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Te limiting directions of Julia sets of infnite order entire functions are studied by combining the theory of complex dynamic
system and the theory of complex diferential equations, in which the lower bound of the measure of limiting direction of Julia set
of entire solutions of complex diferential equations is obtained.

1. Introduction and Main Results

Let C be a complex plane and f: C⟶ C be a transcen-
dental meromorphic function, where C � C∪ ∞{ }.
fn(n ∈ N) is denoted by the n-th iteration of f. Te Fatou
set F(f) of transcendental meromorphic function f is the
subset of C and satisfes fn􏼈 􏼉 of f is a normal family. Te
Julia setJ(f) of f is the complement ofF(f) in C. We all
know that F(f) is completely invariant under f and open
set. J(f) is closed and nonempty. Some fundamental
knowledge about the complex dynamics of meromorphic
functions can be found in[1, 2]. We assume that the reader is
familiar with the basic results and standard notation of
Nevanlinna’s value distribution theory in C. It plays a sub-
stantial role in our studying, such as T(r, f), m(r, f),

N(r, f), which can be found in [3, 4]. For a function f

meromorphic in C, the order, lower order, and exponent of
convergence of zeros of f are given by

ρ(f) � limsup
r⟶+∞

log+
T(r, f)

log r
,

μ(f) � liminf
r⟶+∞

log+
T(r, f)

log r
,

λ(f) � limsup
r⟶+∞

log+
n(r, 1/f)

log r
,

(1)

respectively, where log+ x � max logx, 0􏼈 􏼉, T(r, f) is the
Nevanlinna characteristic of f and n(r, 1/f) denotes the
number of f in z: |z|< r{ }, counting multiplicities. If f is an
entire function, then the Nevanlinna characteristic T(r, f)

can be replaced with logM(r, f), where M(r, f) � max |z|�r

|f(z)|.
For any a ∈ C, the defciency of a with meromorphic

function f is defned by

δ(a, f) � liminf
r⟶+∞

m(r, 1/f − a)

T(r, f)

� 1 − limsup
r⟶+∞

N(r, 1/f − a)

T(r, f)
.

(2)

If δ(a, f)> 0, then a is a defcient value of f.
Te Lebesgue linear measure of a set E ⊂ [0, +∞] is

denoted by mes(E) � 􏽒
E
dt, and the logarithmic measure of

a set F ⊂ [1, +∞] is defned by ml(F) � 􏽒
F
dt/t.

In the following, we introduce some related results on
the limiting directions of Julia set of meromorphic functions.
Baker [5] frst observed that the Julia set cannot be contained
in any fnite set of straight lines for a transcendental entire
function f. However, this is not true for transcendental
meromorphic functions. For example, J(tan z) � R. Qiao
[6] introduced the concept of limiting directions of J(f)

and demonstrated that the Julia set of a transcendental entire
function of fnite order possesses an infnite number of
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limiting directions.Te limiting direction ofJ(f) is defned
as a ray arg z � θ for which there exists an unbounded se-
quence zn􏼈 􏼉⊆J(f) such that limn⟶+∞argzn � θ. For
further information, please refer to [6, 7]. Denoting

∆(f) � θ ∈ [0, 2π]: arg z � θ a limiting direction ofJ(f)􏼈 􏼉.

(3)

It is evident that ∆(f) is a closed set. We denote its linear
measure by mes(∆(f)).

In [8], Qiao proved that if f is a transcendental entire
function of fnite lower order, then mes(∆(f)) � 2π if
μ(f)< 1/2; and mes(∆(f))≥min 2π, π/μ(f)􏼈 􏼉 if μ(f)≥ 1/2.
Later, some observations were made for a transcendental
meromorphic function f by [9, 10], respectively. Tey
obtained that if μ(f)< +∞ and δ(∞, f)> 0, then

mes(∆(f))≥min 2π,
4

μ(A)
arcsin

�������
δ(∞, A)

2

􏽲

􏼨 􏼩. (4)

Many results have been obtained involving the limiting
directions of the Julia set of transcendental meromorphic
functions of fnite order, for example [1, 7, 11–13] and
therein in references.

However, the limiting direction of the Julia set of entire
functions of infnite order remains an open problem. Re-
cently, many scholars have studied the limiting direction of
Julia set of entire solutions of infnite order by using the
theory of diferential equations, such as [11, 12, 14–16].

Furthermore, we defne the common Julia limiting di-
rections of derivatives and primitives of an entire function f

by
L(f) ≔ 􏽜

n∈Z
∆ f

(n)
􏼐 􏼑, (5)

where f(n) denotes the n-th derivative or n-th integral
primitive of f for n≥ 0 or n< 0, respectively.

In order to introduce our results, some notations are
needed.

Let α, β be two constants such that 0< α< β≤ 2π,

Ω(α, β) � z ∈ C: arg z ∈ (α, β)􏼈 􏼉,

Ω(r; α, β) � Ω(α, β)∩ z∈ C: |z|> r{ },

Ω(α, β; r) � Ω(α, β)∩ z∈ C: |z|≤ r{ },

(6)

Ω(α, β) is the closed set of Ω(α, β) and arg z � θ ∈ [0, 2π] is
a ray emanating from the origin.

We recall the concept of an accumulation line of the zero
sequence of a transcendental meromorphic function f in an
angular domain Ω(α, β; r), which can be found in [13, 17].
Te radial convergence exponent of the zero sequence of f at
the ray arg z � θ is defned by

λθ(f) � lim
ε⟶0

limsup
r⟶+∞

log+
n(Ω(θ − ε, θ + ε; r), 0,f)

log r
, (7)

where n(Ω(θ − ε, θ + ε; r), 0,f) denotes the number of zeros
of f in Ω(θ − ε, θ + ε; r), counting multiplicities. If
λθ(f) � ρ(f), then the ray arg z � θ is considered to be an

accumulation line of the zero sequence of f. Tis concept
can be used to analyze the growth of solutions of diferential
equations, as described in [18].Te properties of solutions of
the following equation (8) are needed in our results.

ω″ + p(z)ω � 0, (8)

where p(z) � anzn + · · · + a0, an ≠ 0, which can be found in
[19] [Chapter 7.4], see also Lemma 10 in Section 2 below.
Te properties of solutions of (8) are used to study the
growth of solutions of complex diferential equations

f
″

+ A(z)f
′
+ B(z)f � 0. (9)

See [18, 20] for more details.
In [21], the relationship between T(r, A) and

logM(r, A) is used to study the growth of solutions of (9), in
which infnite order solutions of (9) are characterised by the
following condition:

T(r, A) ∼ logM(r, A), (10)

as r⟶ +∞ outside a set D of fnite logarithmic measure.
Later, in [22], Long et al. changed the condition to

T(r, A) ∼ α logM(r, A), (11)

as r⟶ +∞ outside a set of U zero upper logarithmic
density, and got some results, where α ∈ [0, 1].

Te asymptotic relationships (10) and (11) can also be
used to analyze the limiting direction of the Julia set of
solutions of complex diferential equations. Wang and Chen
[16] studied the common limiting directions of the Julia set
of solutions of (9).

Theorem 1 (see [16]). Assume that A and B are entire
functions, where B is transcendental and T(r, B)∼ logM

(r, B) as r⟶ +∞ outside a set of fnite logarithmic
measure, A has a fnite defcient value a, i.e., δ(a, A)> 0. For
every nontrivial solution f of (9), we have

mes(L(f)) ≥min 2π,
4

μ(A)
arcsin

������
δ(a, A)

2

􏽲

􏼨 􏼩. (12)

Moreover, if λ(A)<∞, then μ(f) �∞.

Inspired byTeorem 1 and the idea of asymptotic relations
(11) in [22], which the asymptotical relationship (11), we in-
vestigate the limiting direction of the Julia set of entire solutions
of (9) and derive a lower bound estimate for mes(L(f)).

Theorem 2. Let A be a nontrivial solution of (8), and the
number of accumulation lines of zero sequence of A is strictly
less than n + 2. Let α ∈ [0, 1], and let B be a transcendental
entire function that satisfes

T(r, B) ∼ α logM(r, B), (13)

as r⟶ +∞ outside a set G of zero upper logarithmic density,
where α ∈ [0, 1]. Ten, every nontrivial solution of (9) satisfes

mes(L(f))≥max 0, δ{ }, (14)
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where δ � 2π/n + 2 − 2π(1 − α).

Next, the condition of B of Teorem 1 is replaced with
the condition (13) and obtains the following result.

Theorem 3. Let A be the entire function having a fnite
defcient value a, i.e., δ(a, A)> 0, and let B be given as
Teorem 2. Ten, every nontrivial solution of (9) satisfes

mes(L(f))≥max 0, β􏼈 􏼉, (15)

where β � min 2πα, 4/μ(A)arcsin
��������
δ(a, A)/2

􏽰
− 2π(1 − α)􏽮 􏽯.

Te next result is related to Borel exceptional value.

Theorem 4. Let A is an entire function of fnite order having
a fnite Borel exceptional value, and let B be given asTeorem
2. Ten, every nontrivial solution of (9) satisfes

mes(L(f))≥max 0, c􏼈 􏼉, (16)

where c � 2πα − π − 2ρ(A)ε0 and ε0 ∈ (0, π/4ρ(A)).

Remark 5. It is well-known that Borel exception value is
a defcient value and the contrary is not true. So Teorems 3
and 4 both are valuable.

2. Preliminary Lemma

In order to prove our results, we need some preliminary
results. First of all, we recall Nevanlinna’s characteristic in an
angular domainΩ(α, β), which can be found in [23] [Chapter
2]. Let g be a meromorphic function on Ω(α, β). We defne

Aα,β(r, g) �
ω
π

􏽚
r

1

1
t
ω −

t
ω

r
2ω􏼠 􏼡

· log+
g te

iα
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + log+
g te

iβ
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛;

Bα,β(r, g) �
2ω
πr

ω 􏽚
β

α
log+

g te
iθ

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 sinω θα( 􏼁dθ;

Cα,β(r, g) � 2 􏽘

1< bn| |< r

1
bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
ω −

bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
ω

r
2ω􏼠 􏼡 sinω θα( 􏼁dθ,

(17)

where ω � π/β − α, and bn � |bn|eiθn are the poles of g on
Ω(α, β), appearing with their respective multiplicities. Te
Nevanlinna angular characteristic of g in Ω(α, β) is defned
as follows:

Sα,β(r, g) � Aα,β(r, g) + Bα,β(r, g) + Cα,β(r, g), (18)

and the order of g in Ω(α, β) is defned by

ρα,β(g) � limsup
r⟶+∞

logSα,β(r, g)

log r
. (19)

Lemma  (see [23]). Let f be a meromorphic function on
Ω(α − ε, β + ε) for ε> 0 and 0< α< β≤ 2π. Ten,

Aα,β r,
f
′

f
⎛⎝ ⎞⎠ + Bα,β r,

f
′

f
⎛⎝ ⎞⎠≤K log+

Sα−ε,β+ε(r, f) + log r + 1􏼐 􏼑,

(20)

possibly except a set with fnite linear measure.

Lemma 7 (see [10]). Let f: Ω(r0; θ1, θ2)⟶ U be hol-
omorphic function, where U is a hyperbolic domain. If there
exists a point a ∈ zU/ ∞{ } such that CU(a)> 0, then there
exists a constant d> 0 such that for sufciently small ε> 0,

|f(z)| � O |z|
d

􏼐 􏼑, z ∈ Ω r0; θ1 + ε, θ2 − ε( 􏼁, |z|⟶ +∞.

(21)

Remark 8. A domain W in C\ ∞{ } is called hyperbolic if
C\W contains at least three points. For a ∈ C\W, the hy-
perbolic distance from a to W is defned as
CW(a) � inf λW(z)|z − a|: z ∈W􏼈 􏼉, where λW(a) is the
hyperbolic density on W. It is well-known that if every
component of W is simply connected, then CW(a)≥ 1/2, see
[10] for more details.

Te following lemma provides estimates for the loga-
rithmic derivatives of functions that are analytic in an an-
gular domain. First, let us take a look at the defnition of R-
set, see [24] for detail. Set B(zn, rn) � z: |z − zn|< rn􏼈 􏼉.Ten,
⋃∞n�1B(zn, rn) is called an R-set if 􏽐

∞
n�1rn <∞ and zn⟶ +

∞ as n⟶ +∞. It is clear that |z|: z ∈ ⋃∞n�1B(zn, rn)􏼈 􏼉 is
a set of fnite linear measure.

Lemma 9 (see [25]). Let z � reiθ, r> r0 + 1 for some r0 > 0
and α≤ θ≤ β, where 0< β − α≤ 2π. Assuming that n≥ 2 is an
integer, g is analytic in Ω(r0; α, β) with ρα,β(g)< +∞.
Choose α< α1 < β1 < β. Ten, for every εj ∈ (0, (βj − αj)/2)

(j � 1, 2, . . . , n − 1) outside a set of linear measure zero with

αj � α + 􏽘

j−1

s�1
εs, βj � β + 􏽘

j−1

s�1
εs, j � 2, 3, . . . , n − 1. (22)

Tere exist K> 0 and M> 0 that only depending on
g, ε1, ε2, . . . , εn−1 and Ω(αn−1, βn−1), not depending on z, such
that

g
′
(z)

g(z)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤Kr

M
(sin k(θ − α))

− 2
,

g
(n)

(z)

g(z)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤Kr

M sin k(θ − α)􏽙
n−1

j�1
sin kεj

θ − αj􏼐 􏼑⎞⎠

− 2

,⎛⎝

(23)

for all z ∈ Ω(αn−1, βn−1) outside an R-set, where k � π/β − α
and kεj

� π/βj − αj, j � 1, 2, . . . , n − 1.

In order to recall the properties of solutions of (8), the
following defnitions are needed. Let A be an entire function
with fnite positive order ρ(A). If for any θ ∈ (α, β), we have
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lim
r⟶+∞

log log A re
iθ

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

log r
� ρ(A), (24)

then A blows up exponentially in Ω(α, β). If for any
θ ∈ (α, β), one has that

lim
r⟶+∞

log log A re
iθ

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
− 1

log r
� ρ(A). (25)

Ten, in Ω(α, β), A decays to zero exponentially.
Te following lemma will be employed to establish

Teorem 2.

Lemma 10 (see [19]). Let A be a nontrivial solution of
equation (8). Set θj � 2jπ − arg(an)/n + 2 and
Sj � Ω(θj, θj+1), where j � 0, 1, . . . , n + 1 and
θn+2 � θ0 + 2π. Ten, A has the following properties:

(i) In each sector Sj, A either blows up or decays ex-
ponentially to zero;

(ii) If A decays exponentially to zero in Sj, then it must
blow up exponentially in Sj−1 and Sj+1, but it is
possible for A to blow up exponentially in many
adjacent sectors;

(iii) If A decays exponentially to zero in Sj, then A has at
most fnitely many zeros in any closed subsector
within Sj−1 ∪ Sj ∪ Sj+1;

(iv) If A blows up exponentially in Sj−1 and Sj, then, for
each ε> 0, A has infnitely many zeros in each sector
Ω(θj − ε, θj + ε). Moreover, as r⟶ +∞,

n Ω θj − ε, θj + ε; r􏼐 􏼑, 0, A􏼐 􏼑 � (1 + o(1))
2

���
an

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽱

π(n+2)
r

n+2/2
,

(26)

where n(Ω(θj − ε, θj + ε; r), 0, A) is the number of
zeros of A counting multiplicity in
Ω(θj − ε, θj + ε; r).

Remark 11. It is well-known that the set of accumulation
rays of the zero sequence of every nontrivial solution of (8) is

a subset of θj: j � 0, 1, . . . , n + 1􏽮 􏽯, and the number of ac-
cumulation rays is less than or equal to n + 2.

Next, we will introduce some information on the cor-
relation between Pólya peak and defcient value. Edrei [26]
demonstrated that if f is an entire function with
μ(f)< +∞, then, for any fnite ρ where μ(f)≤ ρ≤ ρ(f),
there is a series of Pólya peaks of order ρ. As proven in [4],
[Teorem 1.1.3] and [23], there is a positive, increasing, and
unbounded sequence rn􏼈 􏼉 that is outside of an exceptional
set F with fnite logarithmic measure.Temain result of [27]
is the spread relation on the Pólya peak, which is stated in the
following lemma.

Lemma 12 (see [27]). Let f be a transcendental mero-
morphic function with fnite lower order μ and one defcient
value a. Let Λ(r) be a positive function such that Λ(r) �

o(T(r, f)) as r⟶ +∞. Ten, for any fxed sequence of
Pólya peaks rn􏼈 􏼉 of order μ, we have

liminf
r⟶+∞

mesDΛ rn, a( 􏼁≥min 2π,
4
μ
arcsin

������
δ(a, f)

2

􏽲

􏼨 􏼩,

(27)

where DΛ(r, a) is defned by DΛ(r,∞) � θ ∈ [−π, π]: |f(z)|􏼈

> eΛ(r)}, and for fnite a,DΛ(r, a) � θ ∈ [−π, π]: |f􏼈

(z) − a|< e−Λ(r)}.

Te following two lemmas are related to Borel
exceptional value.

Lemma 13 (see [15]). Let f be an entire function of fnite
order with a fnite Borel exceptional value c. Ten, there exist
an entire function h(z) with ρ(h)< ρ(f) and a polynomial
P(z) of degree deg(P) � ρ(f) such that

f(z) � h(z)e
P(z)

+ c. (28)

Lemma 14 (see [28]). Let Q(z) � anzn + an−1z
n− 1 + · · · +

a0, where n ∈ N+, an � bneiθn with bn > 0, and θn ∈ [0, 2π].
For any given ε ∈ (0, π/4n), we introduce 2n open angles

Sj � z∈ C: −
θn

n
+(2j − 1)

π
2n

+ ε< arg z<−
θn

n
+(2j + 1)

π
2n

− ε􏼨 􏼩, (29)

where j � 0, 1, . . . , 2n − 1. Ten there exists a positive
number R � R(ε) such that, for |z| � r>R,

Re Q(z){ }> bn(1 − ε)sin(nε)rn
, if z ∈ Sj and j is even,

Re Q(z){ }<−bn(1 − ε)sin(nε)rn
, if z ∈ Sj and j is odd.

⎧⎨

⎩ (30)
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3. Proofs of Main Theorems

Proof of Teorem 15. Since δ � 2π/n + 2 − 2π(1 − α), if
δ ≤ 0, then it is clear that mes(L(f)) ≥ 0. We will prove
mes(L(f))≥ δ for δ > 0. Since the number of accumulation
lines of zero sequence of A is strictly less than n + 2, there
exists at least one ray arg z � θ is not the accumulation line
of the zero sequence of A. Without loss of generally, let
i0 ∈ 0, 1, . . . , n + 1{ } such that the ray arg z � θi0

is not an
accumulation line of the zero sequence of A, which implies
that A decays to zero exponentially in either Si0−1 or Si0

. In
fact, if A blows up in both Si0−1 and Si0

, then by condition (iv)
of Lemma 10, on the one hand

λθi0
(A) � lim

ε⟶0
limsup
r⟶+∞

log+
n Ω θi0

− ε, θi0
+ ε; r􏼐 􏼑, 0, A􏼐 􏼑

log r

�
n+2
2

� ρ(A),

(31)

which is impossible. Without loss of generality, assume that
A decays to zero exponentially in sector Si0

� Ω(θi0
, θi0+1),

0≤ i0 ≤ n + 1. Tat is, for any θ ∈ Di0
� arg z: z ∈ Si0

􏽮 􏽯, we
have that

lim
r⟶+∞

log log A re
iθ

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
− 1

log r
� ρ(A), (32)

and mes(Di0
) � 2π/n + 2. By simple calculations, for any

given ε> 0, there exists r0 > 1, such that for all z ∈ Si0
and

|z| � r> r0, we have

A re
iθ

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ exp −r
(ρ(A)− ε)

􏼐 􏼑. (33)

On the other hand, for any sufciently large positive
constants M1, we defne I � z ∈ C: |B(z)|> |z|M1􏽮 􏽯 and
E(r) � θ ∈ [0, 2π]: z � reiθ ∈ I􏼈 􏼉. Ten for some r1 > 0, if
r> r1, we have

2πT(r, B) � 􏽚
E(r)

log+
B re

iθ
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌dθ + 􏽚
[0,2π]/E(r)

log+
B re

iθ
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌dθ≤mes(E(r))logM(r, B) + M1log r(2π − mes(E(r))), (34)

which gives

2π ≤mes(E(r))
logM(r, B)

T(r, B)
+

M1log r

T(r, B)
(2π − mes(E(r))).

(35)

Since B is transcendental and satisfes (13) outside of G, it
yields that, for r ∉ G,

lim inf
r⟶+∞

mes(E(r))≥ 2πα. (36)

By the Heine theorem, there exists an infnite sequence
rn􏼈 􏼉 ⊂ (r1, +∞)\G satisfes limn⟶ +∞rn � +∞, such that

mes E rn( 􏼁( 􏼁≥ 2πα. (37)

Set En � ⋃∞i�nE(ri). It is easy to see that En is a mono-
tone-decreasing measurable set. Moreover, set 􏽥E � ∩∞n�1En.
Ten 􏽥E is independent of r, thus, by the Monotone Con-
vergence theorem and (37), we get

mes(􏽥E) � lim
n⟶+∞

mes En( 􏼁 � lim
n⟶+∞

mes ⋃
∞

i�n

Ei( 􏼁􏼠 􏼡≥ 2πα,

mes Di0
∩ 􏽥E􏼐 􏼑 � mes Di0

/􏽥EC
􏼒 􏼓≥mes Di0

􏼐 􏼑 − mes 􏽥E
C

􏼒 􏼓≥
2π

n + 2
− 2π(1 − α) � δ > 0.

(38)

Suppose that mes(L(f))< δ. Ten there exists an in-
terval (α, β) such that

(α, β) ⊂ Di0
∩ 􏽥E, (α, β)∩ L(f) � ∅. (39)

Tus, every ray arg z � θ ∈ (α, β) is not a limiting di-
rection of Julia set of f(nθ) for some integer nθ depending on
θ. Ten there exists an angular domain Ω(θ − ξθ, θ + ξθ)
such that

θ − ξθ, θ + ξθ( 􏼁 ⊂ (α, β),Ω r; θ − ξθ, θ + ξθ( 􏼁∩J f
nθ( )􏼒 􏼓 � ∅,

(40)

for sufciently large r ∉ G, ξθ is a constant depending on θ.
Tis means that there exist the corresponding rθ and an
unbounded Fatou component Uθ of F(f(nθ)) (see [29]),
such thatΩ(rθ; θ − ξθ, θ + ξθ) ⊂ Uθ. Take an unbounded and
connected set Γ ⊂ zUθ, then

f: Ω rθ; θ − ξθ, θ + ξθ( 􏼁⟶
C

Γ
, (41)

is analytic. Because C\Γ is simply connected, so that C\Γ is
hyperbolic and open, then by Remark 8, for any a ∈ Γ ∞{ },
we have CC\Γ(a)≥ 1/2.
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Applying Lemma 7 to mapping f mentioned above,
there exists a positive constant d1 such that

f
nθ( )(z)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � O |z|
d1􏼐 􏼑, (42)

holds for all arg z ∈ Ω(rθ; θ − ξθ + ε, θ + ξθ − ε).
If nθ > 0, noting the fact that

f
nθ− 1( )(z) � 􏽚

z

0
f

nθ( )(ζ)dζ + C, (43)

where C is a constant, and the integral path can be chosen as
the segment of a straight line from 0 to z because this integral
is independent of the path. It follows from (42) and (43) that

f
nθ− 1( )(z)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � O |z|
d1+1

􏼐 􏼑, (44)

holds for all z ∈ Ω(rθ; θ − ξθ + ε, θ + ξθ − ε).
Repeating the above discussion nθ times, we can deduce

that for z ∈ Ω(rθ; θ − ξθ + ε, θ + ξθ − ε), we have

|f(z)| � O |z|
d1+nθ( )􏼒 􏼓. (45)

Terefore, from the defnition of Nevanlinna angular
characteristic, we know that

Sθ−ξθ+ε,θ+ξθ−ε(r, f) � O(log r). (46)

If nθ < 0, in view of [23], [Lemma 2.2.1] and Lemma 6, we
conclude that

Sθ−ξθ+ε+ε′ ,θ+ξθ−ε−ε′ r, f
nθ+1( )􏼒 􏼓

≤ Sθ−ξθ+ε+ε′,θ+ξθ−ε−ε′ r,
f

nθ+1( )

f
nθ( )

⎛⎝ ⎞⎠

+ Sθ−ξθ+ε+ε′ ,θ+ξθ−ε−ε′ r, f
nθ( )􏼒 􏼓

≤O log+
Sθ−ξθ+ε,θ+ξθ−ε r, f

nθ( )􏼒 􏼓 + log r􏼒 􏼓

+ Sθ−ξθ+ε+ε′ ,θ+ξθ−ε−ε′ r, f
nθ( )􏼒 􏼓

� O log+
Sθ−ξθ+ε,θ+ξθ−ε r, f

nθ( )􏼒 􏼓 + log r􏼒 􏼓,

(47)

for |nθ|ε′ � ε. Ten,

Sθ−ξθ+ε+ε′,θ+ξθ−ε−ε′ r, f
nθ+1( )􏼒 􏼓 � O(log r). (48)

By (42), we get Sθ−ξθ+ε,θ+ξθ−ε(r, f(nθ)) � O(log r). By us-
ing the similar argument |nθ| times, it yields that

Sθ−ξθ+2ε,θ+ξθ−2ε(r, f) � O(log r). (49)

It follows from (46) and (49), whenever nθ is positive or
not,

Sα′ ,β′(r, f) � O(log r), (50)

where

α′ � θ − ξθ + ε, β′ � θ + ξθ − ε, nθ ≥ 0,

α′ � θ − ξθ + 2ε, β′ � θ + ξθ − 2ε, nθ < 0.
(51)

Tis implies that ρα′ ,β′(r, f) � 0. By Lemma 9, there exist
two constants M2 > 0 and K> 0 such that

f
(n)

(z)

f(z)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤Kr

M2 , (52)

holds for z ∈ Ω(rθ; θ − ξθ + 2ε, θ + ξθ − 2ε) outside a R-set.
Combining (9), (33), and (52), we have

r
M1
n ≤ B rne

iθ
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
f
″

rne
iθ

􏼐 􏼑

f rne
iθ

􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ A rne

iθ
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
f
′

rne
iθ

􏼐 􏼑

f rne
iθ

􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤C exp −r
(ρ(A)− ε)

􏼐 􏼑r
M2
n ,

(53)

holds for zn � rneiθ ∈ Ω(rθ; θ − ξθ + 2ε, θ + ξθ − 2ε) out-
side an R-set and sufciently large |zn| � rn ∉ G, where C is
a positive constant.Tis is impossible, since M1 can be taken
sufciently large and M2 is a fnite positive constant. Hence,
we obtain

mes(L(f))≥ δ. (54)

Hence, Teorem 2 is completely proved. □ □

Proof of Teorem 16. Since β � min 2πα, 4/μ(A)arcsin􏼈��������
δ(a, A)/2

􏽰
− 2π(1 − α)}, if β≤ 0, then it is clear that

mes(L(f)) ≥ 0, Let us prove that mes(L(f)) ≥ β for β> 0, we
frst assume that

mes(L(f)) < β. (55)

Using Lemma 12 to A, we can take an increasing and
unbounded sequence rk􏼈 􏼉 such that

liminf
k⟶+∞

mes D rk( 􏼁( 􏼁≥min 2π,
π

μ(A)
arcsin

������
δ(a, A)

2

􏽲

􏼨 􏼩,

(56)

where D(rk) � θ ∈ [0, 2π]: log|A(rkeiθ) − a|< 1􏼈 􏼉, rk ∉ |z|{

: z ∈ H}∪G, with H being the R-set. Clearly, for θ ∈ D(rk),
|A(rkeiθ)|≤ e + |a|. Let 􏽥E is defned as in the Proof of
Teorem 15. Ten, mes(D(rk)∩ 􏽥E)≥ β. Similarly as in the
Proof ofTeorem 15, then there exists an interval (α, β) such
that

(α, β) ⊂ 􏽥E∩D rk( 􏼁( 􏼁, (α, β)∩ L(f) � ∅. (57)

Clearly, (52) holds. By (52) and |B(z)|> |zM1 |, where M1
is defned as in the Proof of Teorem 15, we have

rke
iθ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
M1 < B rke

iθ
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ |
f
″

rke
iθ

􏼐 􏼑

f rke
iθ

􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+ A rke
iθ

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
f
′

rke
iθ

􏼐 􏼑

f rke
iθ

􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤Cr

M2
k ,

(58)

holds for zk ∈ Ω(rθ; θ − ξθ + 2ε, θ + ξθ − 2ε) outside an R-
set and sufciently large |zk| � rk. Tis is impossible, since
M1 can be taken sufciently large and M2 is a fnite positive
constant. Hence, we have
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mes(L(f))≥ β. (59)

Teorem 3 is completely proved. □

Proof of Teorem 17. Since c � 2πα − π − 2ρ(A)ε0, if c≤ 0,
then it is clear that mes(L(f))≥ 0, we will prove
mes(L(f))≥ c for c> 0. Let a be a Borel exceptional value of
A. According to Lemma 13, there exists an entire function g

with ρ(g)< ρ(A) and a polynomial P of degP � ρ(A) such
that

A(z) � g(z)e
P(z)

+ a, (60)

where P(z) � anzn + an−1z
n− 1 + · · · + a0, an ≠ 0, n ∈ N+.

Let

Sj � z∈ C: arg z ∈ −
θn

n
+(2j − 1)

π
2n

+ ε0, −
θn

n
+(2j + 1)

π
2n

− ε0􏼠 􏼡􏼨 􏼩, (61)

where j � 0, 1, . . . , 2n − 1 and ε0 ∈ (0, π/4ρ(A)). Set

Ej(θ) � arg z: z ∈ Sj􏽮 􏽯, j � 0, 1, . . . , 2n−1. (62)

By (61), we have

mes Ej(θ)􏼐 􏼑 �
π
n

−2ε0. (63)

For any j1 ≠ j2 and j1, j2 ∈ 0, 1, . . . , 2n − 1{ }, we have

Ej1
(θ)∩Ej2

(θ) � ∅. (64)

Since ρ(g)< ρ(A) � n, it follows from (60) and Lemma
14, for any sufciently small η ∈ (0, ρ(A) − ρ(g)/3),

|A(z) − a|≤ |g(z)| exp(Re P(z){ })≤ exp r
ρ(g)+η

− C0r
n

􏼐 􏼑< exp −Cr
n

( 􏼁, (65)

as |z| � r⟶ +∞ and z ∈ ⋃n
i�1S2i−1, where C0 and C are

positive constants.
It is clear that

mes ⋃
n

i�1
S2i−1􏼠 􏼡 � nmes Ej(θ)􏼐 􏼑 � π − 2nε0 � π − 2ρ(A)ε0.

(66)

So mes((⋃n
i�1E2i−1)∩ 􏽥E)≥ π − 2ρ(A)ε0 − 2π(1 − α) �

c> 0, where 􏽥E is defned as in the Proof of Teorem 15.

Suppose that mes(L(f))< c. By using a similar reason as
in the Proof of Teorem 15, there exists an interval (α, β)

such that

(α, β) ⊂ ⋃
n

i�1
E2i−1􏼠 􏼡∩ 􏽥E, (α, β)∩ L(f) � ∅. (67)

It is clear that (52) holds. By (9), (52), and (65), we have

re
iθ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
M1 < B re

iθ
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
f
″

re
iθ

􏼐 􏼑

f re
iθ

􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ A re

iθ
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
f
′

re
iθ

􏼐 􏼑

f re
iθ

􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤C exp −Cr

n
( 􏼁r

M2 , (68)

holds for z ∈ Ω(rθ; θ − ξθ + 2ε, θ + ξθ − 2ε) outside an R-
set and sufciently large |z| � r. Tis is impossible, since M1
can be taken sufciently large and M2 is a fnite positive
constant. So, we obtain

mes(L(f))≥ c. (69)

Hence, Teorem 4 is completely proved. □
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