Hindawi

Journal of Mathematics

Volume 2023, Article ID 4864334, 15 pages
https://doi.org/10.1155/2023/4864334

Research Article

@ Hindawi

Novel Soliton Solutions for the (3 + 1)-Dimensional Sakovich
Equation Using Different Analytical Methods

Khalid K. Ali ©,' Salman A. AlQahtani (>, M. S. Mehanna (»,> and Abdul-Majid Wazwaz 4

! Mathematics Department, Faculty of Science, Al-Azhar University, Nasr, Cairo, Egypt

Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, 51178,
Riyadh 11543, Saudi Arabia

3Faculty of Engineering, MTI University, Cairo, Egypt

*Department of Mathematics, Saint Xavier University, Chicago, IL 60655, USA

Correspondence should be addressed to Khalid K. Ali; khalidkaram2012@azhar.edu.eg and Salman A. AlQahtani;
salmanq@ksu.edu.sa

Received 26 January 2023; Revised 27 February 2023; Accepted 11 March 2023; Published 4 April 2023
Academic Editor: Mubashir Qayyum

Copyright © 2023 Khalid K. Ali et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the work that we are doing now, our goal is to find a solution to the (3 + 1)-dimensional Sakovich equation, which is an equation
that can be used to characterize the movement of nonlinear waves. This approach sees extensive use across the board in en-
gineering’s many subfields. This new equation can represent more dispersion and nonlinear effects, which allows it to accept more
different application scenarios. As a result, it has a wider range of potential applications in the physical world. As a consequence of
this, when the two components are combined, they can be used to easily counteract the effects of nonlinearity and dispersion on
the integrability of partially differential equations. This equation represents a novel physical paradigm that should be looked into
further. We use the following three analytical techniques: the exp (- (%)) expansion method is the first one, the second is the
(G'/kG + G + ) expansion method, and the Bernoulli sub-ODE technique is the last one. Lastly, the soliton solutions obtained
are presented by graphs in two and three dimensions, which present different kinds of solitons such as dark, periodic, exponential,

bright, and singular soliton solutions.

1. Introduction

Nonlinear partial differential equations, also known as
NLPDEs, are used to model a wide variety of natural
phenomena, including those found in mathematical
physics, fluid flow, plasma physics, mathematical model-
ing, optical fibers, optics, biology, heat, mechanics, engi-
neering, fluid dynamics, Chemical Physics,
Biomathematics, fluid dynamics, Biophysics, Neuro-
physics, Demography, and so on. Finding the precise so-
lutions of the pertinent NLEEs is crucial for improving our
comprehension of nonlinear phenomena and their appli-
cation to practical problems. A lot of various strategies for
obtaining exact solutions to NLEEs have been introduced
such as Hirota’s method [1-3], Bicklund transformation
method [4], He-Laplace variational iteration method [5],

modified homotopy perturbation method [6], Lie sym-
metry analysis [7, 8], the extended tanh method [9], and
numerous other techniques [10-12]. A very important
model with wide applications in different fields is the
(2+1)-dimensional second-order Sakovich equation,
which can be used to interpret the dynamics of the water
waves in an elongate, limited, hollow duct. Sakovich pre-
sented a new second-order three-dimensional nonlinear
wave equation [13].

+ Uy, + 2uU,, + 6ulu,, +2(u,,) = 0. (1)

uxz

Equation (1) possesses KdV-type multisoliton solutions
and passes the Painlevé test for integrability. In 2020,
Wazwaz [14] protracted Sakovich equation (1) to the fol-
lowing equation:
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Ugp + Uy H Uy, F Uy, H U, + Uy, +2un, ), + 6ulu,, + Zuix =0. (2)

Many researchers present investigated this equation
using various techniques such as kumar et al. employ Lie
symmetry analysis and extended Jacobian elliptic function
expansion method [11], Saglam Ozkan and Yasar employed
the logarithmic transformation with the ansatz function
technique [15], the new modified extended direct algebraic
(NMEDA) technique is used by Younis et al. [16], and
Shailendra Singh et al. solved the equation with variable

coefficients [17] employing the Painlevé analysis and auto-
Bicklund transformation methods.

Newly, Wazwaz et al. [18] present an extension to (2) by
adding two terms, the first one is a linear term u,, which
characterizes the dispersion effect of the second order along
the direction of z-axis and the second term is a nonlinear
term uu,, which characterizes the nonlinear effect reasoned
by u and the dispersion of the second order along the di-
rection of x-axis, (2) takes the following form:

2 2 _
Ugp + Uy + Uy + Uy + U, + U + U+ 22Uy, + 6UT U, + 200+ utdy, = 0. (3)

Our goal in the current article is to scrutinize the soliton
solution of (3) using the following three powerful methods:
the former one is the exp(-y(x)) expansion method
[19-22], second, the new technique is (G/kG +G+7)
expansion method [23], and the last one is the Bernoulli sub-
ODE technique [24, 25].

The paper is organized as follows: In Section 2, we
demonstrate the intrinsic steps for the three methods. In
Section 3, we apply the mentioned methods and exhibit the
analytical solutions. Most of the solutions are presented by
graphs in two and three dimensions in Section 4. Finally,
Section 5 provides synopsis for the present work.

2. The Principle Outlines

2.1. The exp(—y(n)) Expansion Method. Introducing the
following nonlinear partial differential equation:
=0

F(u, Ups Uses Uy Uy U Uneres Uy Uy s Uy U - -
(4)

where the function u = u(x, y,2,t) is unknown and F is
a polynomial in u and its partial derivatives.

(¥ = ) tanb( (|1 - au) 12) (400 ) -2

Step 1. Mixing all the independent variables x, y, z, and t to
get one new variable 7,

u(x, y,z,t) =u(y),n=ax + by +dz — ct, (5)

where a, b, d are constants and c is the wave speed. Plugging
the transformation of the traveling wave (5) in (4) di-
minishes (4) to the next ODE.

H(u/)u//’ uIII’ uHH’ . ) — 0’ (6)
where H is a polynomial in u(#) and its derivatives.

Step 2. To acquire the solution of (6), we postulate the
soliton solution as finite series.

N .
u(n) =Y A;(exp(-y(n)), (7)
i=0

where the constants A; (0 <i< N) will be matured, such that
Ay #0, and y = y () fulfill the next ODE.

v (1) = exp (—y (1)) + pexp (v (1)) + A. (8)
The solutions of (8) are conferred as follows:

Family 1: when - 4u>0,u+0,

y(n) =In o | Y
y(n) =In _\/()tz_74”)60&((\/m/?‘)(ms))—)L (10)

Family 2: when A* — 4 <0,u#0,

2u
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4 -1t M —a)2)(n+e)) -2
s oo MO (O 2) - 0) 1) -
2u
4u— V) cot( (\J(A* —4u)12) (n+e)) - A
y(n) =1In ( )CO(( ( ) )'1 8> . (12)
2
N
Family 3: when \* - 4u>0,1# 0,4 = 0, u(y) =Y mF(n), (16)

A
v(n) = —ln<m)- (13)
Family 4: when \> — 44 = 0,1 # 0,4 #0,

2(A(n+E) +2))
=ln| ——F—|. 14
v n( X (n+e) (o

Family 5: when A*> — 4y = 0,1 =0, = 0,
y(n) =In(n+e). (15)

Step 3. Through balancing the highest power nonlinear term
with the highest order derivative term in (6), N is de-
liberated. We insert (7) into (6), a set of equations achieved
as the coeflicients of exp(—y (7)) with the same powers
vanished. The Mathematica program is employed to solve
the previous set of equations.

2.2.The (G /kG' + G + ) Expansion Method. The substantial
procedures of the (G /kG + G +r) expansion method are
introduced as follows:

Step 1: presuming the solution of (6) is given by

1L+ VA) + py (A = A)e VB
kpy (A =2+ VA) + kpy (A -2 - A)e V210

F(n) =

i=0

where F (1) = (G/kG' +G+1),G () fulfill the second-
order differential equation.

" A
G'(m=-G (n)—%G(n)—%r, (17)

where m; are constants to be determined later and
k,r,A, and y are arbitrary constants. The following
ordinary differential equation is satisfied by F = F (1):

F )= == DFO) + . G- DFO) = 31
(18)

Step 2: referring to
determine N.

the preceding section to

Step 3: we attain two families of solutions of (18).
Family 1: when A = A* —4u>0
The solution of (17) is as follows:

G = —r+p1e(1/2k)(”"ﬂ)” +p26(1/2k)(—/1+\/x)r1 (19)

p, and p, are arbitrary constants, hold the relation
r* + pi + p5#0. Then,

[A(p, = p1) = VA (py + p1)]sinh (VA 7/2k) + [A(p, + p1) = VA (p, = p1)]cosh (VA 5/2k)

F(11)=k

A=2u VA VA7
2’ —p-1) 2k —p- 1)tanh(7)’

F(n) =
A=2u B VA coth \/517
2k(A-u-1) 2k(A-u-1) 2k )

Family 2: when A = 1* —4u <0

The solution of (17) is as follows:

[(A=2)(py = p1) = VA (py + py)]sinh (VAn/2k) + k[ (A = 2) (p, + p1) = VA (p, = py)]cosh (VAn/2k)’

(20)

(A=2)(p,—p1) - VA (p, +p1) =0,
(21)

(A=2)(pr+p1) - VA (p,—p1) = 0.
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11) + P, sin(@n)), (22)

()Lpl - \/Epz) cos (V=An/2k) +()Lp2 + \/—_Apl) sin (V-A#/2k)

e , 23
"7 k(= Dp, ~ VB py) cos (VAR + K (- D, + V-8 py) sin (VA2 23
A2 V=4 Nan .
2k(A—H—1)+2k(,\_#_1)tan( 7 ) (A=2)p, + V-Ap, =0,
F(n) = . - = ”
_2# — Ay i
2k(A—y—1)_2k(A_y_1)C°t< 2K ) (A-2)p, - V-Ap, =0.

Step 4: inserting (16) and (18) into (6), a system of
equations engender as the coefficients with identical
powers of F(#) vanished. Utilizing Mathematica pro-
gram to solve this system of equations.

2.3. Bernoulli Sub-ODE Method. Interpreting the funda-
mental steps briefly, we get the following:

Step 1: deeming the solution of (6) is
N
utn) =Y £,GY, (25)
i=0

where the constants f;(0<i<N) will be determined,
fn #0. G(n) fulfills the ordinary differential equation,

where A, p # 0, the next equation offered the solution of
G(n),

G(n) = (27)

(W/A) + ae

Step 2: calculating the non-negative integer N from (6)
by the balance principle.

Step 3: inserting (25) and (26) into (6), a polynomial in
G (n) is achieved. Each coefficient in this polynomial is
set equal zero. Mathematica program was used in
solving the preceding set of equations.

3. Applications

Converting (3) into the next ordinary differential equation

G +1G = uG?, (26)  using the transformation (5), we acquire the following
equation:
u (11)((12 +ab+b*—ac+ad+bd+d* +a(a+2bu(y) + 6a2u(11)2 +2a'u” (;1)) =0. (28)

Balancing u(n)*u" () with u”(#)* in (28) we get,
3N +2 =2N +4, yields N = 2.

3.1. Soliton Solutions Applying the exp (—y(n)) Expansion
Method. From (7), the solution of (28) can be expressed by

u(n) = Ay + A, (exp (—y () + A, (exp(—y ()))*.  (29)

Substituting (29) into (28) and using (8), then set the
coeflicients of the identical power of exp (- (7)) equal to
zero, we get the next system of equations as follows:

B(AA, +2uA,)(a® +b° +d’ +bd +a(b-c+d) +a(a+2b)A, +6a°Ag + 2a'u(AA, +2uA,)) =0,

a/\y(a +2b+ 4a3(12 + 2,u) + 12aA0)Af + 6/1;4A2(a2 +V +d +bd+a(b-c+d) +al,(a+2b+6ad,)+ 8a4y2A2)
+ Al(()t2 + 2/4)(:12 +b+d* +bd+a(b-c+d) +aAy(a+2b+ 6aA0)) + Zayz(a +2b+ 8a3(2/\2 + ;4) + 12aA0)A2) =0,

60’ MuA; + 2A2(2(/12 + Zy)(az +b +d> +bd+a(b-c+d) +aA(a+2b+6aA,)+ ayz(u +2b+ 4a3(13/12 + 8;4) + 12aA0)A2)
+ AA1(3(a2 +V+d> +bd+a(b-c+d)+aA,(a+2b+ 6aA0)) + ay(7a +14b + 8a3(5/12 + 13,@1) + 84aA0)A2)
+ aAf(a()Lz + 2;4) + 2b(/12 + 2;4) + 2a3()t4 + 10070 + 4;42) + 12a((/12 + Zy)AO + yzAz)) =0,
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6a2A?(/\2 + Zy) + a)tAf(?»a +6b+ 4a3(3A2 + 8‘u) +36aA, + 48a;,tA2) + 2)LA2(5(:12 +b+d> +bd+a(b-c+d)+aA,(a+2b+ 6aA0))
+uy(3a +6b+ 8a3(6/\2 + 17;4) + 36aA0)A2) + Al(z(aZ ++d +bd+a(b-c+d) +aA(a+2b+ 6aA0))
+a(5a()t2 + 2;4) + 10b()t2 + 2;4) + 16a3(/14 + 11V + 5;42) + 60a()t2 + 2‘u)AO)A2 + 24a2y2A§) =0,

18a°AA] +2A,(3(a” +b* + d* + bd + a(b—c+d) + aA (a + 2b + 6aA,))
+2a(a()L2 + 2;4) + Zb()tz + 2;4) + 4a3(2/12 + ;4)(/\2 + lly) + 12:1(/12 + 2;4)AO)A2 + 6a2‘u2A§) + a)LAlAZ(Ba +26b + 8(13’(11/12 + 31y)
+78a (24, + pA,)) + 2aA1(a +2b + a>(131° + 8u) + 6a(24, + 3A,(A* + 2u))) = 0,

2a(6aA] +12aMA7(a’ +4A, ) + AA3(5a + 10b + 8a°(104° + 29u) + 60aA, + 18auA, ))
+ Ay Ay(4(a+2b +2a° (1107 + 7u) ) + 48aA, + 27aA,(A* + 2u)) = 0,

2a(alA,A,(76a” + 694, ) + Aj(4a’ +30aA, ) + A5(3a + 6b +4a’ (3707 + 24u) + 12a(3A, + A,(1* + 24)))) = 0,

12a°A,(51A,(4a” + A,) + A, (4a” +74,)) = 0,

36a°A5(2a° + A,) =0,

(30)
We achieve the following sets of solutions as we solve the Set 1:
preceding system:
1
A, = 2a° A, = -2a’,d = Z(—a +2a° (A + 8u) + 12a4,
—((-a(11a - 16c + 4a°(A* + 8u) + 4a° (31" + 320% + 160" )
(31)
+8aAy(3 + 142’ (1 + 8u) + 424,))) "),
1 2(42
b= —Ea(l +2a° (A + 8u) + 124,).
Set 2:
1
A, = -2a’°\, A, = —2a°,d = Z(—a +2a° (1 + 8u) + 1204,
+((-a(11a - 16c + 4a°(A* + 8u) + 4a° (31" + 320% + 1604° )
(32)

+8aA0(3 + 14a2(/\2 + Sy) n 42A0)))(”2)),

b= —%a(l + 2a2(/\2 + 8y) + 12A0).

Next, we present five families of traveling wave solutions.
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Family 1. when A* — 4u >0, u#0,

24

-1 - w/()tz - 4/,1) tanh(( \I(Az - 4y) /2) (ax +by +dz —ct)

)
+ A, 2 )2,
. ) tanh((xl()tz ~ 4y) /z) (ax + by + dz - ct)>

u(x, y,z,t) = Ay + A,

2u
u(x,y,z,t) = Ag+ A
g v —A—yl(l2—4‘u) coth((ﬂ(Az—4y>/2>(ax+by+dz—ct))
2
2u

e (1~ 4) cotn( (0 - 40) 12) ax + by + = - )

Family 2. when A* — 4u <0, #0,

2u
A+ (4y—)t2) tan(( (4y—l2)/2>(ax+by+dz—ct)>
2

u(x, y,z,t) = Ay + A,

24
" -A+ w/(4‘u - /\2) tan(( (4;4 - )Lz) /2) (ax +by +dz - ct))
u(x, y,z,t) = Ay + A, 2
A+ ﬂ(4‘u - )Lz) cot((ﬂ(4‘u ~ )Lz) /2) (ax +by +dz - ct))
2
24

+ A,

-1+ \l(4y - )Lz) cot((\/(4y - )LZ) /2>(ax +by +dz —ct))

Family 3. when \* —4u>0,1#0,u = 0,

2
A A
u(x, y,z,t) = Ay + Al(_l R e)t(ax+hy+dz—ct)) + AZ(_I n eA(ax+by+dzct)> :

(33)

(34)

(35)

(36)

(37)
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Family 4. when A\* — 4 = 0,1 #0,u#0,

A (ax + by +dz — ct) N(ax+by+dz—ct) \
> Vo )t = A - A . 38
ulxy.5t) = Ay 1<2(2+)t(ax+by+dz—ct)) TN 22 Max + by + dz - o) (38)
Family 5. when A* — 4 = 0,1 = 0, = 0,
u(x, y,z,t) = Ay + A ! +A ! 2 (39)
V&)= Lot ax+by+dz —ct Nax+by+dz—ct)’
3.2. Soliton Solutions Applying the (G'/kG' + G +r) Expan- Inserting (40) into (28) and placing the coeflicients of
sion Method. Based on (16), the solution of (28) is presented ~ F () with equal power equal to zero, we achieve the system
by the following equation: as follows:
u(n) = my +m,F(n) + myF (). (40)

u(k = 2mmy + 2um,)((a® +b* +d* +bd + a(b - c + d))k*
+a(a+2b)k my+6a’k*m] + 2a*u(k(A - 2p)m, + Zymz)) =0,
k(apk® (A = 2p)(ak? + 26k + 40 (A* = 6Ap + 2 (1 + 3p) ) + 12ak’my ) + m;
+ 6umy (A = 2u)(k*(a® + b + d* + bd + a(b - ¢ + d) + amy (a + 2b + 6am,) )
+8a’’Pm,) + kml(k4(/12 —6Ap+2u(1+ 3»#))((12 +b+d +bd+ab-c+d)+amy(a+2b+ 6am0))
+ 2:1‘112(ak2 +2bk* + 8a3(2/\2 +u—9u+ 9;42) + 12ak2m0)m2) =0,
K (6a’ K pmy (X = 2u) + 2m, (2k* (A% - 6Ap + 2u (1 + 3p))(a® + b* + d” + bd+a (b — c + d) + am, (a + 2b + 6am,))
+ay’(ak® + 2bk? + 4a° (1307 - 60Au+4u (2 + 15)) + 12ak’my )m, )
+kmy (A = 2p) (=3k* (<=1 + X = p)(a” + b*+d” + bd + a(b - c + d) + amy (a + 2b + 6amy))
+ a‘u(7ak2 + 14bk> + 8a3(5/\2 - 33 A +u(13 + 33;1)) + 84ak2m0)m2)
+ak’m;(2a° (A" + 2220 (5 = 91) +2(2 + 3A (=8 + 130)p” + 2441° (2 - 51) + 60p”)
+ akz(/l2 —6Au+2u(1+ 3;4)) +2bk2()t2 —6Au+2u(1+ 3;4)) + 12a(k2m0()t2 +2u—6Au+ 6y2) + yzmz)))) =0,
(6’ k(A% = 6Au + 2u (1 + 30) )m; — ak® (A = 2wymi( (=1 + X — u)(3ak?+6bk> + 4a® (31° = 20Ap + 4p (2 + 5p) )
+ 36ak2m0) - 48aym2)
+2my (A = 2p)(=5k* (-1 + A —p)(a* + b + &> + bd + a(b - c + d) + am (a + 2b + 6am,) )
+ ay(3ak2 + 6bk> + 8a3(6/\2 -4+ u(17 + 41‘u)) + 36ak2m0)m2)
+km,(2(@’ +b* +d* +bd +a(b—c+d)k* (1= 1+ )’ +a(12ak* (1 - 1 + p)’my
+m,(16a’(A'A’p (11 = 192) + (5+ 61 (=9 + 140)p” + 2(27 — 65)p° + 654" )
+5ak® (A% = 6Ap + 20 (1 + 3p) ) + 10bK*(A* — 6A + 24 (1 + 3p) ) + 24ay’m, )
+ ZkZmO(k2 (a+ 2b)(1 A+t + 30am2(/\2 +2u—6Au+ 6;42))))) =0,
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k4(—18a2k3m? A=-2w)(-14+A—p) —akmmy, (A -2u)((-1 +A - y)(13ak2 +26bk? + 8a3(11)t2 - 75 0+ p(31+ 75/,1))
+156amgk®) — 78am,p) + 2ak’m( (1 - A + w)* (ak® + 2bk> + a* (1317 — 60Au + 44 (2 + 154) ) + 12amk*)
+18a(A* = 6Ap + 2 (1 + 3) )m, ) + 2m, (3k*(@® + > + d* +bd +a(b - c+d)) (1 -1 + )’
+ a(18ak4mg (1-A+p)+ 2m2(ak2(A2 —-6Apu+2u(l+ 3/4))))
+ Zbkz(/l2 —6Au+2u(1+ 3;4)) + 4a3(2/12 +u—9Au+ 9;42)()L2 — 15 Au+p (11 + 154)) + 3am2y2)
+3mok?((a+2b)k* (1= A + )’ + 8am, (A* + 2 — 6Au + 64°) ) = 0,

2ak° (6ak’m (1 - A+ ) + 12ak’m} (A = 2p) (=1 + A = p)(=a® (1 = X + )* — 4m,)
—my (A= 2)( (=1 + A - p)(5ak® + 10bk* + 8a°(101° — 69
+14(29 + 69p)) + 60amok® ) — 18am,p ) + kmym,(4(1 = A+ p)*(ak® + 2bk* +2a°(11A° = 51Ap + (7 + 51p))
+12ak’my) +27a(A* - 6du+2u (1 + 3p))m,)) = 0,

2ak6<akm1m2 (A= 20) (=1 + A — (760> (1 = A + )" - 69m2> 20k x (1= A+ (20> (1= 1+ )" + 15m2>
+ mg( (1= A+ p)*(3ak? + 6bk*+4a’(370° — 1720 + 4u (6 + 43;4)) + 36am0k2) +12a(A* = 6+ 2u (1 + 3u))m,)) = 0,

126K m, (1- A +;4)<ka (1= A+ p)(~4a>(1- A+ p)’ - 7m2> ; sz()t ~ow(4a (- )+ m2>> -0,

36a2k8m§ (1-1+ ‘u)2(2a2 (1-1+ ‘u)z +m,) = 0.

(41)
We obtain the following two sets of solutions when Set 1
solving the anterior system of equations:
ak? + 20k +2a°(A* = 120 + 4u (2 + 3p))
my = ,
’ 12ak*
2a° (A= 2u) (-1 + A — p)

m = ,

k (42)

m, = —2a*(1-1 +y)2,

d =~ (6K" (a+ b) +(~6K' (17a°K" + 146%K" + 8ak' (b - 30) + 4a°(1" - 4’)) ™).

12k

Set 2



Journal of Mathematics

ak? + 20k +2a°(A* = 120 + 4p(2 + 3p))
12ak®

my =

>

282N =2u) (-1 + A — )
m, = uk 28
my = —2a° (1 - A+ p)%,

1

d =
12k*

In what follows, we introduce two families of traveling Family 1: when A = A% — 4u >0,
wave solutions.

( £) =my+ Ao VA (VB (axtbyrdz -l
u(x, y,z,t) = my +m 2k(A-p-1) 2k(A-p-1) " 2k
A-2u VA VA (ax + by +dz =)\ )
+m, _ tanh :
2k(A—u—1) 2k(A-p-1) 2k
Under the constrain, (A-2)(p, - p,) — VA(p, + p,)
=0,
A—2u VA VA (ax +by +dz - ct)
bl bl bl = a h
u(x, y,2:t) m0+m1<2k(l—y—l) 2k(A—y—1)C0t< 2k
A —2u VA VA (ax +by +dz - ct)\’
m, _ coth ’
2k(A—u—-1) 2k(A-p-1) 2k
Under the constrain, (A-2)(p, + p;) - VA(p, - py) Family 2: when A = A* — 4u <0,
=0.
( t) =my+ A-2p V-4 t VoA (ax by +dz —cl)
u(x, y,z,t) =my +m 2k(A-pu-1) 2k(A-p—-1) o 2k
A=2u VA VA (ax +by +dz )\’
+m, + tan )
2k(A-p-1) 2k(A-p-1) 2k
Under the constrain, (- 2)p, + V-Ap, =0,
(%, y,2,) = my + B (A lex by dz el
OB =TT e —p—1) 2k —p-1) " 2K

A=2u V-A t\/E(zzx+by+dz—ct) :
"\ k- u-1) k(-1 2k ’

(6K*(a+ b) +(-6k* (17a°K" + 146°K* + 8ak* (b - 36) + 4a° (N = )"

(43)

(44)

(45)

(46)

(47)
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Under the constrain, (1 -2)p; — V=Ap, = 0. u(n) = fo+ f,G(p) + sz(ﬂ)z- (48)

3.3. Soliton Solutions Applying the Bernoulli Sub-ODE Inserting (48) into (28) and placing the coefficients with

Method. Based on (25), the solution of (28) is given by the equal powers of G () equal to zero, we achieve the next
following equation: system as follows:

Nf(a*+b+d* +bd+a(b-c+d)+af,(a+2b+6af,)) =0,

M-3fu(a® +b* +d’ +bd+a(b—c+d)+af,(a+2b+6af,))+ak(a+2b+2a’°\’ +12af,) f]
+4fMa’ +b*+d’ +bd+a(b-c+d)+afy(a+2b+6afy)))=0-3aku(a+2b+4a’\’ +12af,) f}
+6a’A f1 - 100u(a® +b* +d” +bd +a(b—c+d) +af,(a+2b+6af,))f,

+ (27 (a* + 0> + & +bd +a(b-c+d) +afy(a+2b+6af,))

+a)’ f,(5a +10b + 16a°A* + 60af,)) = 0,

—18a’ filu+ 6y’ (a* +0° +d> +bd +a(b—c+d) +afy(a+2b+6af,))f,—af, fhu(13a +26b + 88a°)\* + 156af,)
+4a)’ f5(a+2b8a°* + 12a ) + 2af1(p’(a + 2b+13a°A* + 12af, ) + 18af,1%) = 0,

- 2a(6affy2(2azly - fl) - 4/,tf1(/4(a +2b+22a°\ + 12af0) - 12(,1f1/\)f2

+A(5u(a +2b+16a°\* + 12af,) - 27af 1) f3) = 0,

2a(4a’ flu' + 2af | fou? (=38’ A+ 15f ) + u(p(3a + 6b + 148a°X* + 36af,) — 69af 1) f5 + 12a)’f3) = 0

12a2f2;4(—5)tf2(4a2‘u2 + fz) + f1(4612‘u3 + 7yf2)) =0

36a2/42f§(2a2y2 + f2) =0.

(49)
We obtain the follwoing two sets of solutions when Set 1
solving the former system of equations:
1
fr=2a"Mu, f5 = —2a°W*,b = E(—a —2a°\* + 1211f0),
=1 2a°2% - 12 11a® + 16ac - 4a*A* - 12a°A" - 244> (50)
—Z(—a+ a’l - afo—(— a +16ac—4a’A" - 12a’A" —24a" f
2.2
~112a")* f, - 3362’ 7).
Set 2
1
f1=2a’Au, f, = —2a°’,b = E(—a ~2a°\% + 12af0),
1
d= (-a+2a°X* - 12af, +(-11a" + 16ac - 4a*\* - 12a°A* - 244’ f (51)

1/2
~112a"\> f, - 3364’ f7) )

The traveling wave solution presented in what follows.
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FiGure 1: 2D and 3D graphs, respectively,
a=18,c=06,4A,=0.3,1=03,4=0.001.
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with (31) employing the exp(—y(#)) expansion method at

Figure 2: 2D and 3D graphs, respectively, corresponding to (35) with (31) employing the exp(—y(#)) expansion method at

a=16,c=0.3,A;,=0.01,A =0.003, 4 = 0.002.

u(x, y,z,t) :f0+f1<

4. Graphical Illustrations

Graphs depict the behavior of the solutions that we were able
to obtain. This section includes the presentation of some
figures that highlight various potential solutions.

In Figure 1, we exhibit the graph of (33) with (31) ap-
plying the exp(-y(#n)) expansion method at
a=18,c=0.6,A,=03,1=0.3,u = 0.001. In Figure 2, (35)
with (31) is plotted employing the exp (- (7)) expansion
method at a=1.6,c=0.3,4,=0.01,1 =0.003, 4 = 0.002.
The graph of (37) with (31) is presented in Figure 3 applying

1 1 2
(‘bl/A) T aell(ax+hy+dz—ct) + f2 (‘bl/)t) + qetlaxtby+dz—ct) | *

(52)

the exp(-y(x)) expansion method at a=138,
¢=0.6,A,=0.02,1 = 0.01, 4 = 0. Figure 4 present the graph
of (38)with (31) using the exp (- (7)) expansion method at
a=18,c=0.5,4,=0.01,u4 = 0.1. In Figure 5, we offer the
graph of (39) with (31) using the exp(-y (%)) expansion
method at a = 1.8,¢ = 0.5, A; = 0.01. Figure 6 present the
graph of (44) with (42) employing the (GIkG +G +7)
expansion method at m, = 0.05,a=1,b=0.9,c=0.3, k =
LA =+/5u=11,p, =-1.87671p,. In Figure 7 we plot (46)
with (42) employing the (G /kG' + G + r) expansion method
at m;=001,a=06b=07,c=05k=1 A=+2,u=
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Figure 3: 2D and 3D graphs, respectively, corresponding to (37) with (31) employing the exp(—y(#)) expansion method at

a=18,c=0.6,4,=0.02,1=0.01,4=0.
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a=18,c=05A4,=001Lu=0.1.

Figure 5: 2D and 3D graphs, respectively,
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FIGURE 6: 2D and 3D graphs, respectively, corresponding to (44) with (42) employing the (G'/kG +G +r) expansion method at
my =0.05a=1,b=09,c=03k=1,1=+5u=11,p, = -1.87671p,.
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FiGURe 7: 2D and 3D graphs, respectively, corresponding to (46) with (42) employing the (G'/kG +G +r) expansion method at
my =0.01,a=0.6,b=0.7,c=05k=1,1=v2,u=12,p, = 2.85654p,.
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Figure 8: 2D and 3D graphs, respectively, corresponding to (52) with (50) employing the Bernoulli sub-ODE method at
fo=01,1=02,c=06u=01,a=4a=L6.
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1.2, p, =2.85654p,. At the end, Figure 8 present the graph of
(52) with (50) employing Bernoulli sub-ODE method at
fo=01,1=02,c=0.6,uy=0.1,a=4,a=1.6.

5. Discussion

Using graphs as a means to display and explain potential
solutions are one of the most effective approaches. The
profile of every two-dimensional graph given the values of
the parameters that are supplied, as depicted with each
graph, is in the shape of a bell. The behavior of a soliton is
seen in Figures 1-6, 8, and as time passes ¢t = 0, 5, 10, the
wave moves to the right. On the other hand, as time passes
fromt = 0to t = 5, the wave moves to the left, as shown in
Figure 7. In conclusion, we are able to conclude that we
have demonstrated three useful approaches to solving the
(3+ 1)-dimensional Sakovich equation. Also, the solu-
tions that we presented are fully consistent with the
properties of the soliton waves, as they keep their shape
over time, and even when two or more waves overlap,
separation occurs and each wave still maintains its shape
and properties. This is evidenced by the fact that the
soliton waves are able to maintain their shape and
properties even when they are superimposed on one
another. The graphs that were presented make the physical
explanations very simple to see, which is another thing
that is obvious.

6. Conclusion

In this study, we investigate the new three-and-a-half-
plus-dimensional Sakovich equation, which has the po-
tential to be applied to the description of additional
dispersion and nonlinear effects in order to accommodate
a wide range of applications. We do three different an-
alytical procedures, including the exp (- (%)) expansion
methods, the novel method (G'/kG +G +r) expansion
method, and the Bernoulli sub-ODE method. We are able
to obtain soliton solutions in a variety of forms, such as
rational, exponential, hyperbolic, and trigonometric,
which introduce singular, dark, bright, periodic, and other
types of optical solitons. The findings demonstrate the
efficacy as well as the potential of the strategies that were
employed. In conclusion, the solutions that we have
shown in this work are fully compatible with the analytical
solutions that were acquired in the previous work [18]. We
have high hopes that this work will be extended to include
fractional derivatives in subsequent work, and that we will
also be able to solve this equation using a variety of
numerical approaches.
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