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In this paper, the coupled system of Whitham–Broer–Kaup equations of the Caputo fractional derivative (CFD) is studied using
the Sumudu decomposition method (SDM). Using diferent dispersion relations, these equations are needed to describe the
properties of waves in shallow water. Te current investigation for the future scheme includes convergence and error analysis. We
use two examples to demonstrate the leverage and efectiveness of the proposed scheme, and the error analysis is discussed to
ensure its accuracy. Te numerical simulation is carried out to ensure the accuracy of the future technique. Te obtained
numerical and graphical results are presented, and the proposed scheme is computationally very accurate and simple to study and
solve fractionally coupled nonlinear complex phenomena encountered in science and technology.

1. Introduction

Partial diferential equations with nonlinearities are used to
describe a wide range of phenomena in applied sciences,
engineering, and technology, ranging from gravitation to
dynamics [1–3]. Indeed, nonlinear PDEs are important tools
for modeling nonlinear dynamical phenomena in a range of
areas, including mathematical biology, plasma physics,
solid-state physics, and fuid dynamics, as shown in [4]. A
suitable set of partial diferential equations can represent the
majority of dynamical systems. Partial diferential equations
are also well known for their application in the solution of
mathematical problems such as the Poincare conjecture and
the Calabi conjecture.

It has been noticed that the nonlinear evolution of shallow
water waves in fuid dynamics is represented by a coupled
system of Whitham–Broer–Kaup (WBK) equations [5].
Whitham [6], Broer [7], and Kaup [8] proposed the coupled
system of the aforementioned equations. Te aforementioned
equations describe the propagation of shallowwater waves with
diferent spreading relations; see [9].

Given below are the governing equations in classical
order for the aforementioned phenomenon
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where ξ � ξ (η, τ) is horizontal velocity, φ � φ (η, τ) is
height that deviates from equilibrium position of the liquid,
and c1, c2 are constants which are represented in diferent
difusion powers.

Investigating the fndings of nonlinear PDEs has been
a major area of research over the last few decades. Numerous
writers have developed a variety of mathematical methods
for examining the approximate results of nonlinear PDEs.
Aminikhah and Biazar [10] solved the coupled model of the
Brusselator and Burger equations using the homotopy
perturbation method (HPM). Noor and Mohyud-Din [11]
used HPM to investigate the solutions of various classical
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orders of PDEs. For approximate solutions to other clas-
sically ordered partial diferential equations by using other
methods, see [12–25]. Various methods have been used to
investigate the solution to the given nonlinear coupled
system (1) of partial diferential equations. Using the hy-
perbolic function method, Xie et al. [1] found some new
solitary wave solutions. El-Sayed and Kaya [26] used the
Adomian decomposition method (ADM) to obtain ap-
proximate solutions. Rafei and Daniali [27] used the vari-
ational iteration method (VIM) to create the analytical
solutions. Ahmad et al. [4] used the ADM (Adomian de-
composition method) in conjunction with He’s polynomial
to investigate the coupled scheme result of coupled system
(1). Recently, Haq and Ishaq [28] used the optimal

homotopy asymptotic method (OHAM) to solve the WBK
equations and obtain numerical solutions.

Partial diferential equations of fractional order have
been getting a lot of attention lately [29–34] because they are
used in a wide range of applied sciences, such as control
theory, pattern reorganization, signal processing, system
identifcation, and image processing. Because fractional-
order diferential equations describe many physical phe-
nomena more accurately than classical order diferential
equations in many sciences, there is a strong reason to fnd
good numerical solutions to fractional-order diferential
equations.

Now, we present a coupled (WBK) equation of fractional
order of the form:
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(2)

with the initial conditions

ξ(η, 0) � α(η),φ(η, 0) � β(η). (3)

It should be noted that if ] � λ � 1, the system equation
(2) becomes the standard WBK equations.

When c2 � 1 and c1 � 0, Eq. (2) transforms into
a modifed Boussinesq (MB) equation, whereas when c2 � 1
and c1 ≠ 0, the system means an approximate long wave
(ALW) equation. Similarly, the solution for the fractional
order of WBK partial diferential equations was investigated
using various analytical and numerical methods, such as the
residual power series method [2], the Riccati subequation
method [35], the exponential function method [36], the
coupled fractional reduced diferential transform method
(CFRDTM) [37], the q-homotopy analysis transform
method (q-HATM) [38], the Laplace Adomian de-
composition method (LADM) [3], the Yang decomposition
method (YDM) [39], and the new iterative method (NIM)
[40]. In 1980, Adomian presented the Adomian de-
composition method (ADM), which is an efcient method
for fnding numerical and explicit solutions to a large class of
diferential equations representing physical problems. It
works efectively for initial value problems and boundary
value problems for partial, fractional, and ordinary difer-
ential equations, including linear and nonlinear equations.
Te Adomian decomposition method combined with the
Sumudu transformation leads to a powerful method called
the Sumudu decomposition method (SDM), which was
introduced by Devendra et al. [41]. Te SDM has also been
used in a number of papers to obtain numerical solutions to

nonlinear partial diferential equations of fractional order, as
shown in [42–44].

In this paper, we use the Sumudu decompositionmethod
(SDM) to look into both the general and numerical solutions
of the coupled system of fractional-order Whitham–
Broer–Kaup equations. SDM is a simple and very efective
method that doesn’t need to be perturbation or liberaliza-
tion. We compare the results of our proposed method with
those of other well-known methods, such as ADM, VIM,
OHAM, NIM, and LADM. We can see that the proposed
method outperforms the mentioned method for solving
nonlinear fractional-order PDEs.

2. Preliminaries

In this section, we explain the basic defnitions and concepts
that will be used in this work.

Defnition 1 (see [33]). Suppose the function
φ ∈ Cμ, μ≥ − 1, then the Riemann-Liouville integral oper-
ator of order ]≥ 0, is known as follows:

J
]φ(τ) �

1
Γ(])

􏽚
τ

0
(τ − δ)

]− 1φ(δ)dδ, ]> 0, δ > 0,

φ(τ), ] � 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

Defnition 2 (see [34]). Suppose φ ∈ Cn
− 1, then the Caputo

fractional derivative of order ] if n − 1< ]< n, n ∈ N, is
defned as follows:
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Defnition 3. Te Sumudu transform (ST) of the function
φ(τ) is defned by

S[φ(τ)] � ϕ(ρ) � 􏽚
∞

0
(1/ρ)φ(τ) e

− (τ/ρ)
dτ, τ > 0. (6)

Defnition 4. Te Sumudu transform of derivative of frac-
tional order in Caputo’ form is

S D
]φ(τ)􏼂 􏼃 �

ϕ(ρ)

ρ]
− 􏽘

r− 1

j�0

φ(j)
(0)

ρ]− j
, r − 1< ]≤ r, (7)

where ϕ(ρ) represents the ST of φ(τ).

3. Sumudu Decomposition Method (SDM)

Tis section illustrates the new approach of using ST
combined with the decomposition method to fnd the so-
lution to the general form of the nonlinear FPDE.

D
]
τφ(η, τ) + Rφ(η, τ) + Nφ(η, τ) � ψ(η, τ), τ > 0, 0< ]≤ 1,

(8)

with the initial condition:

φ(η, 0) � β(η), (9)

where D]
τ � z]φ(η, τ)/zτ], while R is a linear operator, N is

a nonlinear term, and ψ is the source function.
Taking ST to equation (8), we get

S D
]
τφ(η, τ) + R[φ(η, τ] + Nφ(η, τ)􏼂 􏼃 � S[ψ(η, τ)], τ > 0, 0< ]≤ 1, (10)

or

S[φ(η, τ)] � φ(η, 0) + ρ]S[ψ(η, τ)] − ρ]S[R[φ(η, τ)] + Nφ(η, τ)]. (11)

Taking S− 1 of equation (11), we get

φ(η, τ) � Ω(η, τ) − S
− 1 ρυS[R[φ(η, τ)] + N[φ(η, τ)]]􏼂 􏼃,

(12)

such that: Ω(η, τ) � S
− 1 φ(η, 0) + ρυS[ψ(η, τ)]􏼂 􏼃. (13)

Now, use the decomposition approach by assuming
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Te nonlinear term can be decomposed as follows:
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, i � 1, 2, · · · . (16)

Substituting equations (14) and (15) in equation (12), we
get

􏽘
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− 1 ρ]S R[φ(η, τ)] + 􏽘
∞

i�0
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(17)

As result, the following recurrence relation is obtained:

φ0(η, τ) � Ω(η, τ),

φk+1(η, τ) � − S
− 1 ρυS R φk(η, τ)􏼂 􏼃 + Ak􏼂 􏼃􏼂 􏼃, k � 0, 1, 2, . . . .

(18)

4. Convergence Analysis of SDM Solution

In this section, we establish SDM convergence and
uniqueness.

Theorem 1 (see [45–47]). Te SDM of equation (8) has
a unique solution whenever 0 < δ < 1, such that
δ � (δ1 + δ2)τ(υ)/Γ(υ + 1).

Proof. Let I � (C[E], ‖.‖) the Banach space of all continuous
functions on E � [0, τ] with the norm ‖.‖, we defne
a mapping F: I⟶ I where
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φk+1(η, τ) � Ω(η, τ) − S
− 1 ρυS R φk(η, τ)􏼂 􏼃 + N φk(η, τ)􏼂 􏼃􏼂 􏼃􏼂 􏼃, k � 0, 1, 2, . . . . (19)

Now, suppose R[φ(η, τ)] and N[φ(η, τ)] are also Lip-
schitzian with |Rφ(η, τ) − Rφ(η, τ)|< δ1|φ(η, τ) − φ(η, τ)|,

and |Nφ(η, τ) − Nφ(η, τ)|< δ2|φ(η, τ) − φ(η, τ)|, where δ1,

and δ2 are Lipschitz constant, and φ, 􏽢φ is two distinct so-
lutions of the equation (8).

‖Fφ − Fφ‖ � max
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�
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(20)

Since 0 < δ < 1, the mapping is contraction. Ten, there
would be a unique solution to (8). □

Theorem 2 (see [45–47]). Te SDM solution of equation (8)
is convergent.

Proof. Suppose Gn � 􏽐
n
i�0φi(η, τ). We are going to prove

that Gn􏼈 􏼉 is a Cauchy sequence in Banach space I:
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����
����.

(21)

Let n � m + 1, and then,
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Gm+1 − Gm

����
����≤ δ Gm − Gm− 1

����
����≤ δ2 Gm− 1 − Gm− 2

����
����≤ · · · ≤ δm

G1 − G0
����

����. (22)

By using the triangle inequality, we have
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Since 0 < δ < 1, we have (1 − δn− m)< 1, then

Gn − Gm

����
����≤

δm

1 − δ
max
τ∈E

φ1
����

����. (24)

However, ‖φ1‖<∞, then ‖Gn − Gm‖⟶ 0 as m⟶∞,

and hence, Gn􏼈 􏼉 is a Cauchy sequence in I, and so the series
􏽐

n
j�0φj(η, τ) converges. □

Theorem 3. Te maximum absolute truncation error of
equation (14) to equation (8) is estimated to be

max
τ∈I

φ(η, τ) − 􏽘
m

i�0
φi(η, τ)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
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����. (25)

Proof. From Teorem 2, we have

Gn − Gm

����
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max
τ∈E

φ1
����

����, (26)

as n⟶∞, then Gn⟶ φ(η, τ), so we have

φ(η, τ) − Gm

����
����≤

δm

1 − δ
max
τ∈E

φ1
����

����. (27)

Ten,

max
τ∈I

φ(η, τ) − 􏽘
m

j�0
φj(η, τ)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
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≤

δm

1 − δ
max
τ∈I

φ1
����

����. (28)

□

5. Application

Tis part talks about the general steps for solving equation
(2) numerically with given initial conditions. Taking ST of
equation (2) as

S
z
]ξ

zτ]
+ ξ

z
λξ

zηλ
+

z
λφ

zηλ
+ c1

z
2λξ

zη2λ
� 0⎡⎣ ⎤⎦,

S
z
]φ

zτ]
+ ξ

z
λφ

zηλ
+ φ

z
λξ

zηλ
+ c2

z
3λξ

zη3λ
− c1

z
2λϕ

zη2λ
� 0⎡⎣ ⎤⎦, η, τ ≥ 0, 0< ], λ≤ 1.

(29)

Applying ST, we get

ρ− ]
S[ξ(η, τ)] − ρ− ]ξ(η, 0) � − S ξ

z
λξ

zηλ
+

z
λφ

zηλ
+ c1

z
2λξ

zη2λ
⎡⎣ ⎤⎦,

ρ− ]
S[φ(η, τ)] − ρ− ]φ(η, 0) � − S ξ

z
λφ

zηλ
+ φ

z
λξ

zηλ
+ c2

z
3λξ

zη3λ
− c1

z
2λϕ

zη2λ
⎡⎣ ⎤⎦.

(30)

By using initial conditions equation (3), we obtain
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S[ξ(η, τ)] � α(η) − ρ]S ξ
z
λξ

zηλ
+

z
λφ

zηλ
+ c1

z
2λξ

zη2λ
⎡⎣ ⎤⎦,

S[φ(η, τ)] � β(η) − ρ]S ξ
z
λφ

zηλ
+ φ

z
λξ

zηλ
+ c2

z
3λξ

zη3λ
− c1

z
2λϕ

zη2λ
⎡⎣ ⎤⎦.

(31)

Taking S− 1 of equation (31), we get

ξ(η, τ) � α(η) − S
− 1 ρ]S ξ

z
λξ

zηλ
+

z
λφ

zηλ
+ c1

z
2λξ

zη2λ
⎡⎣ ⎤⎦⎡⎣ ⎤⎦,

φ(η, τ) � β(η) − S
− 1 ρ]S ξ

z
λφ

zηλ
+ φ

z
λξ

zηλ
+ c2

z
3λξ

zη3λ
− c1

z
2λϕ

zη2λ
⎡⎣ ⎤⎦⎡⎣ ⎤⎦ .

(32)

Now, use the decomposition approach by assuming

ξ(η, τ) � 􏽘
∞

i�0
ξi(η, τ),φ(η, τ) � 􏽘

∞

i�0
φi(η, τ). (33)

Te nonlinear terms can be decomposed as follows:

ξ
z
λξ

zηλ
� 􏽘
∞

i�0
Ai, ξ

z
λφ

zηλ
� 􏽘
∞

i�0
Qi,φ

z
λξ

zηλ
� 􏽘
∞

i�0
Pi, (34)

for some Adomian polynomials Ai, Qi, and Pi that are given
by

Ai �
1
i!

d
i

dλi
􏽘

∞

i�0
λiξi 􏽘

∞

i�0
λi zλξi

zηλ
⎡⎣ ⎤⎦

λ�0

,

Qi �
1
i!

d
i

dλi
􏽘

∞

i�0
λiξi 􏽘

∞

i�0
λi zλφi

zηλ
⎡⎣ ⎤⎦

λ�0

,

Pi �
1
i!

d
i

dλi
􏽘

∞

i�0
λiφi 􏽘

∞

i�0
λi zλξi

zηλ
⎡⎣ ⎤⎦

λ�0

.

(35)

Substituting equations (33) and (34) in equation (32), we
get

􏽘

∞

i�0
ξi(η, τ) � α(η) − S

− 1 ρ]S 􏽘

∞

i�0
Ai +

z
λφ

zηλ
+ c1

z
2λξ

zη2λ
⎡⎣ ⎤⎦⎡⎣ ⎤⎦,

􏽘

∞

i�0
φi(η, τ) � β(η) − S

− 1 ρ]S 􏽘
∞

i�0
Qi + 􏽘
∞

i�0
Pi + c2

z
3λξ

zη3λ
− c1

z
2λϕ

zη2λ
⎡⎣ ⎤⎦⎡⎣ ⎤⎦ .

(36)

As result, the following recurrence relations are obtained
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ξ0(η, τ) � ξ0(η, 0) � α(η),

φ0(η, τ) � φ0(η, 0) � β(η),

ξ1(η, τ) � − S
− 1 ρ]S I0 +

z
λφ0

zηλ
+ c1

z
2λξ0

zη2λ
⎡⎣ ⎤⎦⎡⎣ ⎤⎦,

φ1(η, τ) � − S
− 1 ρ]S Q0 + P0 + c2

z
3λξ0

zη3λ
− c1

z
2λϕ0

zη2λ
⎡⎣ ⎤⎦⎡⎣ ⎤⎦,

ξ2(η, τ) � − S
− 1 ρ]S I1 +

z
λφ1

zηλ
+ c1

z
2λξ1

zη2λ
⎡⎣ ⎤⎦⎡⎣ ⎤⎦,

φ2(η, τ) � − S
− 1 ρ]S Q1 + P1 + c2

z
3λξ1

zη3λ
− c1

z
2λϕ1

zη2λ
⎡⎣ ⎤⎦⎡⎣ ⎤⎦,

ξ3(η, τ) � − S
− 1 ρ]S I2 +

z
λφ2

zηλ
+ c1

z
2λξ2

zη2λ
⎡⎣ ⎤⎦⎡⎣ ⎤⎦,

φ3(η, τ) � − S
− 1 ρ]S Q2 + P2 + c2

z
3λξ2

zη3λ
− c1

z
2λϕ2

zη2λ
⎡⎣ ⎤⎦⎡⎣ ⎤⎦,

.

.

.

ξk(η, τ) � − S
− 1 ρ]S Ak− 1 +

z
λφk− 1

zηλ
+ c1

z
2λξk− 1

zη2λ
⎡⎣ ⎤⎦⎡⎣ ⎤⎦, k≥ 1,

φk(η, τ) � − S
− 1 ρ]S Qk− 1 + Pk− 1 + c2

z
3λξk− 1

zη3λ
− c1

z
2λϕk− 1

zη2λ
⎡⎣ ⎤⎦⎡⎣ ⎤⎦, k≥ 1.

(37)

Following that, one can get the solution of equation (2)

ξ(η, τ) � ξ0(η, τ) + ξ1(η, τ) + ξ2(η, τ) + ξ3(η, τ) + · · · � 􏽘
∞

i�0
ξi(η, τ),

φ(η, τ) � φ0(η, τ) + φ1(η, τ) + φ2(η, τ) + φ3(η, τ) + · · · � 􏽘
∞

i�0
φi(η, τ).

(38)

6. Elucidative Examples

In this section, two examples of nonlinear coupled WBK
equations are solved to demonstrate the performance and
efciency of the SDM.

Example 1. Consider the coupled system of WBK with c1 �

0, c2 � 1, λ � 1, we obtain
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z
]ξ

zτ]
+ ξ

zξ
zη

+
zφ
zη

� 0,

z
]φ

zτ]
+ ξ

zφ
zη

+ φ
zξ
zη

+
z
3λξ

zη3λ
� 0, 0< ]≤ 1, 0< τ ≤ 1, − 100≤ η≤ 100,

(39)

with the ICs:

ξ(η, 0) � ε − 2h coth [h(η + c)],φ(η, 0) � − 2 h
2 csch2 [h(η + c)], (40)

where ε, h, and n are arbitrary constants. Te exact solutions of equation (39) at classical order
] � 1 are given by

ξ(η, τ) � ε − 2h coth [h(η + c − ετ)],φ(η, τ) � − 2 h
2 csch2 [h(η + c − ετ)]. (41)

Using the procedure equation (36), we have

􏽘

∞

i�0
ξi(η, τ) � ε − 2h coth [h(η + c)] − S

− 1 ρ]S 􏽘
∞

i�0
Ai + 􏽘
∞

i�0

zφi

zη
⎡⎣ ⎤⎦⎡⎣ ⎤⎦,

􏽘

∞

i�0
φi(η, τ) � − 2 h

2 csch2 [h(η + c)] − S
− 1 ρ]S 􏽘

∞

i�0
Qi + 􏽘
∞

i�0
Pi + 􏽘
∞

i�0

z
3ξi

zη3
⎡⎣ ⎤⎦⎡⎣ ⎤⎦.

(42)

Using the procedure equation (37), we have

ξ0(η, τ) � ε − 2 h coth [h(η + c)],φ0(η, τ) � − 2 h
2 csch2 [h(η + c)],

ξ1(η, τ) � −
2 τ]εh2 csch2 [h(η + c)]

Γ(1 + ])
,

φ1(η, τ) � −
4 τ]h3ε coth [(η + c)h]csch2 [h(η + c)]

Γ(1 + ])
,

ξ2(η, τ) � −
4 τ2]h3ε2 coth [(η + c)h]csch2 [h(η + c)]

Γ(1 + 2])
,

φ2(η, τ) � −
4 τ2]h4ε2(2 + cosh [2(η + c)h])csch4 [h(η + c)]

Γ(1 + 2])
,

ξ3(η, τ) � −
2 τ3]h4 ε2 csch5 [(η + c)h]

Γ[1 + ]]
2Γ[1 + 3]]

− 4h cosh [(η + c)h]Γ[1 + 2]]

+ Γ[1 + ]]
2

8h cosh [(η + c)h]

+ ε
3 sinh [(η + c)h]

+ sinh [3(η + c)h]
􏼠 􏼡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

φ3(η, τ) � −
2 τ3]h5ε2 csch6 [(η + c)h]

Γ[1 + ]]
2Γ[1 + 3]]

− 4h(3 + 2 cosh [2(η + c)h])Γ[1 + 2]]

+ Γ[1 + ]]
2

24h + 16 h cosh [2(η + c)h]

+ 10 ε sinh [2(η + c)h]

+ ε sinh [4(η + c)h]

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(43)
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In the same way, we can fnd the rest of the terms and
then

ξ(η, τ) � ξ0(η, τ) + ξ1(η, τ) + ξ2(η, τ) + ξ3(η, τ) + · · · ,

φ(η, τ) � φ0(η, τ) + φ1(η, τ) + φ2(η, τ) + φ3(η, τ) + · · · .

(44)

After four terms, we have the solution of equation (39) as

ξ(η, τ) � ε − 2 h coth [h(η + c)] −
2 τ]εh2 csch2 [h(η + c)]

Γ(1 + ])

−
4 τ2]h3ε2 coth [(η + c)h]csch2 [h(η + c)]

Γ(1 + 2])

−
2 τ3]h4 ε2 csch5 [(η + c)h]

Γ[1 + ]]
2Γ[1 + 3]]

− 4h cosh [(η + c)h]Γ[1 + 2]]

+ Γ[1 + ]]
2

8h cosh [(η + c)h]

+ ε
3 sinh [(η + c)h]

+ sinh [3(η + c)h]

⎛⎝ ⎞⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

φ(η, τ) � − 2 h
2 csch2 [h(η + c)] −

4 τ]h3ε coth [(η + c)h]csch2 [h(η + c)]

Γ(1 + ])

−
4 τ2]h4ε2(2 + cosh [2(η + c)h])csch4 [h(η + c)]

Γ(1 + 2])

−
2 τ3]h5ε2 csch6 [(η + c)h]

Γ[1 + ]]
2Γ[1 + 3]]

− 4h(3 + 2 cosh [2(η + c)h])Γ[1 + 2]]

+ Γ[1 + ]]
2

24h + 16 h cosh [2(η + c)h]

+ 10 ε sinh [2(η + c)h]

+ ε sinh [4(η + c)h]

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(45)

Example 2. Consider the coupled system of WBK with c1 �

(1/2), c2 � 0, λ � 1, we obtain

z
]ξ

zτ]
+ ξ

zξ
zη

+
zφ
zη

+
1
2

z
2ξ

zη2
� 0,

z
]φ

zτ]
+ ξ

zφ
zη

+ φ
zξ
zη

−
1
2

z
2ϕ

zη2
� 0, 0< ]≤ 1, 0< τ ≤ 1, − 100≤ η≤ 100,

(46)

with the ICs:

ξ(η, 0) � ε − h coth [h(η + c)], φ(η, 0) � − h
2 csch2 [h(η + c)]. (47)

Te exact solutions of equation (46) at classical order
] � 1 are given by
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ξ(η, τ) � ε − h coth [h(η + c − ετ)],φ(η, τ) � − h
2 csch2 [h(η + c − ετ)]. (48)

As a result of following the same procedure as in Ex-
ample 1, we have

ξ0(η, τ) � ε − h coth [h(η + c)], φ0(η, τ) � − h
2 csch2 [h(η + c)],

ξ1(η, τ) � −
τ]εh2 csch2 [h(η + c)]

Γ(1 + ])
,

φ1(η, τ) � −
2 τ]h3ε coth [(η + c)h]csch2 [h(η + c)]

Γ(1 + ])
,

ξ2(η, τ) � −
2 τ2]h3ε2 coth [(η + c)h]csch2 [h(η + c)]

Γ(1 + 2])
,

φ2(η, τ) � −
2 τ2]h4ε2(2 + cosh [2(η + c)h])csch4 [h(η + c)]

Γ(1 + 2])
,

ξ3(η, τ) � −
τ3]h4 ε2 csch5 [(η + c)h]

Γ[1 + ]]
2Γ[1 + 3]]

− 2h cosh [(η + c)h]Γ[1 + 2]]

+ Γ[1 + ]]
2

4h cosh [(η + c)h]

+ ε
3 sinh [(η + c)h]

+ sinh [3(η + c)h]

⎛⎝ ⎞⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

φ3(η, τ) � −
τ3]h5ε2 csch6 [(η + c)h]

Γ[1 + ]]
2Γ[1 + 3]]

− 2h(3 + 2 cosh [2(η + c)h])Γ[1 + 2]]

+ Γ[1 + ]]
2

12h + 8 h cosh [2(η + c)h]

+ 10 ε sinh [2(η + c)h]

+ ε sinh [4(η + c)h]

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(49)

In the same way, we can fnd the rest of the terms and
then

ξ(η, τ) � ξ0(η, τ) + ξ1(η, τ) + ξ2(η, τ) + ξ3(η, τ) + · · · ,

φ(η, τ) � φ0(η, τ) + φ1(η, τ) + φ2(η, τ) + φ3(η, τ) + · · · .

(50)

After four terms, we have the solution of equation (46) as
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Figure 1: Behavior of (a) approximate solution of ξ(η, τ) and (b) exact solution for Example 1 at ε � 0.005, h � 0.1, c � 10, and ] � 1.
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Figure 2: Behavior of (a) approximate solution of φ(η, τ) and (b) exact solution for Example 1 at ε � 0.005, h � 0.1, c � 10, and ] � 1.
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Figure 3: Behavior of (a) approximate solution of ξ(η, τ) and (b) exact solution for Example 2 at ε � 0.005, h � 0.1, c � 10, and ] � 1.
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Figure 4: Behavior of (a) approximate solution of φ(η, τ) and (b) exact solution for Example 2 at ε � 0.005, h � 0.1, c � 10, and ] � 1.
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Figure 5: Exact and approximate SDM solution of ξ(η, τ) at ] � 1, 0.95, 0.75, and 0.5 for Example 1, when ε � 0.005, h � 0.1, c � 10, and
η � 1.
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Figure 6: Exact and approximate SDM solution of φ(η, τ) at ] � 1, 0.95, 0.75, and 0.5 for Example 1, when ε � 0.005, h � 0.1, c � 10, and
η � 1.
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Figure 7: Exact and approximate SDM solution of ξ(η, τ) at ] � 1, 0.95, 0.75, and 0.5 for Example 2, when ε � 0.005, h � 0.1, c � 10, and
η � 1.
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Figure 8: Exact and approximate SDM solution of φ(η, τ) at ] � 1, 0.95, 0.75, and 0.5 for Example 2, when ε � 0.005, h � 0.1, c � 10, and
η � 1.
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Table 1: Comparison of SDM solution of ξ(η, τ) with VIM [26], ADM [27], and OHAM [28] of Example 1 with ε � 0.005, h � 0.1, c � 10,
and ] � 1.

(η, τ) |ξExact − ξVIM| |ξExact − ξADM| |ξExact − ξOHAM| |ξExact − ξ(4)
SDM|

(0.1, 0.1) 6.35269 × 10− 5 8.16297 × 10− 7 6.35267 × 10− 5 5.55112 × 10− 17

(0.1, 0.3) 1.90854 × 10− 4 7.64245 × 10− 7 1.90854 × 10− 4 5.55112 × 10− 17

(0.1, 0.5) 3.18549 × 10− 4 7.16083 × 10− 7 3.18548 × 10− 4 6.66134 × 10− 16

(0.2, 0.1) 6.18930 × 10− 5 3.26243 × 10− 6 6.18931 × 10− 5 1.11022 × 10− 16

(0.2, 0.3) 1.85945 × 10− 4 3.05458 × 10− 6 1.85945 × 10− 4 1.11022 × 10− 16

(0.2, 0.5) 3.10352 × 10− 4 2.86226 × 10− 6 3.10352 × 10− 4 7.77156 × 10− 16

(0.3, 0.1) 6.03095 × 10− 5 7.33445 × 10− 6 6.03098 × 10− 5 0
(0.3, 0.3) 1.81187 × 10− 4 6.86758 × 10− 6 1.81187 × 10− 4 1.11023 × 10− 16

(0.3, 0.5) 3.02408 × 10− 4 6.43557 × 10− 6 3.02408 × 10− 4 6.66133 × 10− 16

(0.4, 0.1) 5.87746 × 10− 5 1.30286 × 10− 5 5.87749 × 10− 5 0
(0.4, 0.3) 1.76574 × 10− 4 1.22000 × 10− 5 1.76574 × 10− 4 5.55112 × 10− 17

(0.4, 0.5) 2.94707 × 10− 4 1.14333 × 10− 5 2.94708 × 10− 4 6.10623 × 10− 16

(0.5, 0.1) 5.72867 × 10− 5 2.03415 × 10− 5 5.72865 × 10− 4 0
(0.5, 0.3) 1.72102 × 10− 4 1.90489 × 10− 5 1.72102 × 10− 4 1.11020 × 10− 16

(0.5, 0.5) 2.87241 × 10− 4 1.78528 × 10− 5 2.87240 × 10− 4 6.10623 × 10− 16

Table 2: Comparison of SDM solution of φ(η, τ) with VIM [26], ADM [27], and OHAM [28] of Example 1 with ε � 0.005, h � 0.1, c � 10,
and ] � 1.

(η, τ) |φExact − φVIM| |φExact − φADM| |φExact − φOHAM| |φExact − φ(4)
SDM|

(0.1, 0.1) 1.65942 × 10− 5 5.88676 × 10− 5 1.65942 × 10− 5 3.46945 × 10− 18

(0.1, 0.3) 4.98691 × 10− 5 5.56914 × 10− 5 4.98691 × 10− 5 5.20417 × 10− 17

(0.1, 0.5) 8.32598 × 10− 5 5.27169 × 10− 5 8.26491 × 10− 4 3.60822 × 10− 16

(0.2, 0.1) 1.06813 × 10− 5 1.18213 × 10− 4 1.06812 × 10− 5 6.93889 × 10− 18

(0.2, 0.3) 4.83269 × 10− 5 1.11833 × 10− 4 4.83269 × 10− 5 4.68375 × 10− 17

(0.2, 0.5) 8.06837 × 10− 5 1.05858 × 10− 4 7.94290 × 10− 4 3.46945 × 10− 16

(0.3, 0.1) 1.55880 × 10− 5 1.78041 × 10− 4 1.55880 × 10− 5 6.93889 × 10− 18

(0.3, 0.3) 4.68440 × 10− 5 1.68429 × 10− 4 4.68439 × 10− 5 3.98986 × 10− 17

(0.3, 0.5) 7.82068 × 10− 5 1.59428 × 10− 4 7.63646 × 10− 4 3.22659 × 10− 16

(0.4, 0.1) 1.51135 × 10− 5 2.38356 × 10− 4 1.51135 × 10− 5 5.20417 × 10− 18

(0.4, 0.3) 4.54174 × 10− 5 2.25483 × 10− 4 4.54174 × 10− 5 3.46945 × 10− 17

(0.4, 0.5) 7.58243 × 10− 5 2.13430 × 10− 4 7.34471 × 10− 4 3.05311 × 10− 16

(0.5, 0.1) 1.46569 × 10− 5 2.99162 × 10− 4 1.46569 × 10− 5 1.73472 × 10− 18

(0.5, 0.3) 4.40448 × 10− 5 2.83001 × 10− 4 4.40448 × 10− 5 4.16334 × 10− 17

(0.5, 0.5) 7.35317 × 10− 5 2.67868 × 10− 4 7.06678 × 10− 4 2.87964 × 10− 16

Table 3: Comparison of SDM solution of ξ(η, τ) with LADM [3] and NIM [40] of Example 2 with ε � 0.005, h � 0.1, c � 10, and ] � 1.

(η, τ) |ξExact − ξ(3)
LADM| |ξExact − ξ(3)

NIM| |ξExact − ξ(3)
SDM| |ξExact − ξ(4)

SDM|

(0.1, 0.1) 7.1000 × 10− 9 1.20348 × 10− 13 1.20737 × 10− 14 2.77556 × 10− 17

(0.1, 0.3) 6.5000 × 10− 9 3.25026 × 10− 12 3.26655 × 10− 13 2.77556 × 10− 17

(0.1, 0.5) 5.9000 × 10− 9 1.50478 × 10− 11 1.51246 × 10− 12 3.33067 × 10− 16

(0.2, 0.1) 2.8200 × 10− 8 1.13895 × 10− 13 1.16573 × 10− 14 2.77556 × 10− 17

(0.2, 0.3) 2.5900 × 10− 8 3.07447 × 10− 12 3.14054 × 10− 13 4.16334 × 10− 17

(0.2, 0.5) 2.4100 × 10− 8 1.42339 × 10− 11 1.45411 × 10− 12 3.60822 × 10− 16

(0.3, 0.1) 6.3367 × 10− 8 1.07747 × 10− 13 1.11855 × 10− 14 1.38778 × 10− 17

(0.3, 0.3) 5.8500 × 10− 8 2.90939 × 10− 12 3.02064 × 10− 13 5.55112 × 10− 17

(0.3, 0.5) 5.4000 × 10− 8 1.34695 × 10− 11 1.39849 × 10− 12 3.19190 × 10− 16

(0.4, 0.1) 1.124 × 10− 7 1.02029 × 10− 13 1.0783 × 10− 14 1.38778 × 10− 17

(0.4, 0.3) 1.0390 × 10− 7 2.75424 × 10− 12 2.90587 × 10− 13 2.77556 × 10− 17

(0.4, 0.5) 9.6100 × 10− 8 1.27514 × 10− 11 1.34555 × 10− 12 3.19190 × 10− 16

(0.5, 0.1) 1.7550 × 10− 7 9.66033 × 10− 14 1.03528 × 10− 14 0
(0.5, 0.3) 1.6220 × 10− 7 2.60846 × 10− 12 2.79707 × 10− 13 5.55512 × 10− 17

(0.5, 0.5) 1.5010 × 10− 7 1.20763 × 10− 11 1.29505 × 10− 12 3.19190 × 10− 16
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ξ(η, τ) � ε − h coth [h(η + c)] −
τ]εh2 csch2 [h(η + c)]

Γ(1 + ])

−
2 τ2]h3ε2 coth [(η + c)h]csch2 [h(η + c)]

Γ(1 + 2])

−
τ3]h4 ε2 csch5 [(η + c)h]

Γ[1 + ]]
2Γ[1 + 3]]

− 2h cosh [(η + c)h]Γ[1 + 2]]

+ Γ[1 + ]]
2

4h cosh [(η + c)h]

+ ε
3 sinh [(η + c)h]

+ sinh [3(η + c)h]

⎛⎝ ⎞⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

φ(η, τ) � − h
2 csch2 [h(η + c)] −

2 τ]h3ε coth [(η + c)h]csch2 [h(η + c)]

Γ(1 + ])

−
2 τ2]h4ε2(2 + cosh [2(η + c)h])csch4 [h(η + c)]

Γ(1 + 2])

−
τ3]h5ε2 csch6 [(η + c)h]

Γ[1 + ]]
2Γ[1 + 3]]

− 2h(3 + 2 cosh [2(η + c)h])Γ[1 + 2]]

+ Γ[1 + ]]
2

12h + 8 h cosh [2(η + c)h]

+ 10 ε sinh [2(η + c)h]

+ ε sinh [4(η + c)h]

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(51)

7. Numerical Results and Discussion

Tis section uses graphs and tables to compare the ap-
proximate and exact solutions and talk about how accurate
and useful the proposed method is. Figures 1–4 show the 3D
plot solutions of Examples 1 and 2 obtained by the present
method in comparison to the exact solutions at ] � 1. Tese
fgures show that the SDM’s “approximate” solutions are
almost the same as the “exact” solutions. For diferent
fractional values of ], Figures 5–8 show line plots of the

approximate solutions from the proposed method and the
exact solutions from Examples 1 and 2. As we can see from
the fgures, when ]⟶ 1, the numerical solutions approach
the exact solutions. In Tables 1–4, the SDM results of this
study are compared to methods that have been used in the
past for Examples 1 and 2. Tese tables show that the
simulation results using the methods described in
[3, 26–28, 40] are less accurate than the simulation results
using the method under consideration. Tis shows that the
method under consideration is efcient and reliable.

Table 4: Comparison of SDM solution of φ(η, τ) with LADM [3] and NIM [40] of Example 2 with ε � 0.005, h � 0.1, c � 10, and ] � 1.

(η, τ) |φExact − φ(3)
LADM| |φExact − φ(3)

NIM| |φExact − φ(3)
SDM| |φExact − φ(4)

SDM|

(0.1, 0.1) 9.5512 × 10− 10 6.71962 × 10− 14 4.78523 × 10− 15 1.73472 × 10− 18

(0.1, 0.3) 8.0600 × 10− 10 1.81427 × 10− 12 1.29184 × 10− 13 2.60209 × 10− 17

(0.1, 0.5) 6.7700 × 10− 10 8.39947 × 10− 12 5.98136 × 10− 13 1.80411 × 10− 16

(0.2, 0.1) 3.8210 × 10− 9 6.30876 × 10− 14 4.55885 × 10− 15 3.46945 × 10− 18

(0.2, 0.3) 3.224 × 10− 9 1.70328 × 10− 12 1.23005 × 10− 13 2.34188 × 10− 17

(0.2, 0.5) 2.7060 × 10− 9 7.88563 × 10− 12 5.69531 × 10− 13 1.73472 × 10− 16

(0.3, 0.1) 8.597 × 10− 9 5.92521 × 10− 14 4.33594 × 10− 15 3.46945 × 10− 18

(0.3, 0.3) 7.252 × 10− 9 1.59992 × 10− 12 1.17176 × 10− 13 1.99493 × 10− 17

(0.3, 0.5) 6.0910 × 10− 9 7.40708 × 10− 12 5.42553 × 10− 13 1.61329 × 10− 16

(0.4, 0.1) 1.5284 × 10− 8 5.56907 × 10− 14 4.13818 × 10− 15 2.60209 × 10− 18

(0.4, 0.3) 1.2893 × 10− 8 1.50359 × 10− 12 1.11679 × 10− 13 1.73472 × 10− 17

(0.4, 0.5) 1.0827 × 10− 8 6.96112 × 10− 12 5.17104 × 10− 13 1.52656 × 10− 16

(0.5, 0.1) 2.3880 × 10− 8 5.23618 × 10− 14 3.94476 × 10− 15 8.67362 × 10− 19

(0.5, 0.3) 2.0144 × 10− 8 1.41377 × 10− 12 1.06495 × 10− 13 2.08167 × 10− 17

(0.5, 0.5) 1.6916 × 10− 8 6.54527 × 10− 12 4.93078 × 10− 13 1.43982 × 10− 16
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8. Conclusion

In this paper, the SDM is used to fnd the solution to
a coupled system of WBK equations of fractional order. To
demonstrate consistency and applicability, the current
framework includes convergence and error analysis. Two
examples are used to demonstrate and validate the efciency
of the algorithm under consideration. We can see from the
tables and plots that the proposed technique is more efective
and precise than other methods. As a result, we can conclude
that the proposed algorithm is extremely powerful and well-
organized for studying coupled systems arising from
physical phenomena; both fractional- and integer-ordered
derivatives analytically and numerically describe real-world
problems in a systematic and improved manner.
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