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LetG be a graph having no loop or multiple edges, k−order vertex partition forG is represented by c � c1, c2, . . . , ck􏼈 􏼉. Te vector
r(ϕ | c) � (d(ϕ, c1), d(ϕ, c2), d(ϕ, c3) · · · , d(ϕ, ck)) is the representation of vertex ϕ with respect to c. If the representation of all
the vertices with respect to c is diferent, then c is said to be resolving partition for the graph G. Te minimum number k is
resolving partition for G and is termed as partition dimension for G, represented by pd(G). Tere are numerous applications of
partition dimension in diferent felds such as optimization, computer, mastermind games, and networking and also in modeling
of numerical structure. Te problem of fnding constant value of partition dimension for a graph or network is very hard, so one
can fnd bounds for the partition dimension. In this work, we consider convex polytopes in their generalized forms that are En, Sn,
and Gn, and we compute upper bounds for the partition dimension of the desired polytopes.

1. Introduction

Let us consider a connected graph G having fnite vertices
and edges. Let θ and ϑ be the vertices inG, then d(θ, ϑ) is the
distance between vertex θ and ϑ which is the shortest path
between θ and ϑ. For the subset℧ ofG and vertex ϕ ∈ V(G).
Te distance of vertex ϕ and set ℧ is defned as
d(ϕ,℧) � min d(ϕ, v)|v ∈℧􏼈 􏼉. Te order set ℧ � q1,􏼈

q2, . . . , ql} of V(G) is referred to the l− vector r(ϕ|℧) �

d(ϕ, q1), d(ϕ, q2), . . . , d(ϕ, ql)􏼈 􏼉 as the representation of ϕ
w.r.t ℧. Te set ℧ is said to be resolving set if ∀u ∈ G has
diferent representations w.r.t ℧. Te minimum number of
sets in resolving set is termed as metric dimension for G

which is denoted by dim(G). Since 1975, the concept of
metric dimension and metric bases was discussed in liter-
ature by diferent names. Te name of locating set was given
by Slater [1]. Melter and Harary introduce this concept by
using term metric bases instead of locating set [2]. In [3],

Chartrand introduced this concept by the name of minimum
resolving set. For more about resolving set and metric di-
mension, we refer [4–9].

As the partition of a set is the collection of its subset such
that no two subsets overlap and the union of all such sets
form the original set. Similarly, partition dimension is also
concerned about partitioning of vertex set V(G) and
resolvability. Te partition dimension is actually the gen-
eralization of metric dimension. For given l−ordered par-
tition of vertices of G, where G is connected and simple is
represented by c � c1, c2, . . . , cl􏼈 􏼉. Te representation for
vertex ϕ ∈ V(G) is the vector r(ϕ|c) � (d

(ϕ, c1), d(ϕ, c2), . . . , d(ϕ, cl)). Te partition c is the re-
solving partition if for all vertices in G this representation is
unique w.r.t c. pd(G) is the smallest number of sets in
resolving set c [10]. Te problem of fnding the resolving set
for a graph is NP-hard [11]. As we know that, partition
dimension for a graph is the generalization of metric
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dimension. Terefore, the problem of partition dimension is
also NP-hard.

Graphs having n − 3 as partition dimension are dis-
cussed in [7]. Graphs that are obtained by sum of path and
cycle graph and its partition dimension are in [12, 13], and
also the bounds for partition dimension are provided. In
[14, 15], partition dimension of complete multipartite
graphs is discussed, where strong partition dimension is
discussed in [16, 17]. In [10], it is shown that the partition
dimension of a graph G is bounded above by 1 more than
its metric dimension. An upper bound for the partition
dimension of a bipartite graph G is given in terms of the
cardinalities of its partite sets, and it is shown that the
bound is attained if and only if G is a complete bipartite
graph. Graphs of order n having partition dimension 2, n,
or n − 1 are characterized. In [18], the authors consider
relationships between metric dimension, partition di-
mension, diameter, and other graph parameters. Tey
constructed universal examples of graphs with given
partition dimension and used these to provide bounds on
various graph parameters based on metric and partition
dimensions. In [19], authors studied the partition di-
mension of Cartesian product graphs. More precisely,
they showed that for all pairs of connected graphs G and
H, pd(G × H)≤pd(G) + pd(H) and pd(G × H)≤pd(G) +

dim(H). Te authors also showed that pd(G × H)≤
dim(G) + dim(H) + 1. In [15], the authors studied the
partition dimension of circulant graphs, which are Cayley
graphs of cyclic groups. In [20], the authors found bounds
for the cardinality of vertices in some wheel-related
graphs, namely, gear graph, helm, sun fower, and
friendship graph with given partition dimension k. In
[21], the authors calculated the partition dimension of two
(4, 6)−fullerene graphs. Tey also gave conjectures on the
partition dimension of two (3, 6)−fullerene graphs. In
[22], the authors obtained several tight bounds on the
partition dimension of trees. In [23], the authors studied
partition dimension of some families of convex polytopes
with pendant edge and proved that these graphs have
bounded partition dimension. In [24], sharp bounds for
the fault tolerant partition dimension of certain well-
known families of convex polytopes are studied. Fur-
thermore, it was studied that graphs having fault tolerant
partition dimension are bounded below by 4. In [25], the
authors considered the upper bound for the partition
dimension of the generalized Petersen graph in terms of
the cardinalities of its partite sets. In [17], the authors
determined the partition dimension and strong metric
dimension of a chain cycle constructed by even cycles and
a chain cycle constructed by odd cycles [26] that mainly
deal with metric dimension and partition dimension of
tessellation of plane by boron nanosheets. It has been
highlighted that there is a discrepancy between the
mentioned parameters of the boron nanosheets. More-
over, some induced subgraphs of the stated sheets have
been considered for the study of their metric dimension.

For detail and brief review regarding partition dimension,
we refer [13, 26–31] and the references therein.

Tere are various applications of resolving partition in
various felds and can be found in robot navigation, network
discovery, network verifcation, in representing chemical
compounds, strategies for the master mind games, Djoko-
vic–Winkler relation, image processing and pattern recog-
nition, and hierarchical data structure; for more applications
of the desired study, we refer [2, 5–8, 32–34].

In the study of the partition dimension for graph, the
following theorems are very helpful.

Theorem 1 (see [13]). Let c be the resolving partition of
V(G) and θ, ϑ ∈ V(G). If d(θ, u) � d(ϑ, u)∀ u ∈ V(G)∖
θ, ϑ{ }, then θ and ϑ be from diferent classes of c.

Theorem 2 (see [13]). Let G be a simple and connected
graph, then

(i) pd(G) is 2 if G is a path graph
(ii) pd(G) is n if G is a complete graph

Let us consider K, which is family of connected graphs
Gn: K � (Gn)n≥ 1, where V(G) � τ(n) and
limn⟶∞ τ(n) �∞. If there is a constant β≥ 1 having the
property that pd(G)≤ β, then partition dimension of K is
bounded otherwise unbounded. Investigation of partition
dimension of graphs is hard for some one, but one can easily
compute bounds for the partition dimension in general family
of graphs. From the research work given in [13], where the
authors presented the graphs and the results in very organized
way and found the upper bounds. In this work, we obtained
upper bounds for various convex polytopes in their generalized
form by adding prisms up to infnity. Te generalized form of
the polytopes is studied and denoted by En, Gn, and Sn. We
found that partition dimension for the considered polytopes
cannot be greater than 4. For lower bound of partition di-
mension, we present a consequence of Proposition 2.1 in the
article [10], and we have that for a connected graph G,
pd(G)≥ 2 and equality holds for path graph of order n.

2. New Results

In this section, we investigated En, Gn, and Sn in their
generalized forms for partition dimension.We observed that
partition dimension of these graphs is bounded by four,
while generalization is made in terms of adding cycles that
are extended into infnite numbers and can be seen in
Figures 1–3.

2.1.GeneralizedConvexPolytopeEn. Te convex polytope En

is composed of two convex polytopes, antiprism An and Tn

[13]. Te generalized form is obtained by using the com-
bination of prism with An and Tn, that is discussed and is
given in Figure 1. En consists of n-, 5-, 4-, and 3-sided faces.
Te desired fgure consists of various cycles induced by
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vertices as frst cycle is uξ: 1≤ ξ ≤ n􏽮 􏽯, second cycle is
vξ: 1≤ ξ ≤ n􏽮 􏽯, and the generalized way is in Figure 1. Te
theorem given in the following is for the bound of pd(En),
where four sets of vertices are enough for V(G).

Theorem 3. Let En be the generalized convex polytope that
has n≥ 6, then pd(En)≤ 4.

Proof. Te proof of the desired theorem is discussed in the
following cases. □

Case 4. When n � 2ϱ, ϱ ≥ 3, and ϱ ∈ Z+, then the vertices of
En are divided into four partition resolving sets that are
Γ � Γ1, Γ2, Γ3, Γ4􏼈 􏼉, where Γ1 � u1􏼈 􏼉, Γ2 � u3􏼈 􏼉, Γ3 � uϱ+1􏽮 􏽯,
and Γ4 � ∀VEn| ∉ Γ1, Γ2, Γ3􏼈 􏼉􏼈 􏼉. For the desired proof, this
will be enough to show that the representation of all the
vertices of En is diferent w.r.t partition resolving set Γ and
then pd(En)≤ 4. Tat is why, we give the representation of
En w.r.t partition resolving set Γ.

Te representation of vertices of the inner cycle or frst
cycle of En is given in the following equation:
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Figure 1: Convex polytope En.
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Figure 2: Convex polytope Gn.
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Figure 3: Convex polytope Sn.
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r uξ
􏼌􏼌􏼌􏼌Γ􏼐 􏼑 �

(1, 1, ϱ − 1, 0), if ξ � 2,

(ξ − 1, ξ − 3, ϱ − ξ + 1, 0), if 4≤ ξ ≤ ϱ + 1,

(ϱ − 1, ϱ − 1, 1, 0), if ξ � ϱ + 2,

(2ϱ − ξ + 1, 2ϱ − ξ + 3, ξ − ϱ − 1, 0), if ϱ + 3≤ ξ ≤ 2ϱ.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

Te vertices of second cycle of En have the following
representation:

r vξ|Γ􏼐 􏼑 �

(1, 2, ϱ, 0), if ξ � 1,

(2, 1, ϱ − 1, 0), if ξ � 2,

(ξ, ξ − 2, ϱ − ξ + 1, 0), if 3≤ ξ � ϱ,

(ϱ, ϱ − 1, 1, 0), if ξ � ϱ + 1,

(ϱ − 1, ϱ, 2, 0), if ξ � ϱ + 2,

(2ϱ − ξ + 1, 2ϱ − ξ + 3, ξ − ϱ, 0), if ϱ + 3≤ ξ ≤ 2ϱ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

Te vertices of third cycle of En have the following
representation:

r wξ|Γ􏼐 􏼑 �

(2, 2, ϱ, 0), if ξ � 1,

(3, 2, ϱ − 1, 0), if ξ � 2,

(ξ + 1, ξ − 1, ϱ − ξ + 1, 0), if 3≤ ξ � ϱ + 1,

(ϱ + 1, ϱ − 1, 2, 0), if ξ � ϱ,

(ϱ, ϱ, 2, 0), if ξ � ϱ + 1,

(ϱ − ξ + 1, 2ϱ − ξ + 3, ξ − ϱ + 1, 0), if ϱ + 2≤ ξ ≤ 2ϱ,

(2, 3, ϱ + 1, 0), if ξ � 2ϱ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

Te vertices of fourth cycle of En have the following
representation:

r xξ |Γ􏼐 􏼑 �

(3, 3, ϱ + 1, 0), if ξ � 1,

(4, 3, ϱ, 0), if ξ � 2,

(ξ + 2, ξ, ϱ − ξ + 2, 0), if 3≤ ξ � ϱ + 1,

(ϱ + 2, ϱ, 3, 0), if ξ � ϱ,

(ϱ + 1, ϱ + 1, 3, 0), if ξ � ϱ + 1,

(ϱ − ξ + 2, 2ϱ − ξ + 4, ξ − ϱ + 2, 0), if ϱ + 2≤ ξ ≤ 2ϱ,

(3, 3, ϱ + 2, 0), if ξ � 2ϱ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

Te vertices of ffth cycle of En have the following
representation:
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r y
5
ξ |Γ􏼐 􏼑 �

(4, 4, ϱ + 1, 0), if ξ � 1,

(5, 4, ϱ, 0), if ξ � 2,

(ξ + 3, ξ + 1, ϱ − ξ + 2, 0), if 3≤ ξ ≤ ϱ − 2,

(ϱ + 2, ϱ, 4, 0), if ξ � ϱ − 1,

(ϱ + 2, ϱ + 1, 4, 0), if ξ � ϱ,

(ϱ + 1, ϱ + 2, 4, 0), if ξ � ϱ + 1,

(2ϱ − ξ + 2, 2ϱ − ξ + 3, ξ − ϱ + 3, 0), if 9 + 2≤ ξ ≤ 2ϱ − 1,

(4, 4, ϱ + 2, 0), if ξ � 2ϱ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

Te vertices of sixth and onward cycles of En have the
following representation, where k ∈ N and k≥ 6, and show
the position of the cycles:

r y
k
ξ |Γ􏼐 􏼑 �

(1, 1, 1, 0) + r y
k−1
ξ |Γ􏼐 􏼑, if ξ � 1,

(1, 1, 1, 0) + r y
k−1
ξ |Γ􏼐 􏼑, if ξ � 2,

(1, 1, 1, 0) + r y
k−1
ξ |Γ􏼐 􏼑, if 3≤ ξ ≤ ϱ − 2,

(1, 1, 1, 0) + r y
k−1
ξ |Γ􏼐 􏼑, if ξ � ϱ − 1,

(1, 1, 1, 0) + r y
k−1
ξ |Γ􏼐 􏼑, if ξ � ϱ,

(1, 1, 1, 0) + r y
k−1
ξ |Γ􏼐 􏼑, if ξ � ϱ + 1,

(1, 1, 1, 0) + r y
k−1
ξ |Γ􏼐 􏼑, if 9 + 2≤ ξ ≤ 2ϱ − 1,

(1, 1, 1, 0) + r y
k−1
ξ |Γ􏼐 􏼑, if ξ � 2ϱ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

Case 5. When n � 2ϱ + 1, ϱ ≥ 3, similarly as in Case 4, the
vertices of En are resolved into four partitions that are Γ �

Γ1, Γ2, Γ3,Γ4􏽮 􏽯, ϱ ∈ Z+ where Γ1 � u1􏼈 􏼉, Γ2 � u3􏼈 􏼉,
Γ3 � uϱ+1􏽮 􏽯, and Γ4 � ∀VEn| ∉ Γ1, Γ2, Γ3􏼈 􏼉􏼈 􏼉. Our aim is to
show that the vertices of En have unique representation w.r.t
Γ and then pd(En)≤ 4.

Te following are the representations of vertices of En

w.r.t Γ.
Te vertices of inner cycle of En have the following

representation:

r uξ |Γ􏼐 􏼑 �

(1, 1, ϱ − 1, 0), if ξ � 2,

(ξ − 1, ξ − 3, ϱ − ξ + 1, 0), if 4≤ ξ ≤ ϱ + 1,

(ϱ, ϱ − 1, 1, 0), if ξ � ϱ + 2,

(ϱ − 1, ϱ, 2, 0), if ξ � ϱ + 3,

(2ϱ − ξ + 2, 2ϱ − ξ + 4, ξϱ − 1, 0), if ϱ + 4≤ ξ ≤ 2ϱ + 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

Te vertices of second cycle of En have the following
representation:

r vξ|Γ􏼐 􏼑 �

(1, 2, ϱ, 0), if ξ � 1,

(2, 1, ϱ − 1, 0), if ξ � 2,

(ξ, ξ − 2, ϱ − ξ + 1, 0), if 3≤ ξ ≤ ϱ,

(ϱ + 1, ϱ − 1, 1, 0), if ξ � ϱ + 1,

(2ϱ − ξ + 2, 2ϱ − ξ + 2, 2, 0), if ξ � ϱ + 2,

(2ϱ − ξ + 2, 2ϱ − ξ + 4, ξ − ϱ, 0), if ϱ + 3≤ ξ ≤ 2ϱ + 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)
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Te vertices of third cycle of En have the following
representation:

r wξ|Γ􏼐 􏼑 �

(2, 2, ϱ, 0), if ξ � 1,

(3, 2, ϱ − 1, 0), if ξ � 2,

(ξ + 1, ξ − 1, ϱ − ξ + 1, 0), if 3≤ ξ ≤ ϱ − 1,

(ϱ + 1, ϱ − 1, 2, 0), if ξ � ϱ,

(ϱ + 1, ϱ, 2, 0), if ξ � ϱ + 1,

(ϱ, ϱ + 1, 3, 0), if ξ � ϱ + 2,

(2ϱ − ξ + 2, 2ϱ − ξ + 4, ξ − ϱ + 1, 0), if ϱ + 3≤ 2ϱ,

(2, 3, ϱ + 1, 0), if ξ � 2ϱ + 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

Te vertices of fourth cycle of En have the following
representation:

r xξ |Γ􏼐 􏼑 �

(3, 3, ϱ + 1, 0), if ξ � 1,

(4, 3, ϱ, 0), if ξ � 2,

(ξ + 2, ξ, ϱ − ξ + 2, 0), if 3≤ ξ ≤ ϱ − 1,

(ϱ + 2, ϱ, 3, 0), if ξ � ϱ,

(ϱ + 2, ϱ + 1, 3, 0), if ξ � ϱ + 1,

(ϱ + 1, ϱ + 2, 4, 0), if ξ � ϱ + 2,

(2ϱ − ξ + 3, 2ϱ − ξ + 5, ξ − ϱ + 2, 0), if ϱ + 3≤ 2ϱ,

(3, 4, ϱ + 2, 0), if ξ � 2ϱ + 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

Te vertices of ffth cycle of En have the following
representation:

r y
5
ξ |Γ􏼐 􏼑 �

(4, 4, ϱ + 1, 0), if ξ � 1,

(5, 4, ϱ, 0), if ξ � 2,

(ξ + 3, ξ + 1, ϱ − ξ + 2, 0), if 3≤ ξ ≤ ϱ − 1,

(ϱ + 3, ϱ + 1, 4, 0), if ξ � ϱ,

(ϱ + 2, ϱ + 2, 4, 0), if ξ � ϱ + 1,

(2ϱ − ξ + 3, 2ϱ − ξ + 5, ξ − ϱ + 3, 0), if ϱ + 2≤ ξ ≤ 2ϱ − 1,

(4, 5, ϱ + 3, 0), if ξ � 2ϱ,

(4, 4, ϱ + 2, 0), if ξ � 2ϱ + 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

Te vertices of sixth and onward cycles of En have the
representation given in the following equation, where k ∈ N

and k≥ 6:
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r y
k
ξ |Γ􏼐 􏼑 �

(1, 1, 1, 0) + r y
k−1
ξ |Γ􏼐 􏼑, if ξ � 1,

(1, 1, 1, 0) + r y
k−1
ξ |Γ􏼐 􏼑, if ξ � 2,

(1, 1, 1, 0) + r y
k−1
ξ |Γ􏼐 􏼑, if 3≤ ξ ≤ ϱ − 1,

(1, 1, 1, 0) + r y
k−1
ξ |Γ􏼐 􏼑, if ξ � ϱ,

(1, 1, 1, 0) + r y
k−1
ξ |Γ􏼐 􏼑, if ξ � ϱ + 1,

(1, 1, 1, 0) + r y
k−1
ξ |Γ􏼐 􏼑, if ϱ + 2≤ ξ ≤ 2ϱ − 1,

(1, 1, 1, 0) + r y
k−1
ξ |Γ􏼐 􏼑, if ξ � 2ϱ,

(1, 1, 1, 0) + r y
k−1
ξ |Γ􏼐 􏼑, if ξ � 2ϱ + 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

2.2. Generalized Convex Polytope Gn. Te graph Gn in
generalized form has n-, 6-, 5-, 4-, and 3-sided faces [13];
such graph is shown in Figure 2. Te frst cycle consists of
vertices uξ: 1≤ ξ ≤ n􏽮 􏽯, second cycle consists of vertices

vξ: 1≤ ξ ≤ n􏽮 􏽯, similarly the other cycles are in the desired
fgure. For the bound of pd(Gn), we represent the following
theorem. Te theorem shows that, for the desired purpose,
only four sets of vertices are enough for partition of V(Gn).

Theorem  . Let Gn be the generalized convex polytope with
n≥ 6, then pd(Gn)≤ 4.

Proof. For the proof, the following cases are discussed. □

Case 7. For n � 2ϱ, with ϱ ≥ 3 and ϱ ∈ Z+. For the desired
purpose, the vertices of Gn are divided into four sets.Te sets
are Γ � Γ1, Γ2, Γ3, Γ4􏼈 􏼉, where Γ1 � u1􏼈 􏼉, Γ2 � u2􏼈 􏼉,
Γ3 � uϱ+1􏽮 􏽯, and Γ4 � ∀V(Gn)| ∉ Γ1, Γ2, Γ3􏼈 􏼉􏼈 􏼉. Tis will be
enough to show that the vertices of Gn have unique rep-
resentation of vertices w.r.t Γ and then pd(Gn)≤ 4. For this,
the following is the representation w.r.t Γ.

Te vertices of frst cycle of Gn have the following
representation:

r uξ|Γ􏼐 􏼑 �

(ξ − 1, ξ − 2, ϱ − ξ + 1, 0), if 3≤ ξ ≤ ϱ,

(ϱ − 1, ϱ, 1, 0), if ξ � ϱ + 2,

(2ϱ − ξ + 1, 2ϱ − ξ + 2, ξ − ϱ − 1, 0), if ϱ + 3≤ ξ ≤ 2ϱ.

⎧⎪⎪⎨

⎪⎪⎩
(13)

Te vertices of second cycle of Gn have the following
representation:

r vξ|Γ􏼐 􏼑 �

(1, 1, ϱ, 0), if ξ � 1,

(ξ, ξ − 1, ϱ − ξ + 1, 0), if 2≤ ξ ≤ ϱ,

(ϱ, ϱ, 1, 0), if ξ � ϱ + 1,

(2ϱ − ξ + 1, 2ϱ − ξ + 2, ξ − ϱ, 0), if ϱ + 2≤ ξ ≤ 2ϱ.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(14)

Te vertices of third cycle of Gn have the following
representation:

r wξ|Γ􏼐 􏼑 �

(2, 2, ϱ + 1, 0), if ξ � 1,

(ξ + 1, ξ, ϱ − ξ + 2, 0), if 2≤ ξ ≤ ϱ,

(ϱ + 1, ϱ + 1, 2, 0), if ξ � ϱ + 1,

(2ϱ − ξ + 2, 2ϱ − ξ + 3, ξ − ϱ + 1, 0), if ϱ + 2≤ ξ ≤ 2ϱ.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(15)

Te vertices of fourth cycle of Gn have the following
representation:
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r xξ|Γ􏼐 􏼑 �

(3, 3, ϱ + 2, 0), if ξ � 1,

(ξ + 2, ξ + 1, ϱ − ξ + 2, 0), if 2≤ ξ ≤ ϱ − 1,

(ϱ + 2, ϱ + 1, 3, 0), if ξ � ϱ,

(2ϱ − ξ + 2, 2ϱ − ξ + 3, ξ − ϱ + 2, 0), if ϱ + 1≤ ξ ≤ 2ϱ − 1,

(3, 3, ϱ + 2, 0), if ξ � 2ϱ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

Te vertices of ffth cycle of Gn have the following
representation:

r y
5
ξ |Γ􏼐 􏼑 �

(4, 4, ϱ + 2, 0), if ξ � 1,

(ξ + 3, ξ + 2, ϱ − ξ + 2, 0), if 2≤ ξ ≤ ϱ − 1,

(ϱ + 3, ϱ + 2, 4, 0), if ξ � ϱ,

(2ϱ − ξ + 3, 2ϱ − ξ + 4, ξ − ϱ + 3, 0), if ϱ + 1≤ ξ ≤ 2ϱ − 1,

(4, 4, ϱ + 3, 0), if ξ � 2ϱ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

Te vertices of remaining cycles of Gn have the repre-
sentation given in the following equation with k ∈ N and
k≥ 6:

r y
k
ξ |Γ􏼐 􏼑 �

(1, 1, 1, 0) + r y
k−1
ξ |Γ􏼐 􏼑, if ξ � 1,

(1, 1, 1, 0) + r y
k−1
ξ |Γ􏼐 􏼑, if 2≤ ξ ≤ ϱ − 1,

(1, 1, 1, 0) + r y
k−1
ξ |Γ􏼐 􏼑, if ξ � ϱ,

(1, 1, 1, 0) + r y
k−1
ξ |Γ􏼐 􏼑, if ϱ + 1≤ ξ ≤ 2ϱ − 1,

(1, 1, 1, 0) + r y
k−1
ξ |Γ􏼐 􏼑, if ξ � 2ϱ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

Case 8. When n � 2ϱ + 1, ϱ ≥ 3, ϱ ∈ Z+, such as Case 7,
where the vertex set of Gn is divided into four sets that are
Γ � Γ1, Γ2, Γ3,Γ4􏽮 􏽯 such that Γ1 � u1􏼈 􏼉, Γ2 � u3􏼈 􏼉,
Γ3 � uϱ+1􏽮 􏽯, and Γ4 � ∀V(En)| ∉ Γ1, Γ2, Γ3􏼈 􏼉􏼈 􏼉. For the de-
sired purpose, we have to show that the vertices of Gn have
unique representation w.r.t Γ and then pd(Gn)≤ 4.

Te representations w.r.t Γ are given in the following.
Te vertices of frst cycle of Gn have the following

representation:

r uξ|Γ􏼐 􏼑 �

(ξ − 1, ξ − 2, ϱ − ξ + 1, 0, ϱ − 1, 0), if 3≤ ξ ≤ ϱ,

(ϱ, ϱ, 1, 0), if ξ � ϱ + 2,

(2ϱ − ξ + 2, 2ϱ − ξ + 3, ξ − ϱ, 0), if ϱ + 2≤ ξ ≤ 2ϱ + 1.

⎧⎪⎪⎨

⎪⎪⎩
(19)

Te vertices of second cycle of Gn have the following
representation:

r vξ|Γ􏼐 􏼑 �

(1, 1, ϱ, 0, ϱ − 1, 0), if ξ � 1,

(ξ, ξ − 1, ϱ − ξ + 1, 0), if 2≤ ξ ≤ ϱ,

(ϱ + 1, ϱ, 1, 0), if ξ � ϱ + 1,

(2ϱ − ξ + 2, 2ϱ − ξ + 3, ξ − ϱ, 0), if ϱ + 2≤ ξ ≤ 2ϱ + 1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(20)

Te vertices of third cycle of Gn have the following
representation:
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r wξ|Γ􏼐 􏼑 �

(2, 2, ϱ + 1, 0, ϱ − 1, 0), if ξ � 1,

(ξ + 1, ξ, ϱ − ξ + 2, 0), if 2≤ ξ ≤ ϱ,

(ϱ + 2, ϱ + 1, 2, 0), if ξ � ϱ + 1,

(2ϱ − ξ + 3, 2ϱ − ξ + 4, ξ − ϱ + 1, 0), if ϱ + 2≤ ξ ≤ 2ϱ + 1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(21)

Te vertices of fourth cycle of Gn have the following
representation:

r xξ|Γ􏼐 􏼑 �

(3, 3, ϱ + 1, 0), if ξ � 1,

(ξ + 2, ξ + 1, ϱ − ξ + 2, 0), if 2≤ ξ ≤ ϱ − 1,

(ϱ + 2, ϱ + 1, 3, 0), if ξ � ϱ,

(ϱ + 2, ϱ + 2, 3, 0), if ξ � ϱ + 1,

(2ϱ − ξ + 3, 2ϱ − ξ + 4, ξ − ϱ + 2, 0), if ϱ + 2≤ ξ ≤ 2ϱ,

(3, 3, ϱ + 2, 0), if ξ � 2ϱ + 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

Te vertices of ffth cycle of Gn have the following
representation:

r y
5
ξ |Γ􏼐 􏼑 �

(4, 4, ϱ + 2, 0), if ξ � 1,

(ξ + 3, ξ + 2, ϱ − ξ + 3, 0), if 2≤ ξ ≤ ϱ − 1,

(ϱ + 3, ϱ + 2, 4, 0), if ξ � ϱ,

(ϱ + 3, ϱ + 3, 4, 0), if ξ � ϱ + 1,

(2ϱ − ξ + 4, 2ϱ − ξ + 5, ξ − ϱ + 3, 0), if ϱ + 2≤ ξ ≤ 2ϱ,

(4, 4, ϱ + 3, 0), if ξ � 2ϱ + 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

Te remaining cycles of Gn have the following repre-
sentation with k≥ 6 and k ∈ N:

r y
k
ξ |Γ􏼐 􏼑 �

(1, 1, 1, 0) + r y
k− 1

|Γ􏼐 􏼑, if ξ � 1,

(1, 1, 1, 0) + r y
k− 1

|Γ􏼐 􏼑, if 2≤ ξ ≤ ϱ − 1,

(1, 1, 1, 0) + r y
k− 1

|Γ􏼐 􏼑, if ξ � ϱ,

(1, 1, 1, 0) + r y
k− 1

|Γ􏼐 􏼑, if ξ � ϱ + 1,

(1, 1, 1, 0) + r y
k− 1

|Γ􏼐 􏼑, if ϱ + 2≤ ξ ≤ 2ϱ,

(1, 1, 1, 0) + r y
k− 1

|Γ􏼐 􏼑, if ξ � 2ϱ + 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)

2.3. Generalized Convex Polytope Sn. Te formation of
convex polytopes is in [13]. Sn consists of 3-, 4-, 5-, and n−

sided faces. Te arrangement of cycles in Sn is like the frst
cycle is composed of vertices uξ: 1≤ ξ ≤ n􏽮 􏽯 and the second
cycle is composed of vertices vξ: 1≤ ξ ≤ n􏽮 􏽯. Te general way

of arrangement of cycles is shown in Figure 3. Te following
theorem is for pd(Sn), which shows that only four sets of
vertices are required for the desired purpose.

Theorem 9. Let Sn be the generalized convex polytope with
n≥ 6, then pd(Sn)≤ 4.
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Proof. We represent the proof in two cases given as
follows. □

Case 10. For n � 2ϱ, with ϱ ≥ 3 and ϱ ∈ Z+, the vertices of Sn

are divided into four sets, as shown in Figure 3. Te sets are
Γ � Γ1, Γ2, Γ3, Γ4􏼈 􏼉, where Γ1 � u1􏼈 􏼉, Γ2 � u2􏼈 􏼉, Γ3 � uϱ+1􏽮 􏽯,

and Γ4 � ∀V(Sn)| ∉ Γ1, Γ2, Γ3􏼈 􏼉􏼈 􏼉. For the desired proof, this
will be enough to show that the vertices of Sn have unique
representation w.r.t Γ and then pd(Sn)≤ 4. Te represen-
tation is given in the following equation.

Te vertices of frst cycle in Sn have the following
representation:

r uξ|Γ􏼐 􏼑 �
(ξ − 1, ξ − 2, ϱ − ξ + 1, 0), if 3≤ ξ ≤ ϱ,

(2ϱ − ξ + 1, 2ϱ − ξ + 2, ξ − ϱ − 1, 0), if ϱ + 2≤ ξ ≤ 2ϱ.
􏼨 (25)

Te vertices of second cycle of Sn have the following
representation:

r vξ|Γ􏼐 􏼑 �

(1, 2, ϱ + 1, 0), if ξ � 1,

(ξ, ξ − 1, ϱ − ξ + 2, 0), if 2≤ ξ ≤ ϱ + 1,

(2ϱ − ξ + 2, 2ϱ − ξ + 3, ξ − ϱ, 0), if ϱ + 2≤ ξ ≤ 2ϱ.

⎧⎪⎪⎨

⎪⎪⎩
(26)

Te vertices of third cycle of Sn have the following
representation:

r wξ|Γ􏼐 􏼑 �

(2, 2, ϱ + 1, 0), if ξ � 1,

(ξ + 1, ξ, ϱ − ξ + 2, 0), if 2≤ ξ ≤ ϱ,

(ϱ + 1, ϱ + 1, 2, 0), if ξ � ϱ + 1,

(2ϱ − ξ + 2, 2ϱ − ξ + 3, ξ − ϱ + 1, 0), if ϱ + 2≤ ξ ≤ 2ϱ.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(27)

Te vertices of fourth cycle of Sn have the following
representation:

r w
4
ξ |Γ􏼐 􏼑 �

(3, 3, ϱ + 2, 0), if ξ � 1,

(ξ + 2, ξ + 1, ϱ − ξ + 3, 0), if 2≤ ξ ≤ ϱ,
(ϱ + 2, ϱ + 2, 3, 0), if ξ � ϱ + 1,

(2ϱ − ξ + 3, 2ϱ − ξ + 4, ξ − ϱ + 2, 0), if ϱ + 2≤ ξ ≤ 2ϱ.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(28)

Te representation for the ffth and onward cycles is
given in the following equation, where k ∈ N and k≥ 5:

r w
k
ξ |Γ􏼐 􏼑 �

(1, 1, 1, 0) + r x
k−1
ξ |Γ􏼐 􏼑, if ξ � 1,

(1, 1, 1, 0) + r x
k−1
ξ |Γ􏼐 􏼑, if 2≤ ξ ≤ ϱ,

(1, 1, 1, 0) + r x
k−1
ξ |Γ􏼐 􏼑, if ξ � ϱ + 1,

(1, 1, 1, 0) + r x
k−1
ξ |Γ􏼐 􏼑, if ϱ + 2≤ ξ ≤ 2ϱ.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(29)
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Case 11. For n � 2ϱ + 1, with ϱ ≥ 3 and ϱ ∈ Z+. Here, ver-
tices of Sn are divided into four sets. Te sets are
Γ � Γ1, Γ2, Γ3, Γ4􏼈 􏼉 such that Γ1 � u1􏼈 􏼉, Γ2 � u2􏼈 􏼉,
Γ3 � uϱ+1􏽮 􏽯, and Γ4 � ∀V(Sn)| ∉ Γ1, Γ2, Γ3􏼈 􏼉􏼈 􏼉. For our
purpose, we show that all the vertices of Sn have unique

representation w.r.t Γ and then pd(Sn)≤ 4. Te desired
representations are given in the following equation.

Te vertices of frst cycle of Sn have the following
representation:

r uξ|Γ􏼐 􏼑 �

(ξ + 1, ξ − 2, ϱ − ξ + 1, 0), if 3≤ ξ ≤ ϱ,

(ϱ, ϱ, 1, 0), if ξ � ϱ + 2,

(2ϱ − ξ + 2, 2ϱ − ξ + 3, ξ − ϱ − 1, 0), if ϱ + 3≤ ξ ≤ ϱ + 1,

(2ϱ − ξ + 2, 2ϱ − ξ + 3, ξ − ϱ + 1, 0), if ϱ + 2≤ ξ ≤ 2ϱ + 1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(30)

Te vertices of second cycle of Sn have the following
representation:

r vξ|Γ􏼐 􏼑 �

(1, 2, ϱ + 1, 0), if ξ � 1,

(ξ, ξ − 1, ϱ − ξ + 2, 0), if 2≤ ξ ≤ ϱ + 1,

(ϱ + 1, ϱ + 1, 2, 0), if ξ � ϱ + 2,

(2ϱ − ξ + 3, 2ϱ − ξ + 4, ξ − ϱ, 0), if ϱ + 3≤ ξ ≤ 2ϱ + 1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(31)

Te vertices of third cycle of Sn haves the following
representation:

r wξ|Γ􏼐 􏼑 �

(2, 2, ϱ + 1, 0), if ξ � 1,

(ξ + 1, ξ, ϱ − ξ + 2, 0), if 2≤ ξ ≤ ϱ,

(ϱ + 2, ϱ + 1, 2, 0), if ξ � ϱ + 1,

(2ϱ − ξ + 3, 2ϱ − ξ + 4, ξ − ϱ + 1, 0), if ϱ + 2≤ ξ ≤ 2ϱ + 1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(32)

Te vertices of fourth cycle of Sn have the following
representation:

r x
4
ξ |Γ􏼐 􏼑 �

(3, 3, ϱ + 2, 0), if ξ � 1,

(ξ + 2, ξ + 1, ϱ − ξ + 3, 0), if 2≤ ξ ≤ ϱ,

(ϱ + 3, ϱ + 2, 3, 0), if ξ � ϱ + 1,

(2ϱ − ξ + 4, 2ϱ − ξ + 5, ξ − ϱ + 2, 0), if ϱ + 2≤ ξ ≤ 2ϱ + 1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(33)

Te representation for the vertices of ffth cycle and
onward is in the following equation, where k ∈ N and k≥ 5:
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r x
k
ξ |Γ􏼐 􏼑 �

(1, 1, 1, 0) + r x
k−1
ξ |Γ􏼐 􏼑, if ξ � 1,

(1, 1, 1, 0) + r x
k−1
ξ |Γ􏼐 􏼑, if 2≤ ξ ≤ ϱ,

(1, 1, 1, 0) + r x
k−1
ξ |Γ􏼐 􏼑, if ξ � ϱ + 1,

(1, 1, 1, 0) + r x
k−1
ξ |Γ􏼐 􏼑, if ϱ + 2≤ ξ ≤ 2ϱ + 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(34)

3. Conclusion

In this work, diferent types of convex polytopes are con-
sidered, and these polytopes are generalized by the addition
of some cycles that are discussed in the main work. All the
new cycles are generated up to some number; then, general
representations were given for representing further cycles.
Te polytopes that are discussed for the partition dimension
in generalized form are En, Gn, and Sn. Also, we obtained the
bounds for the partition dimension of the desired polytopes,
and the bound for the partition dimension of the considered
polytopes is found to be 4 or less [35].
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