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Topological indices are numerical quantities associated with the molecular graph of a chemical structure.Tese indices are used to
predict various properties of chemical structures. Imbalance-based analysis is an advanced technique used for chemical com-
pounds with irregular characteristics. Te molecular graphs of zigzag benzenoid systems (Zp) and rhombic benzenoid systems
(Rp) are inherently irregular.Terefore, applying the imbalance technique to thesemolecular structures plays an important role in
predicting diferent properties. In this paper, we calculate sixteen irregularity indices for both Zp and Rp systems. By examining
these indices, we aim to provide insights into the properties of these structures and ultimately contribute to a deeper un-
derstanding of the feld.

1. Introduction

Graph theory is a branch of mathematics that deals with the
study of graphs and their properties. Graphs are a type of
mathematical structure that consists of nodes (also called
vertices) and edges, which represent connections between
the nodes. Graph theory has many applications, including
computer science, biology, social network analysis, and
more. One of the fundamental concepts in graph theory is
the idea of a path, which is a sequence of edges connecting
two nodes (see [1, 2]). Another important concept is the
degree of a node, which refers to the number of edges
connected to that node. Graph theory also includes the study
of graph coloring, which involves assigning colors to the
nodes of a graph in such a way that adjacent nodes have
diferent colors. Te study of graph theory has led to many
important results and discoveries and continues to be an
active area of research (see [3]).

In this paper, all graphs under consideration are fnite,
simple, and undirected. Let G be a graph with vertex set V

and edge set E. Te degree of a vertex u in G is denoted by du

and is defned as the number of edges incident to vertex u. In
other words, du is the number of vertices adjacent to vertex u

in G.Te distance between any two vertices in G is defned as
the length of the shortest path between them. Terefore, the
degree of a vertex u can also be defned as the number of
vertices at distance one from u. Tis notion of degree is
fundamental to the study of graphs and plays a key role in
many of their properties and applications.

In mathematical chemistry, the study of the graphical
structure of chemical compounds allows researchers to
predict important properties without performing experi-
ments in a laboratory. Tis feld of study is known as
chemical graph theory [4, 5]. A simple graph is defned as
a graph without loops or multiple edges. In chemical graph
theory, atoms are represented by vertices (or nodes) and
chemical bonds are represented by edges (or lines). Te
degree of a vertex is defned as the number of edges that are
incident to it. Te study of topological indices in chemical
graph theory began with the Wiener index in 1947, followed
by the Zagreb indices, which were introduced due to the vast
number of applications of the Wiener index [6]. Te
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mathematical formulas for the frst and second Zagreb in-
dices are given by

M1(G) � 􏽘
uv∈E(G)

du + dv( 􏼁,

M2(G) � 􏽘
uv∈E(G)

du × dv( 􏼁.
(1)

In addition to the Wiener and Zagreb indices, many
other types of indices have been introduced to analyze the
topology of diferent chemical structures [7, 8]. To measure
the irregularities present in a chemical structure, irregularity
indices have been introduced [9, 10]. Tese indices provide
valuable insights into the properties of chemical structures
and can help researchers make predictions and discoveries
in the feld of mathematical chemistry.

An irregularity measure index is a mathematical index
that takes a value of either zero or greater than zero and is
used to measure the irregularities present in a chemical
structure [11]. Tese indices are calculated based on the
degree of vertices, which is a fundamental property of the
chemical graph. Table 1 presents the mathematical formulas
for these irregularity measure indices, which can be used to
predict various properties of the chemical compounds under
consideration. However, the interpretation and analysis of
these indices can be complex, and their application requires
a deep understanding of the underlying principles of
chemical graph theory. Nonetheless, they provide valuable
insights into the properties and behavior of the molecules
and can aid in the discovery of new compounds with specifc
properties. Terefore, the study of irregularity measure
indices is crucial for researchers in the feld of mathematical
chemistry.

For a detailed background on these irregularity measure
indices, we refer readers to the literature [13–16]. Tese
studies provide a comprehensive overview of the theory and
application of irregularity indices in chemical graph theory
and cover a wide range of topics such as their mathematical
properties, algorithmic complexity, and relationship with
other topological indices. Te works also provide examples
of their application in predicting various properties of
chemical compounds, such as boiling points, melting points,
and refractive indices. Terefore, a thorough understanding
of these studies is essential for researchers interested in
exploring the potential of irregularity indices in the feld of
mathematical chemistry.

Benzenoid systems have signifcant importance in
theoretical chemistry due to their natural graph repre-
sentation of benzenoid hydrocarbons [17]. In a hexagonal
system, there exists a vertex that belongs to three hexagons,
which is known as the internal vertex of the hexagonal
system [18]. Benzenoid hydrocarbons are commonly found
in our surroundings, minerals, and food and are also
produced as byproducts in certain reactions, with a wide
range of applications in chemical synthesis [19]. However,
despite their widespread use, benzenoid hydrocarbons are
known to be pollutants and carcinogenic. Benzenoid sys-
tems are essentially hydrogen-deprived benzenoid
hydrocarbons [20].

Te authors in [21] emphasized the importance of the
three-dimensional distribution of benzene. More in-
formation about this repetitive surface can be found in
[22, 23]. Te structure needed to be connected as a three-
dimensional solid carbon; however, to our knowledge, no
such sequence has been considered for such a purpose. Tis
goal was aimed at raising the awareness of researchers to-
wards the atomic recognition of such friendly concepts in
carbon nanoscience [24, 25].

Te aim of this present work is to comprehensively study
the topological properties of zigzag and rhombic benzenoid
systems, which are two important families of benzenoid
systems. To achieve this goal, we start by sketching the
graphs of these systems and determining the number of
vertices and edges in each graph. We then classify the edges
into diferent classes based on the degrees of the end vertices.
Using these classifcations, we calculate 16 irregularity
measures for each system. Our fndings provide valuable
insights into the topological behavior of these systems.

2. Results

2.1. Irregularity Indices for Zigzag Benzenoid System Zp.
Figure 1 shows the graph Zp, which consists of p rows, with
each row consisting of two hexagonal units sharing one
common edge. Te frst row of Zp contains eleven edges,
while the second row has twenty-one edges. Continuing in
the same pattern, we can deduce that Zp has 10p + 1 edges
and 8p + 2 vertices. Tere are three types of edges present in
Zp, namely, (2, 2), (2, 3), and (3, 3). We can partition the
edges into three sets P1, P2, and P3, where P1 has 2p + 4
edges,P2 has 4p edges, andP3 has 4p − 3 edges.Tese edge
partitions are denoted as P � P1 + P2 + P3. Tese ob-
servations provide useful information about the structure of
Zp and can aid researchers in understanding the topological
properties of this important family of benzenoid systems.
Table 2 displays the three edge partitionsP1,P2, andP3 of
the hexagonal system Zp.

Theorem 1. Consider the graph G corresponding to Zp. It
can be observed that

(1) VAR(G) � 2(2p2 + p − 1)/(4p + 1)2.
(2) AL(G) � 4p.
(3) IR1(G) � 2(2p2 + p − 1)/4p + 1.
(4) IR2(G) �

��������������
68p − 11/10p + 1

􏽰
− 2(10p + 1)/8p + 2.

(5) IRF(G) � 4p.
(6) IRFW(G) � 4p/68p − 11.
(7) IRA(G) � 2/3(5 − 2

�
6

√
)p.

(8) IRB(G) � (20 − 8
�
6

√
)p.

(9) IRC(G) � 2(8
�
6

√

p2 + 2
�
6

√
p − 18p2 − 4p − 1)/(10p + 1)(4p + 1).

(10) IRDIF(G) � 3.33p.
(11) IRL(G) � 1.6216p.
(12) IRLU(G) � 2p.
(13) IRLF(G) � 1.6329.
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(14) IRLA(G) � 1.6p.
(15) IRD1(G) � 2.7724p.
(16) IRGA(G) � 0.0816p.

Proof. We can obtain our desired results by utilizing the
mathematical formulas for irregularity indices given in
Table 1 and the edge partitions of Zp presented in Table 2.

Table 1: Defnitions of irregularities [12].

Irregularity index Mathematical form
VAR 􏽐uϵV(du − (2m/n))2 � M1(G)/n − (2m/n)2

AL 􏽐uv∈E(G)|du − dv|

IR1 􏽐uϵV(du)3 − (2m/n)􏽐uϵV(du)2 � F(G) − (2m/n)M1(G)

IR2
�������������
􏽐uv∈E(G)dudv/m

􏽱
− (2m/n) �

����������
(M2(G)/m)

􏽰
− (2m/n)

IRF 􏽐uv∈E(G)(du − dv)2 � F(G) − 2M2(G)

IRFW IRF(G)/M2(G)

IRA 􏽐uv∈E(G)(d− (1/2)
u − d− (1/2)

v )2 � n − 2R(G)

IRB 􏽐uv∈E(G)(d− (1/2)
u − d− (1/2)

v )2 � M1(G) − 2RR(G)

IRC 􏽐uv∈E(G)

����
dudv

􏽰
/m − (2m/n) � RR(G)/m − (2m/n)

IRDIF 􏽐uv∈E(G)|du/dv − dv/du| � 􏽐i<jmi,j(j/i − i/j)

IRL 􏽐uv∈E(G)|lndu − lndv| � 􏽐i<jmi,j ln(j/i)
IRLU 􏽐uv∈E(G)|du − dv/min(du, dv)| � 􏽐i<jmi,j ln(j − i/i)
IRLF 􏽐uv∈E(G)|du − dv/

������
(dudv)

􏽰
| � 􏽐i<jmi,j(j − i/

��
ij

􏽰
)

IRLA 2􏽐uv∈E(G)|du − dv/(du + dv)| � 2􏽐i<jmi,j(j − i/i + j)

IRDI 􏽐uv∈E(G) ln 1 + |du − dv| � 􏽐i<jmi,j ln(i + j − 1)

IRGA 􏽐uv∈E(G) ln|du + dv/2
����
dudv

􏽰
| � 􏽐i<jmi,j(i + j/2

��
ij

􏽰
)

Table 2: E(Zp).

P (du, dv) Frequency

P1 (2, 2) 2p+ 4
P2 (2, 3) 4p
P3 (3, 3) 4p − 3

Figure 1: Molecular graph of Zp.
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VAR(G) � 􏽘
uϵV

du −
2m

n
􏼒 􏼓

2
�

M1(G)

n
−

2m

n
􏼒 􏼓

2

�
52p − 2
8p + 2

􏼠 􏼡 −
2(10p + 1)

8p + 2
􏼠 􏼡

2

�
2 2p

2
+ p − 1􏼐 􏼑

(4p + 1)
2 .

AL(G) � 􏽘
uvϵE(G)

du − dv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

� |2 − 2|(2p + 4) +|2 − 3|(4p) +|3 − 3|(4p − 3)

� 4p.

IR1(G) � 􏽘
uϵV

d
3
u −

2m

n
􏽘
uϵV

d
2
u � F(G) −

2m

n
􏼒 􏼓M1(G)

� (140p − 22) −
2(10p + 1)

8p + 2
(52p − 2)

�
20 2p

2
+ p − 1􏼐 􏼑

4p + 1
.

IR2(G) �

�����������

􏽐uvϵE(G)dudv

m

􏽳

−
2m

n
�

������

M2(G)

m

􏽳

−
2m

n

�

��������
68p − 11
10p + 1

􏽳

−
2(10p + 1)

8p + 2

�

��������
68p − 11
10p + 1

􏽳

−
2(10p + 1)

8p + 2
.

IRF(G) � 􏽘
uvϵE(G)

du − dv( 􏼁
2

� (2 − 2)
2
(2p + 4) +(2 − 3)

2
(4p) +(3 − 3)

2
(4p − 3)

� 4p.

IRFW(G) �
IRF(G)

M2(G)

�
4p

68p − 11
.

IRA(G) � 􏽘
uvϵE(G)

d
− (1/2)
u − d

− (1/2)
v􏼐 􏼑

2
� n − 2R(G)

� (8p + 2) − 2
7
3

p + 1 +
2
3

�
2

√
p􏼒 􏼓

�
2
3

(5 − 2
�
6

√
)p.

IRB(G) � 􏽘
uvϵE(G)

d
− (1/2)
u − d

− (1/2)
v􏼐 􏼑

2
� M1(G) − 2RR(G)
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� (52p − 2) − 2(16p − 1 + 4
�
6

√
p)

� (20 − 8
�
6

√
)p.

IRC(G) �
􏽐uvϵE(G)

����

dudv

􏽱

m
−
2m

n
�

RR(G)

m
−
2m

n

�
16p − 1 + 4

�
6

√
p

10p + 1
−
2(10p + 1)

8p + 2

�
2 8

�
6

√
p
2

+ 2
�
6

√
p − 18p

2
− 4p − 1􏼐 􏼑

(10p + 1)(4p + 1)
.

IRDIF(G) � 􏽘
uvϵE(G)

du

dv

−
dv

du

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

�
2
2

−
2
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(2p + 4) +

2
3

−
3
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(4p) +

3
3

−
3
3

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(4p − 3)

� 3.33p.

IRL(G) � 􏽘
uvϵE(G)

ln du − lndv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

� |ln 2 − ln 2|(2p + 4) +|ln 2 − ln 3|(4p) +|ln 3 − ln 3|(4p − 3)

� 1.6216p.

IRLU(G) � 􏽘
uvϵE(G)

du − dv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

min du, dv( 􏼁

�
|2 − 2|

2
(2p + 4) +

|2 − 3|

2
(4p) +

|3 − 3|

3
(4p − 3)

� 2p.

IRLF(G) � 􏽘
uvϵE(G)

du − dv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

�����
du.dv

􏽰

�
|2 − 2|

�
4

√ (2p + 4) +
|2 − 3|

�
6

√ (4p) +
|3 − 3|

�
9

√ (4p − 3)

� 1.6329.

IRLA(G) � 􏽘
uvϵE(G)

2
du − dv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

du + dv( 􏼁

� 2
|2 − 2|

4
(2p + 4) + 2

|2 − 3|

5
(4p) + 2

|3 − 3|

6
(4p − 3)

� 1.6p.

IRD1(G) � 􏽘
uvϵE(G)

ln 1 + du − dv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽮 􏽯

� ln 1 +|2 − 2|{ }(2p + 4) + ln 1 +|2 − 3|{ }(4p) + ln 1 +|3 − 3|{ }(4p − 3)

� 2.7724p.

IRGA(G) � 􏽘
uvϵE(G)

ln
du + dv

2
����
dudv

􏽰􏼠 􏼡

� ln
2 + 2

2
����
2 × 2

√􏼠 􏼡(2p + 4) + ln
2 + 3

2
����
2 × 3

√􏼠 􏼡(4p) + ln
3 + 3

2
����
3 × 3

√􏼠 􏼡(4p − 3)

� 0.0816p.

(2)

□
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2.2. Irregularity Indices for Rhombic Benzenoid System Rp.
Te graph of Rp is shown in Figure 2. We can see that Rp

contains three types of edges, namely, (2, 2), (2, 3), and
(3, 3). Te edge set of Rp can be partitioned into three

Figure 2: Molecular graph of Rp.

Table 3: E(Rp).

(du, dv) Frequency

(2, 2) 6
(2, 3) 8p − 8
(3, 3) 3p2 − 4p + 1

Figure 3: Plots of VAR index.

Figure 4: Plots of AL index.

Figure 5: Plots of IR1 index.

Figure 6: Plots of IR2 index.
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subsets, denoted by P1, P2, and P3, based on the types
of edges.

It can be shown that the total number of edges in Rp is
32pq − 2p − 2q. Tis result can be obtained by counting the
number of edges in each row of the graph and summing over

all rows. Specifcally, the number of edges in the ith row is
8(p + q − i) + 4, for 1≤ i≤p + q − 1, and the number of
edges in the last row is 4p + 4q − 4. Summing over all rows,
we obtain the total number of edges as 32pq − 2p − 2q,

Figure 7: Plots of IRF index.

Figure 8: Plots of IRFW index.

Figure 9: Plots of IRA index.

Figure 10: Plots of IRB index.

Figure 11: Plots of IRC index.

Figure 12: Plots of IRDIF index.
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which can be verifed by direct calculation. Table 3 presents
the edge partition of Rp. Te frst column shows the types of
edges, i.e., (2, 2), (2, 3), and (3, 3), and the second column
shows the number of edges of each type.

Theorem  . Consider the graph G corresponding to the
rhombic benzenoid system Rp. Ten, we have

(1) VAR(G) � − (16p3 − 3p2 − 24p + 11)/(p2 + 2)2.
(2) AL(G) � 8p − 8.
(3) IR1(G) � − 2(44p3 − 27p2 − 60p + 43)/p2 + 2.
(4) IR2(G) �

�������������������
7p2 + 12p − 15/2p2 + 4

􏽰
− 2(3p2 + 4p−

1)/2p2 + 4.
(5) IRF(G) � 8p − 8.

Figure 13: Plots of IRL index.

Figure 14: Plots of IRLU index.

Figure 15: Plots of IRLF index.

Figure 16: Plots of IRLA index.

Figure 17: Plots of IRD1 index.
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(6) IRFW(G) � 8p − 8/27p2 + 12p − 15.

(7) IRA(G) � 8/3(− 1 +
�
6

√
−

�
6

√
p + p).

(8) IRB(G) � − 10p2 + 40p − 40 − 16
�
6

√
p + 16

�
6

√
.

(9) IRC(G) � 8
�
6

√
p3 − 8

�
6

√
p2 − 36p3 + 16

�
6

√
p + 23p2

− 16
�
6

√
− 16p + 29/(3p2 + 4p − 1)(p2 + 2).

(10) IRDIF(G) � 2.66p − 2.66.
(11) IRL(G) � 3.2432p − 3.2432.
(12) IRLU(G) � 4p − 4.
(13) IRLF(G) � 3.2656p − 3.2656.
(14) IRLA(G) � 3.2p − 3.2.
(15) IRD1(G) � 5.5448p − 5.5448.
(16) IRGA(G) � 0.1632p − 0.1632.

Proof. Using the mathematical formulas of irregularity in-
dices given in Table 1 and the edge partition of the rhombic
benzenoid system Rp given in Table 3, we can perform the
following computations to obtain our desired results.

VAR(G) � 􏽘
uϵV

du −
2m

n
􏼒 􏼓

2
�

M1(G)

n
−

2m

n
􏼒 􏼓

2

�
18p

2
+ 16p − 10
2p

2
+ 4

􏼠 􏼡 −
2 3p2 + 4p − 1( 􏼁

2p2 + 4
􏼠 􏼡

2

� −
16p

3
− 3p

2
− 24p + 11

p
2

+ 2􏼐 􏼑
2 .

AL(G) � 􏽘
uvϵE(G)

du − dv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

� |2 − 2|(6) +|2 − 3|(8p − 8) +|3 − 3| 3p
2

− 4p + 1􏼐 􏼑

� 8p − 8.

IR1(G) � 􏽘
uϵV

d
3
u −

2m

n
􏽘
uϵV

d
2
u � F(G) −

2m

n
􏼒 􏼓M1(G)

� 54p
2

+ 32p − 38􏼐 􏼑 −
2 3p

2
+ 4p − 1􏼐 􏼑

2p
2

+ 4
18p

2
+ 16p − 10􏼐 􏼑

� −
2 44p

3
− 27p

2
− 60p + 43􏼐 􏼑

p
2

+ 2
.

IR2(G) �

�����������

􏽐uvϵE(G)dudv

m

􏽳

−
2m

n
�

������

M2(G)

m

􏽳

−
2m

n

�

�������������

7p
2

+ 12p − 15
2p

2
+ 4

􏽶
􏽴

−
2 3p

2
+ 4p − 1􏼐 􏼑

2p
2

+ 4
.

Figure 18: Plots of IRGA index.
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IRF(G) � 􏽘
uvϵE(G)

du − dv( 􏼁
2

� (2 − 2)
2
(6) +(2 − 3)

2
(8p − 8) +(3 − 3)

2 3p
2

− 4p + 1􏼐 􏼑

� 8p − 8.

IRFW(G) �
IRF(G)

M2(G)

�
8p − 8

27p
2

+ 12p − 15
.

IRA(G) � 􏽘
uvϵE(G)

d
− 1/2
u − d

− 1/2
v􏼐 􏼑

2
� n − 2R(G)

� 2p
2

+ 4􏼐 􏼑 − 2
10
3

+
1
6

�
6

√
(8p − 8) + p

2
−
4
3

p􏼒 􏼓

�
8
3

(− 1 +
�
6

√
−

�
6

√
p + p).

IRB(G) � 􏽘
uvϵE(G)

d
1/2
u − d

1/2
v􏼐 􏼑

2
� M1(G) − 2RR(G)

� 8p
2

+ 16p − 10􏼐 􏼑 − 2 8
�
6

√
p + 9p

2
− 8

�
6

√
− 12p + 15􏼐 􏼑

� − 10p
2

+ 40p − 40 − 16
�
6

√
p + 16

�
6

√
.

IRC(G) �
􏽐uvϵE(G)

����

dudv

􏽱

m
−
2m

n
�
RR(G)

m
−
2m

n

�
8

�
6

√
p
3

− 8
�
6

√
p
2

− 36p
3

+ 16
�
6

√
p + 23p

2
− 16

�
6

√
− 16p + 29

3p
2

+ 4p − 1􏼐 􏼑 p
2

+ 2􏼐 􏼑
.

IRDIF(G) � 􏽘
uvϵE(G)

du

dv

−
dv

du

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

�
2
2

−
2
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(6) +

2
3

−
3
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(8p − 8) +

3
3

−
3
3

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
3p

2
− 4p + 1􏼐 􏼑

� 2.66p − 2.66.

IRL(G) � 􏽘
uvϵE(G)

ln du − ln dv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

� |ln 2 − ln 2|(6) +|ln 2 − ln 3|(8p − 8) +|ln 3 − ln 3| 3p
2

− 4p + 1􏼐 􏼑

� 3.2432p − 3.2432.

IRLU(G) � 􏽘
uvϵE(G)

du − dv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

min du, dv( 􏼁

�
|2 − 2|

2
(6) +

|2 − 3|

2
(8p − 8) +

|3 − 3|

3
3p

2
− 4p + 1􏼐 􏼑

� 4p − 4.

IRLF(G) � 􏽘
uvϵE(G)

du − dv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

�����
du.dv

􏽰

�
|2 − 2|

�
4

√ (6) +
|2 − 3|

�
6

√ (8p − 8) +
|3 − 3|

�
9

√ 3p
2

− 4p + 1􏼐 􏼑

� 3.2656p − 3.2656.

IRLA(G) � 􏽘
uvϵE(G)

2
du − dv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

du + dv( 􏼁
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� 2
|2 − 2|

4
(6) + 2

|2 − 3|

5
(8p − 8) + 2

|3 − 3|

6
3p

2
− 4p + 1􏼐 􏼑

� 3.2p − 3.2.

IRD1(G) � 􏽘
uvϵE(G)

ln 1 + du − dv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽮 􏽯

� ln 1 +|2 − 2|{ }(6) + ln 1 +|2 − 3|{ }(8p − 8) + ln 1 +|3 − 3|{ } 3p
2

− 4p + 1􏼐 􏼑

� 5.5448p − 5.5448.

IRGA(G) � 􏽘
uvϵE(G)

ln
du + dv

2
����
dudv

􏽰􏼠 􏼡

� ln
2 + 2

2
����
2 × 2

√􏼠 􏼡(6) + ln
2 + 3

2
����
2 × 3

√􏼠 􏼡(8p − 8) + ln
3 + 3

2
����
3 × 3

√􏼠 􏼡 3p
2

− 4p + 1􏼐 􏼑

� 0.1632p − 0.1632. (3)
□

3. Discussion and Graphical Representation

In this section, we present a graphical comparison of both
benzenoid systems Zp and Rp. Te color red is fxed for the
Zp graph, while the color green is used for the Rp graph.Tis
visual representation provides a clear comparison between
the two systems, highlighting their similarities and
diferences.

From Figures 3–18, we can see that by fxing the values of
structural parameters involved, we can control the irregu-
larities of both Zp and Rp. Tis is an important observation
as it allows us to tailor the properties of these systems to suit
specifc applications. Furthermore, the graphical compari-
son in Figure 3 highlights the fact that diferent irregularities
behave diferently. Some irregularities in Zp increase faster
than those in Rp, while others do not increase faster. Tis is
important because it suggests that the behavior of a partic-
ular irregularity is dependent on the specifc parameters of
the system under study. By carefully choosing these pa-
rameters, we can optimize the behavior of the system with
respect to a particular irregularity. Overall, the results
presented in this section provide valuable insights into the
behavior of benzenoid systems and may prove useful in the
design of materials for various applications.

4. Conclusion

In this study, we have presented a comprehensive analysis of
the irregularity indices of Zp and Rp, which are two
structurally complex systems. Our fndings reveal that these
systems exhibit a high degree of irregularity, and the cal-
culated indices provide valuable insight into their nature.
Te obtained results can be applied in the quantitative
structure-activity relationship modeling of various physical
and chemical properties of these systems. Additionally, the
graphical comparison between Zp and Rp highlights the
diferences in their irregularity behaviors, which can aid in
the further understanding and characterization of these
structures. Overall, this work contributes to the growing
body of literature on irregularity indices and their appli-
cations in chemical graph theory.

5. Future Directions

Here are some possible future directions based on the
fndings of this study:

(1) Investigating the relationship between irregularity
indices and physical/chemical properties of Zp and
Rp: this can be done through quantitative structure-
activity relationship (QSAR) modeling, which can
help predict properties of these structures and guide
the design of new molecules with desirable
properties.

(2) Studying the efect of varying the structural pa-
rameters of Zp and Rp on their irregularity indices:
this can provide insights into the factors that con-
tribute to the irregular nature of these structures and
guide the design of new structures with desired ir-
regularity properties.

(3) Exploring the application of irregularity indices in
other types of networks, such as biological networks
and social networks: the use of irregularity indices
can help characterize the complex structure of these
networks and guide the design of more efcient and
robust systems.

(4) Developing new methods for calculating irregularity
indices that can handle larger and more complex
networks: this can help extend the application of
irregularity indices to a wider range of structures and
facilitate the study of their properties.

6. Limitations of the Used Method

(1) Te method is limited to calculating only the sixteen
irregularity indices and may not be applicable to
other types of indices or measures of irregularity.

(2) Te method relies on the assumption that the
considered graphs have an irregular nature, which
may not be true for all types of graphs.

(3) Te method assumes that the structural parameters
involved are the only factors afecting the irregularity
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indices, while other factors, such as environmental
conditions, may also play a role in determining the
properties of the underlying structures.

(4) Temethod does not consider the dynamic nature of
the underlying structures and may not be suitable for
analyzing their behavior over time.

(5) Te method may have limitations in its applicability
to real-world systems, as the structures considered in
the study are theoretical models and may not fully
refect the complexity of real-world systems.

7. Robustness of the Proposed Method

Te proposed method for calculating irregularity indices can
be easily applied to other graph structures beyond Zp and
Rp. Terefore, the method shows promising robustness and
versatility in analyzing the irregularities of diferent types of
graphs.
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