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Tis paper suggests new approximations that are inspired by topological structures.Te primary goal of this work is to defne four
neighborhoods resulting from a binary relation. Tus, we have four distinct techniques for approximating rough sets. Te
suggested approaches represent topological generalizations of the previous works. Te characteristics and connections of these
approaches are investigated. For the sake of the application, we provide some useful examples to compare our techniques to those
in the published literature.Temerit of the current technique is to obtain amore accurate decision for the problems in which these
cases are the appropriate frame to describe them; for instance, machine learning (ML, for short) applications of fnance, etc. To
demonstrate this fact, an economic application is proposed. We employ the proposed technique in defning accurate decisions to
identify the growth of countries. An algorithm for decision-making problems is proposed and tested on fctitious data to compare
our methods with the previous approaches.

1. Introduction

Machine learning has gradually permeated the fnancial
sector in recent years, having a signifcant impact on
reshaping the landscape of quantitative fnance. Many f-
nancial institutions, including banks, insurance companies,
and even regulators, are already using this technology to
address complex fnancial decision problems, analyze large
fnancial datasets, price complex fnancial instruments,
manage operational risk, and forecast future price paths.
Furthermore, the development of free and easy-to-use
programming languages, such as R and Python), has
broadened the applicability and investigation of ML ap-
plications outside of fnance.

As ML models use big data to learn and improve pre-
dictability and performance, algorithmic trading and block
chain-based fnance are gaining traction. However, the
success of any ML approach is heavily dependent on col-
lecting and using the appropriate data, as well as applying the
correct algorithm. In this context, a purely mathematical
approach with no theoretical foundations can produce

erroneous results, creating or exacerbating both fnancial
and nonfnancial risk. As fnancial complexity rises, so do
transactional and operational costs, and ML enables analysts
to handle a greater volume of data and mine information
previously unattainable through automated transaction
processes. Although predicting stock price direction has
been studied for years by individuals and fnancial frms,
there is a large body of the literature on the subject (for
instance see [1–7]) that did not use mathematical methods
for predicting stock price direction, and thus identifying
economic growth. However, empirical research focusing on
fxed-income market direction prediction, particularly using
machine learning methodologies, is scarce, and such liter-
ature is rarely repeatable. Tere are earlier studies of the use
of R/S analysis and Hurst exponent in the stock market (see
[1–3]) and the mutual fund industry (see [4]), while ap-
plications in air pollution are discussed in paper [5]. On the
other hand, Pavlidis, et al. [6] introduced and discussed
some methods for fnancial forecasting. Sfetsos and Sir-
iopoulos suggested and studied time series forecasting with
a hybrid clustering scheme and pattern recognition in [7].
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A lot of real-world situations require some formulas of
approximations to appropriate mathematical structures. Te
magnifcence of applying topological structures in rough
approximations allows for an approximation of qualitative
concepts (i.e., subsets) with no coding or assumption. To-
pologists used relations to build a general topology which is
the applicable mathematical structure for any group linked
by relations. We conclude that the relations have been
entered to build topological structures in a variety of felds
such as in rough sets and their extensions [8–11], rough
multisets [12], decision-making problems [13–16], medical
applications [14, 17–19], bipolar soft ordered topology [20],
economic felds [21], topological reductions of attributes for
predicting of a lung cancer disease [22] and heart failure
[23], biochemistry [24–26], computer sciences [27–30],
structure analysis [31], fuzzy soft approaches [32–34], to-
pological study of zeolite socony mobil-5 [35], near sets
theory [36], and covering rough sets [37–40]. In 2022,
Dalkılıç [41] introduced some topological structures of
virtual fuzzy parameterized fuzzy soft sets and proposed
some applications of his methods. It is important to notice
that rough sets approach have many applications and in-
terests in several felds such as bipolar soft set theory [42]
and virtual intuitionistic fuzzy parameterized intuitionistic
fuzzy soft sets and their applications in decision-making
which were examined and studied by Dalkılıç and Demirtaş
in [43, 44].

Rough set theory is a mathematical strategy for dealing
with ambiguity in which exact lower and upper approxi-
mation sets are used. Tese approximations relate to the
strict set contained in the rough set’s minimal (resp. max-
imum) rough set (resp. containing).Te equivalence relation
represents a central idea in Pawlak’s original rough set
theory, and it appears to be a stringent requirement that
restricts theory’s applicability. So, many authors introduce
several generalizations to Pawlak’s models. Some of them
used refexive relations [10], similarity relations [45–47],
general binary relations [46–52], topological structures
[6, 53–55], and coverings [37–40]. Marei proposed some
diferent methods based on topological structures and
neighborhoods to generalize Pawlak rough sets in [56–58].
On the other hand, Rafat [54] introduced and studied some
methods based on the ideal concept and topological
structures to generalize the previous methods such as
[59–61]. Some relationships between the rough set approach
[62, 63] and the other branches studied in [64–67].

Monsef et al. [8] proposed a new concept known as “the
j-neighborhood space” (abbreviated j-NS), which rep-
resents a generalized type of neighborhood space. In fact,
they presented a framework for generalizing Pawlak’s
classical rough set theory, as well as some other general-
izations through diferent topologies induced by a binary
relation. As a result, they devised some of rough set ap-
proximations to satisfy all of the axioms of Pawlak’s
principle without any constraints. Tese procedures paved
the way for more topological applications in a rough
context, while also assisting in the formalization of many
real-world applications.

Te main motivations of the current work are as follows:
frst is to propose a generalization to the idea of “basic-
neighborhood” given by Abu-Gdairi et al. [17]. Terefore,
we initiate four diferent topologies induced from these
neighborhoods, and hence we study the relationships be-
tween these topologies and the previous one [8]. Based on
the suggested topologies, four diferent methodologies to
approximate rough sets in the generalized approximation
space are given. Comparisons among accuracy measures of
these kinds of approximations are achieved and the best one
is well-defned. Furthermore, we compare the proposed
techniques to the previous ones (namely, Monsef et al. [8],
Abu-Gdairi et al. [17], Dai et al. [45], and Yao [50, 51]). As
a result, we demonstrate that the proposed methods are
more accurate than the alternatives.

Finally, we employ the proposed technique in defning
accurate decisions of an economic application. In fact, we
explain the meaning of j-basic approximations in making-
decision of growth rates of countries. Te main aim of
applying the proposed approaches here is to confrm be-
tween the experimental data and its mathematical analysis.
Te mathematical study depends on the classifcation of
data. Tus, we use a decision table (an information system
with decision attributes) of fve countries and a set of at-
tributes that measure the national product in these coun-
tries. Te decision attribute in that table is to decide the
growth of the country. Consequently, we conclude that the
suggested approximations are more precise than other ap-
proaches and are very useful in determining data ambiguity
and assisting in decision-making in real-life problems such
as medical diagnosis and ML applications of fnance, which
requires precise decisions.

Terefore, the fundamental goals of the current man-
uscript are as follows:

(i) Suggesting some extensions to “basic-
neighborhoods” [17]

(ii) Constructing diferent topologies from relations
and studying their properties

(iii) Generating some new types of generalized rough
sets as mathematical tools for decision-making

(iv) Investigating some comparisons with the other
approaches in the literature

(v) Applying the proposed methods in economic ap-
plications in order to broaden the applicability and
investigation of ML applications outside fnance

(vi) Planning an algorithm and framework for the in-
troduced methods using MATLAB for decision-
making problems

2. j-Neighborhood Space

Te present section is dedicated to outlining the funda-
mental concepts of the j-NS.

Defnition 1 (see [8]). Suppose that R is a binary relation on
a nonempty fnite set U. Ten, the j-neighborhood of
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e ∈ U, de noted byΩj(e),j ∈ r,l, i,u{ } can defned as
follows:

(i) r-neighborhood: Ωr(e) � q ∈ U: eRq􏼈 􏼉

(ii) l-neighborhood : Ωl(e) � q ∈ U: qRe􏼈 􏼉

(iii) i-neighborhood: Ωi(e) � Ωr(e)∩Ωl(e)

(iv) u-neighborhood: Ωu(e) � Ωr(e)∪Ωl(e)

Defnition 2 (see [8]). If R is a binary relation on U and
χj: U⟶Ρ(U) is a function which gives ∀e ∈ U its
j-neighborhood in Ρ(U). Ten, the triple (U,R, χj) is
called a j-neighborhood space (abbreviated j-NS).

Theorem 1 (see [8]). Let (U,R, χj) be aj-NS, then for each
j ∈ r,l, i,u{ }, the collection Τj � Q⊆U: ∀q ∈ Q,Ωj􏽮

(q)⊆Q} represents a topology on U.

Defnition 3 (see [8]). Consider (U,R, χj) is a j-NS. Te
subset Q⊆U is supposed to be “j- open set” if Q ∈ Τj, and its
complement is named “j- closed set.” Te family Κj of all
j-closed sets of aj-NS is defned byΚj � Q⊆U: Qc ∈ Τj􏽮 􏽯.

Defnition 4 (see [8]). If (U,R, χj) is a j-NS and Q⊆U.
Ten, the “j-lower” and “j-upper” approximations of Q are
well-defned, respectively, as follows:

R
− j

(Q) � ∪ B ∈ Τj: B⊆Q􏽮 􏽯

� Intj(Q),

Rj(Q) � ∩ M ∈ Κj: Q⊆M􏽮 􏽯

� Clj(Q),

(1)

where Intj(Q) (resp. Clj(Q)) represents j-interior (resp.
j-closure) of Q.

Defnition 5 (see [8]). Let (U,R, χj) be a j-NS and Q⊆U.
Ten, the subset Q is called a “j-exact” set if
R
− j

(Q) � Rj(Q) � Q. If not, it is “j-rough.”

Defnition 6 (see [8]). Consider (U,R, χj) is a j-NS and
Q⊆U. Te “j-boundary,” “j-positive,” and “j-negative”
regions of Q are given, respectively, as follows:

Bndj(Q) � Rj(Q) − R
− j

(Q),

Posj(Q) � R
− j

(Q),

Negj(Q)� U − Rj(Q).

(2)

Te “j-accuracy” of the approximations is given as
follows:

ψj(Q) �

R
− j

(Q)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

Rj(Q)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
,where Rj(Q)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≠ 0. (3)

Clearly, 0≤ψj(Q)≤ 1 and if ψj(Q) � 1, then Q is a j-
exact set. Else, it is j-rough.

3. Topologies Generated from Neighborhoods

Te present section is devoted to generalizing the concept of
“basic-neighborhood [17]” into new types, and thus we
generate four diferent topologies from these
neighborhoods.

Defnition 7. Suppose that R is a binary relation on
a nonempty fnite set U. Ten, we defne the following
neighborhoods of e ∈ U:

(i) r-basic neighborhood:
Ωbr(e) � q ∈ U: Ωr(q)⊆Ωr(e)􏼈 􏼉

(ii) l-basic neighborhood:
Ωbl(e) � q ∈ U: Ωl(q)⊆Ωl(e)􏼈 􏼉

(iii) i-basic neighborhood: Ωbi(e) � Ωbr(e)∩Ωbl(e)

(iv) u-basic neighborhood: Ωbu(e) � Ωbr(e)∪Ωbl(e)

Te next consequences state the foremost characteristics
of the previous neighborhoods.

Lemma 1. Suppose that R represents a binary relation on U.
For each j ∈ r,l, i,u{ }:

(i) e ∈ Ωbj(e)

(ii) Ωbj(e)≠φ
(iii) If q ∈ Ωbj(e), then Ωbj(q)⊆Ωbj(e), for each

j ∈ r,l, i{ }

Proof. Firstly, the proof of (i) and (ii) is obvious by Def-
nition 7. (iii) We prove the item in a case of j � r only, and
the other cases in a similar way.

By using Defnition 7, if q ∈ Ωbr(e), then
Ωr(q)⊆Ωr(e) . . . (1)

Now, let k ∈ Ωbr(q). Ten, Ωr(k)⊆Ωr(q). Tus, by
(1), Ωr(k)⊆Ωr(e) and this implies k ∈ Ωbr(e). Accord-
ingly, Ωbj(q)⊆Ωbj(e). □

Lemma 2. Let R be a binary relation on U. Ten, for every
e ∈ U:

(i) Ωbi(e)⊆Ωbr(e)⊆Ωbu(e)

(ii) Ωbi(e)⊆Ωbl(e)⊆Ωbu(e)

Proof. Forthright □

Remark 1. In Example 1, we will illustrate that:

(i) Item (iii) of Lemma 1 is not true in the case ofj � u

(ii) Te j-basic neighborhoods and j-neighborhoods
are independent (noncomparable) in a general case,
for each j ∈ r,l, i,u{ }, and R be a binary relation
on U

Te following lemma illustrates the relationships be-
tween the j-basic neighborhoods and j-neighborhoods.

Lemma 3. If (U,R, χj) is a j-NS and R is a refexive re-
lation. Ten, ∀j ∈ r,l, i,u{ }: Ωbj(e)⊆Ωj(e) and ∀e ∈ U.
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Proof. Firstly, by using Defnition 7, if q ∈ Ωbj(e), then
Ωj(q)⊆Ωj(e) . . . (1)

Since R is a refexive relation, then q ∈ Ωj(q).
Terefore, by (1),q ∈ Ωj(e) and thus,Ωbj(e)⊆Ωj(e) and
∀e ∈ U. □

Lemma 4. If (U,R, χj) is a j-NS and R is a transitive
relation. Ten, for every j ∈ r,l, i,u{ }: Ωj(e)⊆Ωbj(e)

and ∀e ∈ U.

Proof. In what follows, we demonstrate the lemma in the
case of j � r only, and similarly, we can prove the
other cases.

Firstly, let g ∈ Ωr(e), then eRg . . . (1)
Now, we necessity to show that Ωr(g)⊆Ωr(e) as

follows:
Let h ∈ Ωr(g), then gRh. Terefore, by transitivity of

R and using (1), we obtain eRh. Hence, h ∈ Ωr(e) which
implies Ωr(g)⊆Ωr(e). Consequently, g ∈ Ωbj(e). □

Corollary 1. If (U,R, χj) is a j-NS and R is a preorder
(refexive and transitive) relation. Ten, for every
j ∈ r,l, i,u{ }: Ωj(e) � Ωbj(e) and ∀e ∈ U.

Corollary 2. If (U,R, χj) is a j-NS andR is an equivalence
relation. Ten, for each j ∈ r,l, i,u{ }:
Ωbj(e) � Ωj(e) � [e]R, where [e]R represents the equiv-
alence class of e ∈ U.

Te following result (depending on Teorem 1) discusses
an interesting technique to construct dissimilar topologies
depending on the previous neighborhoods.

Theorem 2. If (U,R, χj) is a j-NS. Ten, for each
j ∈ r,l, i,u{ }, the collection Τbj � Q⊆U: ∀q ∈􏼈

Q,Ωbj(q)⊆Q} is a topology on U.

Proof
(T1) Clearly, U and φ belong to Τbj.
(T2) If Qk: k ∈K􏼈 􏼉 is a class of members in Τbj and
q ∈ ∪ kQk, then, ∃ko ∈K such that q ∈ Qko

. Tus,
Ωbj(q)⊆Qko

and this implies Ωbj(q)⊆ ∪ kQk.
Terefore, ∪ kQk ∈ Τbj.
(T3) Let Q1,Q2 ∈ Τbj and q ∈ Q1 ∩Q2. Ten, q ∈ Q1
and q ∈ Q2 which implies Ωbj(q)⊆Q1 and
Ωbj(q)⊆Q2. Tus, Ωbj(q)⊆Q1 ∩Q2 and hence,
Q1 ∩Q2 ∈ Τbj.

From (T1), (T2), and (T3), Τbj forms a topology on U.
By using Lemma 2, it is easy to verify the following result

which gives the relationships among diferent topologies
Τbj. □

Proposition 1. If (U,R, χj) is a j-NS, then

(i) Τbu ⊆Τ
b
r ⊆Τ

b
i

(ii) Τbu ⊆Τ
b
l ⊆Τ

b
i

Te opposite of Proposition 1 is incorrect as illustrated in
Example 1.

Example 1. Let U � q1,q2,q3,q4􏼈 􏼉 and R � (q1,q1),􏼈

(q1,q4), (q2,q1), (q2,q3), (q3,q3), (q3,q4), (q4,q1)}.
Tus, we get
Ωr(q1) � q1,q4􏼈 􏼉,Ωl(q1) � q1,􏼈 q2,q4},Ωi(q1) �

q1,q4􏼈 􏼉, Ωu(q1) � q1,q2,q4􏼈 􏼉, Ωr(q2) � q1,q3􏼈 􏼉,
Ωl(q2) � φ, Ωi(q2) � φ, Ωu(q2) � q1,q3􏼈 􏼉,
Ωr(q3) � q3,q4􏼈 􏼉,Ωl(q3) � q2,q3􏼈 􏼉, Ωi(q3) � q3􏼈 􏼉,
Ωu(q3) � q2,q3,q4􏼈 􏼉, Ωr(q4) � q1􏼈 􏼉, Ωl(q4) �

q1,q3􏼈 􏼉, Ωi(q4) � q1􏼈 􏼉, and Ωu(q4) � q1,q3􏼈 􏼉

Consequently, we obtain
Ωbr(q1) � q1,q4􏼈 􏼉,Ωbl(q1) � q1,q2􏼈 􏼉,Ωbi(q1) �

q1􏼈 􏼉,Ωbu(q1) � q1,q2,q4􏼈 􏼉, Ωbr(q2) � q2,􏼈

q4},Ωbl(q2) � q2􏼈 􏼉,Ωbi(q2) � q2􏼈 􏼉, Ωbu(q2) � q2,q4􏼈 􏼉,
Ωbr(q3) � q3􏼈 􏼉, Ωbl(q3) � q2,q3􏼈 􏼉, Ωbi(q3) � q3􏼈 􏼉,
Ωbu(q3) � q2,q3􏼈 􏼉, Ωbr(q4) � q4􏼈 􏼉, Ωbl(q4) � q2,q4􏼈 􏼉,
Ωbi(q4) � q4􏼈 􏼉, and Ωbu(q4) � q2,q4􏼈 􏼉

Accordingly, we generate the following topologies:

Τbr � U,φ, q3􏼈 􏼉, q4􏼈 􏼉, q1,q4􏼈 􏼉, q2,q4􏼈 􏼉, q3,q4􏼈 􏼉,􏼈

q1,q2,q4􏼈 􏼉, q2,q3,q4􏼈 􏼉, q1,q2,q4􏼈 􏼉 q1,q3,q4􏼈 􏼉􏼉,

Τbl � U,φ, q2􏼈 􏼉, q1,q2􏼈 􏼉, q2,q3􏼈 􏼉, q2,q4􏼈 􏼉,􏼈

q1,q2,q3􏼈 􏼉, q1,q2,q4􏼈 􏼉, q2,q3,q4􏼈 􏼉􏼉,

Τbi � P(U),

Τbu � U,φ, q2,q4􏼈 􏼉, q1,q2,q4􏼈 􏼉, q2,q3,q4􏼈 􏼉􏼈 􏼉.

(4)

Te consequent proposition gives the relationships be-
tween the topologies Τj and Τbj.

Remark 2. For any aj-NS (U,R, χj), and by using Example
1, we notice that

(i) Te topologies Τj and Τbj are independent in
general case

(ii) Te topologies Τbr and Τbl are independent in
general case

Proposition 2. If (U,R, χj) is a j-NS and R is a refexive
relation, then for each j ∈ r,l, i,u{ }: Τj ⊆Τbj.

Proof. By Lemma 3, the proof is clear.
Te following example illustrates that the converse of

Proposition 2 is not true in general. □

Example 2. Let U � q1,q2,q3,q4􏼈 􏼉 and R � (q1,q1),􏼈

(q1,q2), (q2,q1), (q2,q2), (q2,q3), (q3,q3), (q4,q4)}

be a refexive relation onU. Tus, we compute the topologies
Τj and Τbj in the case of j � r and the others similarly.

Τr � U,φ, q3􏼈 􏼉, q4􏼈 􏼉, q3,q4􏼈 􏼉, q1,q2,q3􏼈 􏼉􏼈 􏼉,

Τbr � U,φ, q1􏼈 􏼉, q3􏼈 􏼉, q4􏼈 􏼉, q1,q3􏼈 􏼉, q1,q4􏼈 􏼉,􏼈

q3,q4􏼈 􏼉, q1,q2,q3􏼈 􏼉, q1,q3,q4􏼈 􏼉􏼉.

(5)

Figure 1 summarizes the relationships among diferent
topologies in the case of R is a refexive relation.
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4. Rough Approximations Generated by
Different Topologies

We present four methods for approximating rough sets
using the interior and closure generated by topology Τbj, for
each j ∈ r,l, i,u{ } in this section.

Defnition 8. If (U,R, χj) is a j-NS, then Q⊆U is supposed
to be an j-basic open set and if Q ∈ Τbj, its complement
called an j-basic closed set. Te family Κij of all j-basic
closed sets is given byΚbj � Κ⊆U: Κc ∈ Τbj􏽮 􏽯. Moreover, we
defne the following points:

(i) Te j-basic interior of Q⊆U is:
Intbj(Q) � ∪ G ∈ Τbj: G⊆Q􏽮 􏽯

(ii) Te j-basic closure of Q⊆U is:
Clbj(Q) � ∩ H ∈ Κbj: Q⊆H􏽮 􏽯

Defnition 9. Let (U,R, χj) be a j-NS and Q⊆U. Ten, the
j-basic lower and upper approximations of Q are proposed,
respectively, as follows:

R
−

b

j
(Q) � Intbj(Q),

R
b

j(Q) � Clbj(Q).

(6)

Defnition 10. Let (U,R, χj) be a j-NS and Q⊆U. Te
j-basic boundary, j-basic positive, and j-basic negative
regions of Q are proposed, respectively, as follows:

Bnd
b
j(Q) � R

b

j(Q) − R
−

b

j
(Q),

Pos
b
j(Q) � R

−

b

j
(Q),

Neg
b
j(Q) � U − R

b

j(Q).

(7)

Moreover, the j-basic accuracy of the j-basic ap-
proximations of Q⊆U is suggested as follows:

ψb
j(Q) �

R
−

b

j
(Q)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

R
b

j(Q)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

,where Rb

j(Q)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≠ 0. (8)

It is obvious that, 0≤ψb
j(Q)≤ 1 and if ψb

j(Q) � 1, thenQ
is called an j-basic defnable (j-basic exact) set. If not, it is
an j-basic rough set.

Example 3. By using Example 1, we obtain the following
equation:

Τbr � U,φ, q3􏼈 􏼉, q4􏼈 􏼉, q1,q4􏼈 􏼉, q2,q4􏼈 􏼉,􏼈

q3,q4􏼈 􏼉 q1,q2,q4􏼈 􏼉, q2,q3,q4􏼈 􏼉, q1,q3,q4􏼈 􏼉􏼉,

Κbr � U,φ, q1􏼈 􏼉, q2􏼈 􏼉, q3􏼈 􏼉 q1,q2􏼈 􏼉, q1,q3􏼈 􏼉,􏼈

q2,q3􏼈 􏼉 q1,q2,q4􏼈 􏼉, q1,q2,q3􏼈 􏼉􏼉,

Τbl � U,φ, q2􏼈 􏼉, q1,q2􏼈 􏼉, q2,q3􏼈 􏼉,􏼈

q2,q4􏼈 􏼉 q1,q2,q3􏼈 􏼉, q1,q2,q4􏼈 􏼉, q2,q3,q4􏼈 􏼉􏼉,

Κbl � U,φ, q1􏼈 􏼉, q3􏼈 􏼉, q4􏼈 􏼉, q1,q3􏼈 􏼉, q1,q4􏼈 􏼉,􏼈

q3,q4􏼈 􏼉, q1,q3,q4􏼈 􏼉􏼉,

Τbi � Κbi � P(U),

Τbu � U,φ, q2,q4􏼈 􏼉, q1,q2,q4􏼈 􏼉, q2,q3,q4􏼈 􏼉􏼈 􏼉,

Κbu � U,φ, q1􏼈 􏼉, q3􏼈 􏼉, q1,q3􏼈 􏼉􏼈 􏼉.

(9)

Tus, we can get Tables 1 and 2 that give the j-basic
lower, j-basic upper approximations, and the j-basic ac-
curacy of approximations for all subsets of U.

Remark 3. According to Tables 1 and 2 of Example 3, we
conclude that by using diferent types of Τbj in building
approximations of the sets, the fnest of them is that assumed
by Τbi because, for everyQ⊆U, ψb

u(Q)≤ψb
r(Q)≤ψb

i(Q), and
ψb
u(Q)≤ψb

l(Q)≤ψb
i(Q). In addition, these approaches are

more accurate than the other in [1, 6].
Te following proposition imposes some properties of

the j-basic approximations:

Tr

Tu
Ti

Tl

Tb
r

Tb
l

Tb
u

Tb
i

Figure 1: Te connections between diferent topologies of Τj and Τbj in the case of refexivity relation.
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Proposition 3. Let (U,R, χj) be a j-NS and Q,S⊆U.
Tus,

(1) R
−

b

j
(Q)⊆Q⊆Rb

j(Q)

(2) R
−

b

j
(U) � R

b

j(U) � U and R
−

b

j
(φ) � R

b

j(φ) � φ

(3) Rb

j(Q∪S) � R
b

j(Q)∪Rb

j(S)

(4) R
−

b

j
(Q∩S) � R

−

b

j
(Q)∩R

−

b

j
(S)

(5) If Q⊆S thenR
−

b

j
(Q)⊆R

−

b

j
(S)

(6) If Q⊆S thenRb

j(Q)⊆Rb

j(S)

(7) R
−

b

j
(Q∪S)⊇R

−

b

j
(Q)∪R

−

b

j
(S)

(8) Rb

j(Q∩S)⊆Rb

j(Q)∩Rb

j(S)

(9) R
−

b

j
(Q) � [R

b

j(Qc)]c, where Qc represents a com-
plement of Q

(10) Rb

j(Q) � [R
−

b

j
(Qc)]c

(11) R
−

b

j
(R

−

b

j
(Q)) � R

−

b

j
(Q)

(12) Rb

j(R
b

j(Q)) � R
b

j(Q)

Proof. Tough using properties of the j-basic interior and
j-basic closure, we can prove these properties.

Te preceding proposition is one of the distinctions
between our approaches and those of other proposals such as
[6, 15, 43, 48, 49].

Te following results, which illustrate the relationships
among the suggested approximations (j-basic approxi-
mations), are simple to prove using Proposition 1, so the
proof is omitted. □

Proposition 4. Suppose that (U,R, χj) is a j-NS and
Q⊆U. Ten,

(1) R
−

b

u
(Q)⊆R

−

b

r
(Q)⊆R

−

b

i
(Q)

(2) R
−

b

u
(Q)⊆R

−

b

l
(Q)⊆R

−

b

i
(Q)

(3) Rb

i(Q)⊆Rb

r(Q)⊆Rb

u(Q)

(4) Rb

i(Q)⊆Rb

l(Q)⊆Rb

u(Q)

Corollary 3. If (U,R, χj) is a j-NS and Q⊆U. Ten,

(1) Bndb
i(Q)⊆Bndb

r(Q)⊆Bndb
u(Q)

(2) Bndb
i(Q)⊆Bndb

l(Q)⊆Bndb
u(Q)

(3) ψb
u(Q)≤ψb

r(Q)≤ψb
i(Q)

(4) ψb
u(Q)≤ψb

l(Q)≤ψb
i(Q)

(5) Te subset Q is an u-basic exact set ⇒ Q is r-basic
exact ⇒ Q is i-basic exact

(6) Te subset Q is an u-basic exact set ⇒ Q is l-basic
exact ⇒ Q is i-basic exact

Remark 4. Example 3 demonstrates that the opposition of
the preceding results is not true in general.

Te following results show comparisons between the
proposed approximations (j-basic approximations) and the
previous approximations (j-approximations [8]).

Theorem 3. Let (U,R, χj) be a j-NS and Q⊆U. If R is
a refexive relation on U, then for each j ∈ r,l, i,u{ }:

Table 1: Comparison among diferent types of j-basic approximations.

P(U)
Τbr Τbl Τbi Τbu

R
−

b

r
(Q) R

b

r(Q) R
−

b

l
(Q) R

b

l(Q) R
−

b

i
(Q) R

b

i(Q) R
−

b

u
(Q) R

b

u(Q)

q1􏼈 􏼉 φ q1􏼈 􏼉 φ q1􏼈 􏼉 q1􏼈 􏼉 q1􏼈 􏼉 φ q1􏼈 􏼉

q2􏼈 􏼉 φ q2􏼈 􏼉 q2􏼈 􏼉 U q2􏼈 􏼉 q2􏼈 􏼉 φ U

q3􏼈 􏼉 q3􏼈 􏼉 q3􏼈 􏼉 φ q3􏼈 􏼉 q3􏼈 􏼉 q3􏼈 􏼉 φ q3􏼈 􏼉

q4􏼈 􏼉 q4􏼈 􏼉 U φ q4􏼈 􏼉 q4􏼈 􏼉 q4􏼈 􏼉 φ U

q1,q2􏼈 􏼉 φ q1,q2􏼈 􏼉 q1,q2􏼈 􏼉 U q1,q2􏼈 􏼉 q1,q2􏼈 􏼉 φ U

q1,q3􏼈 􏼉 q3􏼈 􏼉 q1,q3􏼈 􏼉 φ q1,q3􏼈 􏼉 q1,q3􏼈 􏼉 q1,q3􏼈 􏼉 φ q1,q3􏼈 􏼉

q1,q4􏼈 􏼉 q1,q4􏼈 􏼉 q1,q2,q4􏼈 􏼉 φ q1,q4􏼈 􏼉 q1,q4􏼈 􏼉 q1,q4􏼈 􏼉 φ q1􏼈 􏼉

q2,q3􏼈 􏼉 q3􏼈 􏼉 q1,q3􏼈 􏼉 q2,q3􏼈 􏼉 U q2,q3􏼈 􏼉 q2,q3􏼈 􏼉 φ q3􏼈 􏼉

q2,q4􏼈 􏼉 q2,q4􏼈 􏼉 q1,q2,q4􏼈 􏼉 q2,q4􏼈 􏼉 U q2,q4􏼈 􏼉 q2,q4􏼈 􏼉 q2,q4􏼈 􏼉 U

q3,q4􏼈 􏼉 q3,q4􏼈 􏼉 U φ q3,q4􏼈 􏼉 q3,q4􏼈 􏼉 q3,q4􏼈 􏼉 φ U

q1,q2,q3􏼈 􏼉 q3􏼈 􏼉 q1,q2,q3􏼈 􏼉 q1,q2,q3􏼈 􏼉 U q1,q2,q3􏼈 􏼉 q1,q2,q3􏼈 􏼉 φ U

q1,q2,q4􏼈 􏼉 q1,q2,q4􏼈 􏼉 q1,q2,q4􏼈 􏼉 q1,q2,q4􏼈 􏼉 U q1,q2,q4􏼈 􏼉 q1,q2,q4􏼈 􏼉 q1,q2,q4􏼈 􏼉 U

q2,q3,q4􏼈 􏼉 q2,q3,q4􏼈 􏼉 U q2,q3,q4􏼈 􏼉 U q1,q3,q4􏼈 􏼉 q1,q3,q4􏼈 􏼉 q2,q3,q4􏼈 􏼉 U

q1,q3,q4􏼈 􏼉 q1,q3,q4􏼈 􏼉 U φ q1,q3,q4􏼈 􏼉 q2,q3,q4􏼈 􏼉 q2,q3,q4􏼈 􏼉 φ U

U U U U U U U φ U

Table 2: Comparison among diferent types of j-basic accuracies.

P(U) ψb
r(Q) ψb

l(Q) ψb
i(Q) ψb

u(Q)

q1􏼈 􏼉 0 0 1 0
q2􏼈 􏼉 0 1/4 1 0
q3􏼈 􏼉 1 0 1 0
q4􏼈 􏼉 1/4 0 1 0
q1,q2􏼈 􏼉 0 1/2 1 0
q1,q3􏼈 􏼉 1/2 0 1 0
q1,q4􏼈 􏼉 2/3 0 1 0
q2,q3􏼈 􏼉 1/2 1/2 1 0
q2,q4􏼈 􏼉 2/3 1/2 1 1/2
q3,q4􏼈 􏼉 1/2 0 1 0
q1,q2,q3􏼈 􏼉 1/3 3/4 1 0
q1,q2,q4􏼈 􏼉 1 3/4 1 3/4
q1,q3,q4􏼈 􏼉 3/4 3/4 1 3/4
q2,q3,q4􏼈 􏼉 3/4 0 1 0
U 1 1 1 1
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(1) R
− j

(Q)⊆R
−

b

j
(Q)

(2) Rb

j(Q)⊆Rj(Q)

Proof. Te frst point will be proved, and the others in
a similar way.

Suppose that q ∈ R
− j

(Q). Ten, using Defnition 4,
B ∈ Τj such thatq ∈B⊆Q. However, from Proposition 2,
Τj ⊆Τbj. Hence, B ∈ Τbj such that q ∈B⊆Q and this
means that q ∈ R

−

b

j
(Q). Consequently,

R
− j

(Q)⊆R
−

b

j
(Q). □

Corollary 4. If (U,R, χj) is a j-NS and Q⊆U. Ten,

(1) Bndb
j(Q)⊆Bndj(Q)

(2) ψj(Q)≤ψb
j(Q)

(3) If Q is an j-exact set, then it is j-basic exact

Remark 5. Te contrary of previous results is not true as
shown in Example 4.

Example 4. Consider Example 2, and then we will compare
the j-basic approximations with the j-approximations in
the case of j � r and the others similarly.

Firstly, we evaluate the topologies Τbj and Τj (resp. the
class of all closed sets Κbj and Κj) in the case of j � r as
follows:

Τr � U,φ, q3􏼈 􏼉, q4􏼈 􏼉, q3,q4􏼈 􏼉, q1,q2,q3􏼈 􏼉􏼈 􏼉,

Κr � U,φ, q4􏼈 􏼉, q1,q2􏼈 􏼉, q1q2,q4􏼈 􏼉, q1,q2,q3􏼈 􏼉􏼈 􏼉,

Τbr � U,φ, q1􏼈 􏼉, q3􏼈 􏼉, q4􏼈 􏼉, q1,q3􏼈 􏼉, q1,q4􏼈 􏼉, q3,q4􏼈 􏼉,􏼈

q1,q2,q3􏼈 􏼉, q1,q3,q4􏼈 􏼉􏼉,

Κbr � U,φ, q2􏼈 􏼉, q4􏼈 􏼉, q1,q2􏼈 􏼉, q2,q3􏼈 􏼉, q2,q4􏼈 􏼉, q1,q2,q3􏼈 􏼉,􏼈

q1,q2,q4􏼈 􏼉 q2,q3,q4􏽮 􏽯􏽯.

(10)

Hence, we obtain Table 3 which exemplifes a compari-
son among the r-accuracy of r-approximations and r-basic
accuracy of r-basic approximations of all subsets of U.

Remark 6. According to Table 3 of Example 4, we notice that
r-basic approximations are more accurate than r-approx-
imations of sets since ψr(Q)≤ψb

r(Q). Terefore, it may say
that the recommended approximations “j-basic approxi-
mations” represent golden tools in eliminating the ambi-
guity of sets. For example, in Table 3, the subset
Q � q1,q2􏼈 􏼉 and its r-approximations are R

− r
(Q) � φ and

Rr(Q) � q1,q2􏼈 􏼉 which implies Bndr(Q) � q1,q2􏼈 􏼉

and ψr(Q) � 0 and this means that Q is a r-rough set.
Moreover, the r-positive region of Q is Posr(Q) � φ al-
though Q consists of two elements which is a contradiction
to the knowledge of Example 4. On the other hand, we fnd
r-basic approximations of Q are R

−

b

r
(Q) � q1􏼈 􏼉 and

R
b

r(Q) � q1,q2􏼈 􏼉, that is, the r-basic positive region of Q is
Posbr(Q) � q1􏼈 􏼉 and ψb

r(Q) � 1/2.

5. Economic Application

Since the 1950s, most Western countries’ ofcial policy goal
has been economic development. In general, growth rates
have been slightly slower since the 1970s than in the two
preceding years. Furthermore, most countries’ economic
growth has yet to recover from the 2008 recession. A
growing number of economists and commentators have
challenged the (still primary) expectation that GDP growth
will continue to rise at a regular rate of 2.5 percent in the
coming period (see [21]). Mainstream economists propose
a new standard yearly growth ratio of 1% or less, owing to
a lower predictable rate of industrial progress, and thus
a lower rate of productivity growth. Because of the decline in
oil production, other resource constraints, and the negative
consequences of environmental degradation and climate
change, zero growth or even disastrous trends are considered
abnormal. Terefore, many countries (for example, USA,
England, and Middle East) tended to pay attention to the
economy and study the growth rate to contribute to over-
coming this crisis.

In the current section, we provide an applied example of
how approximations can be used as tools with a coefcient of
precision for making accurate decisions in discussing the
growth rate of countries. For this, we use a data table with
a decision attribute [21], and then apply our own and other
methods to show which methods are accurate in making the
right decision. National production can be designed using
three methods, as shown in the example below. Because this
system depends on a refexive relation, Pawlak’s rough sets
are inapplicable. As a result, we implement the proposed
methods, as well as the previous methods in this country’s
decision-making system, and then we compare these
decision-making methods.

Table 3: Comparison between r-accuracies and r-basic accuracies.

P(U) ψr(Q) ψb
r(Q)

q1􏼈 􏼉 0 1/2
q2􏼈 􏼉 0 0
q3􏼈 􏼉 1/3 1/2
q4􏼈 􏼉 1 1
q1,q2􏼈 􏼉 0 1/2
q1,q3􏼈 􏼉 1/3 2/3
q1,q4􏼈 􏼉 1/3 2/3
q2,q3􏼈 􏼉 1/3 1/2
q2,q4􏼈 􏼉 1/4 1/2
q3,q4􏼈 􏼉 1/2 2/3
q1,q2,q3􏼈 􏼉 1/3 1
q1,q2,q4􏼈 􏼉 1/2 2/3
q1,q3,q4􏼈 􏼉 1/2 3/4
q2,q3,q4􏼈 􏼉 1/2 2/3
U 1 1
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Firstly, we recall some other methodologies for ap-
proximating rough sets that given in [45, 50].

5.1. Yao’s Method

Defnition 11 (see [50]). Let R be a binary relation on U.
Ten, Yao-lower and Yao-upper approximations of Q⊆U
are given, respectively, as follows:

L(Q) � q ∈ U: Ωr(q)⊆Q􏼈 􏼉,

U(Q) � q ∈ U: Ωr(q)∩Q≠φ􏼈 􏼉.
(11)

Terefore, Yao-accuracy of approximations of Q⊆U is
given as follows:

δ(Q) �
|L(Q)|

|U(Q)|
, (12)

such that U(Q)≠φ

5.2. Dai et al.’s Method

Defnition 12 (see [45]). Let R be a binary relation on U.
Ten, for each q ∈ U, we defne its maximal-neighborhood
as follows:

Ω⊔(q) �
∪

q∈Ωr(e)
Ωr(e), if∃q such thatq ∈ Ωr(e),

φ, Otherwise.

⎧⎪⎨

⎪⎩

(13)

Defnition 13 (see [45]). IfR is a binary relation on U. Ten,
the maximal-lower and maximal-upper approximations of
Q⊆U are provided, respectively, as follows:

L⊔(Q) � q ∈ U: Ω⊔(q)⊆Q􏼈 􏼉,

U⊔(Q) � q ∈ U: Ω⊔(q)∩Q≠φ􏼈 􏼉.
(14)

Terefore, the maximal-accuracy of approximations of
Q⊆U is defned as follows:

μ(Q) �
L⊔(Q)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

U⊔(Q)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
, (15)

such that U⊔(Q)≠φ.
Now, we present an economic application which was

constructed from [21].

Example 5 (see [21]). We consider U � q1,q2,q3,q4,q5􏼈 􏼉

is a world of fve countries, and A � a1,a2,a3􏼈 􏼉 the set of
attributes which measure the national product in these
countries, where a1 means a product method, a2 means
a spending method, and a3 means an income method and
decision attribute D �{growth and not growth}.

Now, assume that the assessment sets of the attributes
are specifed as follows:Va1

� F,T,V{ } where F, T, and
V denote to fnishing product style, taxes, and value-added

style, respectively.Va2
� C,I,G{ } where C, I, and G

denote to consumption, investment, and government,
respectively.Va3

� S,P,R{ } whereS,P, andR denote to
salaries, profts, and rents, respectively.

Te next procedure is proposing a relation; it is given
according to the requirements of the standpoint of system’s
experts. In this example, we propose the following relation:
qmRak

qn⟺Vam
(qm)⊆Van

(qn), for each
m,n ∈ 1, 2, 3, 4, 5{ } and k ∈ 1, 2, 3{ }.

It should be noted that the stated relation can be replaced
based on the opinions of the system’s specialists.

Terefore, from Table 4, we obtain the following point:

(i) For the attribute a1, we obtain the refexive relation
as follows:

Ra1
� q1,q1( 􏼁, q1,q2( 􏼁, q2,q2( 􏼁, q3,q2( 􏼁,􏼈

q3,q3( 􏼁, q3,q4( 􏼁, q4,q4( 􏼁,

q5,q4( 􏼁, q5,q5( 􏼁􏼉.

(16)

Tus, q1Ra1
� q1,q2􏼈 􏼉, q2Ra1

� q2􏼈 􏼉, q3Ra1
�

q2,q3,q4􏼈 􏼉, q4Ra1
� q4􏼈 􏼉, and q5Ra1

� q4,q5􏼈 􏼉. Simi-
larly, q1Ra2

� q2Ra2
� q1,q2,q3,q4􏼈 􏼉, q3Ra2

� q3􏼈 􏼉,
q4Ra2

� q4􏼈 􏼉, q5Ra2
� q4,q5􏼈 􏼉, q1Ra3

� q1,q2,q4,􏼈

q5}, q2Ra3
� q2,q4􏼈 􏼉, q3Ra3

� q3,q4,q5􏼈 􏼉, q4Ra3
�

q4􏼈 􏼉, and q5Ra3
� q4,q5􏼈 􏼉.

It is clear that the suggested relation is refexive; this
means that the Pawlak approximations space fails to describe
this system.

Terefore, from all previous relations, we construct the
following j-neighborhoods, for each j ∈ r,l, i{ }, to de-
scribe the set of all condition attributes of Table 4 as follows:
Ωr(qm) � ∪ kqmRak

, for each k ∈ 1, 2, 3{ } and
m ∈ 1, 2, 3, 4, 5{ }.

(i) j-neighborhoods of all qm ∈ U as follows:

Ωr(q1) � U,Ωl(q1) � q1,q2􏼈 􏼉,Ωi(q1) � q1,q2􏼈 􏼉,
Ωr(q2) � q1,q2,q3,q4􏼈 􏼉, (q2) � q1,q2,q3􏼈 􏼉,
Ωi(q2) � q1,q2,q3􏼈 􏼉, Ωr(q3) � q2,q3,q4,q5􏼈 􏼉,
Ωl(q3) � q1,q2,q3􏼈 􏼉, Ωi(q3) � q2,q3􏼈 􏼉, Ωr(q4) �

q4􏼈 􏼉,Ωl(q4) � U,Ωi(q4) � q4􏼈 􏼉,Ωr(q5) � q4,q5􏼈 􏼉,
Ωl(q5) � q3,q5􏼈 􏼉, and Ωi(q5) � q5􏼈 􏼉

(ii) j-basic neighborhoods of all qm ∈ U as follows:
Ωbr(q1) � U,Ωbl(q1) � q1􏼈 􏼉, Ωbi(q1) � q1􏼈 􏼉,

Ωbr(q2) � q2,q4􏼈 􏼉,Ωbl(q2) � q1,q2,q3􏼈 􏼉,

Ωbi(q2) � q2􏼈 􏼉, Ωbr(q3) � q3,q4,q5􏼈 􏼉, Ωbl(q3) �

q1,q2,q3􏼈 􏼉, Ωbi(q3) � q3􏼈 􏼉, Ωbr(q4) � q4􏼈 􏼉,
Ωbl(q4) � U, Ωbi(q4) � q4􏼈 􏼉, Ωbr(q5) � q4,q5􏼈 􏼉,
Ωbl(q4) � q5􏼈 􏼉, and Ωbi(q4) � q5􏼈 􏼉

So, the j-topologies (resp. j-closed sets) and j-basic
topologies (resp. j-basic closed sets), for each j ∈ r,l, i{ }

generated by these neighborhoods are given, respectively, as
follows:
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Τr � Κl � U,φ, q4􏼈 􏼉, q4,q5􏼈 􏼉􏼈 􏼉,

Τl � Κr � U,φ, q1,q2,q3􏼈 􏼉, q1,q2,q3,q5􏼈 􏼉􏼈 􏼉,

Τi � Κi � U,φ, q4􏼈 􏼉, q5􏼈 􏼉, q4,q5􏼈 􏼉, q1,q2,q3􏼈 􏼉, q1,q2,q3,q4􏼈 􏼉, q1,q2,q3,q5􏼈 􏼉􏼈 􏼉,

Τbr � U,φ, q4􏼈 􏼉, q2,q4􏼈 􏼉, q4,q5􏼈 􏼉, q2,q4,q5􏼈 􏼉, q3,q4,q5􏼈 􏼉, q2,q3,q4,q5􏼈 􏼉􏼈 􏼉,

Κbr � U,φ, q1􏼈 􏼉, q1,q2􏼈 􏼉, q1,q3􏼈 􏼉, q1,q2,q3􏼈 􏼉, q1,q3,q5􏼈 􏼉, q1,q2,q3,q5􏼈 􏼉􏼈 􏼉,

Τbl � U,φ, q1􏼈 􏼉, q5􏼈 􏼉, q1,q5􏼈 􏼉, q1,q2,q3􏼈 􏼉, q1,q2,q3,q5􏼈 􏼉􏼈 􏼉,

Κbl � U,φ, q4􏼈 􏼉, q4,q5􏼈 􏼉, q2,q3,q4􏼈 􏼉, q1,q2,q3,q4􏼈 􏼉, q2,q3,q4,q5􏼈 􏼉􏼈 􏼉,

Τbi � Κbi � P(U).

(17)

Table 5: Comparison between the suggested approaches and previous methods, namely, Monsef et al. [8], Abu-Gdairi et al. [17], Dai et al.
[45], and Yao [50].

P(U)
Current methods Abd El-Monsef et al. Yao method Dai et al. method

ψb
r(Q) ψb

l(Q) ψb
i(Q) ψr(Q) ψl(Q) ψi(Q) δ(Q) μ(Q)

q1􏼈 􏼉 0 1/5 1 0 0 0 0 0
q2􏼈 􏼉 0 0 1 0 0 0 0 0
q3􏼈 􏼉 0 0 1 0 0 0 0 0
q4􏼈 􏼉 1/5 0 1 1/5 0 1 1/5 0
q5􏼈 􏼉 0 1/5 1 0 0 1 0 0
q1,q2􏼈 􏼉 0 1/4 1 0 0 0 0 0
q1,q3􏼈 􏼉 0 1/4 1 0 0 0 0 0
q1,q4􏼈 􏼉 1/5 1/4 1 1/5 0 1/4 1/5 0
q1,q5􏼈 􏼉 0 1/5 1 0 0 1/4 0 0
q2,q3􏼈 􏼉 0 0 1 0 0 0 0 0
q2,q4􏼈 􏼉 2/5 0 1 1/5 0 1/4 1/5 0
q2,q5􏼈 􏼉 0 1/4 1 0 0 1/4 0 0
q3,q4􏼈 􏼉 1/5 0 1 1/5 0 1/4 1/5 0
q3,q5􏼈 􏼉 0 1/4 1 0 0 1/4 0 0
q4,q5􏼈 􏼉 2/5 1/2 1 2/5 0 1 2/5 0
q1,q2,q3􏼈 􏼉 0 3/4 1 0 3/5 1 0 0
q1,q2,q4􏼈 􏼉 2/5 1/4 1 1/5 0 1/4 1/5 0
q1,q2,q5􏼈 􏼉 0 2/5 1 0 0 1/4 0 0
q1,q3,q4􏼈 􏼉 1/5 1/4 1 1/5 0 1/4 1/5 0
q1,q3,q5􏼈 􏼉 0 2/5 1 0 0 1/4 0 0
q1,q4,q5􏼈 􏼉 2/5 2/5 1 2/5 0 2/5 2/5 0
q2,q3,q4􏼈 􏼉 2/5 0 1 1/5 0 1/4 1/5 0
q2,q3,q5􏼈 􏼉 0 1/4 1 0 0 1/4 0 0
q2,q4,q5􏼈 􏼉 3/5 0 1 2/5 0 2/5 2/5 0
q3,q4,q5􏼈 􏼉 3/5 1/4 1 2/5 0 2/5 2/5 0
q1,q2,q3,q4􏼈 􏼉 2/5 3/4 1 1/5 3/5 1 2/5 0
q1,q2,q3,q5􏼈 􏼉 0 4/5 1 0 4/5 1 0 0
q1,q2,q4,q5􏼈 􏼉 2/5 2/5 1 2/5 0 2/5 2/5 0
q1,q3,q4,q5􏼈 􏼉 3/5 2/5 1 2/5 0 2/5 2/5 0
q2,q3,q4,q5􏼈 􏼉 4/5 1/4 1 2/5 0 2/5 3/5 0
U 1 1 1 1 1 1 1 1

Table 4: Information system [21].

a1 a2 a3 D

q1 F{ } G{ } S{ } Growth
q2 F,T{ } G{ } P,S{ } Growth
q3 T{ } I,G{ } R{ } Not growth
q4 T,V{ } G,C{ } R,P,S{ } Growth
q5 V{ } C{ } R,S{ } Not growth
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Input a finite set of data , and set of 
attributes from the information table.

Yes

No

Start

Yes

No

and k {1,2,3}.
, m, n {1,2,3,4,5}, qm ak

qn vam
(qm) van

(qn), ak

Define the binary relations where:ak
on

Compute all j-neighborhoods, for each j {r, l, i} as follows:
{1,2,3}, and m {1,2,3,4,5}.Ωr (qm) = Uk q,m ak 

, k

Definition 3.1.
Compute all j-basic neighborhoods Ωb

j  (qm), , by using qm

Construct the topology Τb
j , as follows:

:Τb
j = { q , Ωb

j  (q) }.

Compute b
j ( ) of as follows:

b
j ( ) = { Τb

j : }.

Compute b
j ( ) of as follows:

b
j ( ) = {H Kb

j: H}. b
j ( ) = φ?Is

Compute the j-basic accuracy 
b
j ( )
b
j ( )

ψb
j ( ) = .

ψb
j ( ) = 1 ?Is is a rough set.

is an exact set. Stop

Figure 2: Flowchart for decision-making using the j-basic accuracy measure.
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Firstly, we present comparisons amongst the suggested
approaches and the previous methods in ([8, 17, 45, 50]) as
shown in Table 5.

Now, we illustrate the importance of proposed tech-
niques in decision-making.

Firstly, Table 4 represents a decision table with decision
attributes that is given by expert. So, we apply the proposed
techniques for two subsets A � q1,q2,q4􏼈 􏼉 and
B � q3,q5􏼈 􏼉 that characterize the set of growth and not
growth countries, respectively. Consequently, we compute
the approximations using Monsef et al. [8], Abu-Gdairi et al.
[17], Dai et al. [45], and Yao [50] and the suggested methods,
using Table 5, as follows:

5.3. Current Methods. R
−

b

i
(A) � R

b

i(A) � A, and hence
ψb
i(A) � 1. Accordingly, A is an i-basic exact set, and thus

the countries q1,q2, and q4 represent a growth countries,
and then this result conforms to Table 4. Similarly, the other
set B � q3,q5􏼈 􏼉.

5.4. Yao Method. L(A) � q4􏼈 􏼉 and U(A) � U, and hence
δbi(A) � 1/5. Accordingly, A is an Yao-rough set, and thus
the countriesq1 andq2 represent not growth countries, and
then this result contradicts to Table 4. Similarly, the other set
B � q3,q5􏼈 􏼉.

5.5. Abd El-Monsef et al. Method. R
− i

(A) � q4􏼈 􏼉 and
Ri(A) � q1,q2,q3,q4􏼈 􏼉, and hence ψi(A) � 1/4.

Accordingly,A is an i-rough set, and thus the countries q1
and q2 represent not growth countries, and then this result
contradicts to Table 4. Similarly, the other setB � q3,q5􏼈 􏼉.

5.6. Dai et al. Method. L⊔(A) � φ and U⊔(A) � U, and
hence μ(A) � 0. Accordingly, A is a totally maximal-rough
set, and thus the countries q1,q2, and q4 represent not
growth countries, and then this result contradicts to Table 4.
Similarly, the other set B � q3,q5􏼈 􏼉.

5.7. Concluding Notes. According to the previous compar-
isons, we conclude the following points:

(1) Table 4 represents a decision table with decision
attributes given by the expert. Terefore, the coun-
tries q1,q2, and q4 (resp. q3 and q5) are surely
growth (resp. not growth) countries.

(2) According to our approaches, the countries q1,q2,
and q4 (resp. q3 and q5) are surely growth (resp.
not growth) countries which conform to Table 4. So,
we can surely select the countries which are growth
countries or not. Accordingly, the suggested ap-
proximations may be useful in making decisions and
help in extracting knowledge in the information
system of other real-life problems.

(3) According to the previous methods ([8, 17, 45, 50]),
the countries q1 and q2 represent not growth
countries which is a contradiction to Table 4.

Input: initiate an information table generating from the given data such that the frst column contains the set of objects U and the
set of attributes A as a frst row.
Output: An accurate decision for exact and rough sets.

(1) Defne the binary relations qmRak
qn⟺Vam

(qm)⊆Van
(qn), for each ak ∈ A, m,n ∈ 1, 2, 3, 4, 5{ }, and k ∈ 1, 2, 3{ }.

(2) for each j ∈ r,l, i{ }, do
(3) Compute all j-neighborhoods, as follows:
Ωr(qm) � ∪ kqmRak

, for each k ∈ 1, 2, 3{ } and m ∈ 1, 2, 3, 4, 5{ }.
(4) Compute all j-basic neighborhoods Ωbj(qm), using Defnition  .
(5) Construct the topology Τbj, using Step 4, as follows:

Τbj � Q⊆U: ∀q ∈ Q,Ωbj(q)⊆Q􏽮 􏽯.
end

(6) for each Q ⊆U, do
(7) Compute the j-basic lower approximation Rb

j
(Q) � ∪ G ∈ Τbj: G⊆Q􏽮 􏽯.

(8) if Rb

j
(Q) � φ, then

(9) return Q is a rough set.
(10) else
(11) Compute the j-basic upper approximation R

b

j(Q) � ∩ H ∈ Κbj: Q⊆H􏽮 􏽯.
(12) Compute the j-basic accuracy ψb

j(Q) � |Rb

j
(Q)|/|Rb

j(Q)|.
(13) if ψb

j(Q) � 1, then
(14) return Q is an exact set.
(15) else
(16) return Q is a rough set.
(17) end
(18) end
(19) end

ALGORITHM 1: An algorithm for using the j-approximations in decision-making problems.
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Terefore, we cannot decide whether the country is
a growth country or not.

(4) As a result, we can conclude that the proposed ap-
proximations are more precise than the other ap-
proaches and are very useful in determining data
ambiguity and assisting in decision-making in real-
life problems such as medical diagnosis, which re-
quires precise decisions.

(5) Tis method also allows us to deal with various real
problems under any arbitrary relation, whereas
Pawlak method requires an equivalent relation to
simulate the problems under consideration. Since
the best approximations and accuracy measures are
produced, the current approach is more suited to
dealing with big samples. Tus, improvement of
these operators and increasing their values of ac-
curacy leads to an accurate prediction.

6. An Algorithm and Flowchart

Tis section provides an algorithm and fowchart (see
Figure 2) for decision-making problems. Te proposed al-
gorithm is tested on fctitious data and compared to existing
methods. Tis technique is a simple tool that can be used in
MATLAB. (See Algorithm 1).

Te following fgure (Figure 2) represents a simple fow-
chart of the accuracy measures induced from Algorithm 1.

7. Conclusion and Discussion

Te appropriated mathematical structural for any collection
linked by relations is the general topology. So, the study of
neighborhood system that generated via relations and their
relationships with topology represents very interesting topic
of rough set approaches and many applications such as
machine learning (ML) and decision-making problems. In
recent years, ML has increasingly entered the fnancial
sector, having a substantial impact on redefning the
landscape of quantitative fnance. Many fnancial in-
stitutions, including banks, insurance companies, and even
regulators, are already putting this technology to use to solve
complex fnancial decision problems, analyze large fnancial
datasets, price complex fnancial instruments, manage op-
erational risk, and forecast future price paths. In the current
manuscript, we provided new mathematical approaches to
confrm between the experimental data and its mathematical
analysis. Te mathematical study depends on the classif-
cation of data.

Firstly, we introduced and studied new extensions to the
notion “basic-neighborhood,” and hence we developed
a theory of rough sets based on four diferent basic-
neighborhood systems. Furthermore, using Teorem 1 in
[6], a newmethod to produce four diferent topologies made
via these neighborhoods is suggested. Comparisons of these
topologies with the previous one were conducted. Conse-
quently, we used these new topologies to generate and in-
vestigate new generalizations to Pawlak rough sets. We have
compared the proposed methods to the previous ones
(Monsef et al. [8], Abu-Gdairi et al. [17], Dai et al. [45], and

Yao [50]) and found that these methods are more accurate
than others. Many examples and comparisons to clarify the
signifcance of the suggested techniques were superimposed.

Te merits of these methods are as follows:

(1) It enlarges the space of practical problems that we
can deal with them

(2) It keeps the main properties of original approxi-
mation spaces under fewer conditions, which are
evaporated in some previous approaches

(3) Improve the approximation operators and accuracy
measures compared to the previous approaches, and
hence we obtain a more accurate decision for the
problems in which these cases are the appropriate
frame to describe them; for instance, infectious
diseases such as COVID-19, ML applications, and
decision-making problems.

Finally, we used the proposed approaches to decide on
an economic decision table. In fact, we used a decision table
(an information system with decision attributes) of fve
countries and a set of attributes that measure the national
product in these countries. Te decision attribute in that
table is to decide the growth of the country. Consequently,
we conclude that the suggested approximations are more
precise than other approaches and are very useful in de-
termining data ambiguity and assisting in decision-making
in real-life problems such as medical diagnosis and ML
applications of fnance which requires precise decisions.
Terefore, we believe that using these techniques will be
easier in application felds and benefcial for applying many
topological concepts in future studies. Furthermore, an al-
gorithm with a fowchart was provided and tested on fc-
titious data in order to compare it to existing methods, and
hence it can be a simple technique to use in MATLAB.

In the forthcoming works, we will study the following
points:

(i) Using the suggested methods in more applications
such as in medical felds [14, 19] and economic
applications [1–5]

(ii) Emphasis the basic-approximations concept in some
other frames such as soft sets [19], the soft rough sets
[23], and fuzzy rough sets [15]
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