numerical experiment
is conducted to illustrate the effectiveness of the multiblock
inertial ADMM (IADMM) algorithm. Its potential of the
flexible multiblock inertial ADMM to analyze and design
other types of nonconvex case, as well as a more thorough
computational study, are topics of our further research.
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