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Te split feasibility problem (SFP) in Hilbert spaces is addressed in this study using an efcient iterative approach. Under mild
conditions, we prove convergence theorems for the algorithm for fnding a solution to the SFP. We also present numerical
examples to illustrate that the acceleration of our algorithm is efective. Our results are applied to solve image deblurring and
signal recovery problems. Furthermore, we show the use of the proposed method to generate polynomiographs.

1. Introduction

Let C and Q be nonempty closed convex subsets of real
Hilbert spaces H1 and H2, respectively. Te split feasibility
problem (SFP for short) can be formulated as fnding a point
u∗ in C with the property

Au
∗ ∈ Q, (1)

where A: H1⟶H2 is a bounded linear operator.
For modeling inverse problems, Censor and Elfving [1]

proposed the SFP in fnite-dimensional Hilbert spaces. Later
on, the SFP can also be applied to medical image re-
construction and signal processing; see, e.g., [2–10].

Te SFP (1) can be written as a fxed point problem by
using

PC I − cA
∗
I − PQ( 􏼁A􏼂 􏼃u

∗
� u
∗
, (2)

where PC and PQ are the (orthogonal) projections onto C

and Q, respectively, c> 0 is any positive constant, and A∗

denotes the adjoint ofA. Tat is, u∗ solves the SFP (1) if and
only if u∗ solves the fxed point equation (2) (see [11]). For

more efective, the readers can see [8, 12–22]. In [7], Byrne
proposed the CQ algorithm by

uk+1 � PC I − cA
∗
I − PQ( 􏼁A􏼂 􏼃uk, k≥ 0, (3)

where 0< c< 2/‖A‖2, A∗: H∗2⟶H∗1 is the adjoint of A,
and PC and PQ are the projections onto C and Q, re-
spectively. Te CQ–algorithm (3) has been a useful in-
strument for solving the SFP due to its own virtues-simple
computation, and many variants of the CQ–algorithm have
been employed in several literature, such as [8, 9], and so on.

Te three-step procedures were frst introduced by Noor
[23].Tis method is applied to many problems. For example,
see [24–26].

Recently, the following three step iteration method used
to solve the SFP was defned by Dang and Gao [27]:

wn � 1 − cn( 􏼁un + cnPC 1 − λn( 􏼁U􏼂 􏼃un,

ςn � 1 − βn( 􏼁un + βnPC 1 − λn( 􏼁U􏼂 􏼃wn,

un+1 � 1 − αn( 􏼁un + αnPC 1 − λn( 􏼁U􏼂 􏼃ςn,

(4)
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where U � I − cA∗(I − PQ)A and αn􏼈 􏼉, βn􏼈 􏼉, cn􏼈 􏼉, λn􏼈 􏼉

are real sequences in (0, 1). Strong convergence theorems are
studied for (4) under some parametric controlling condi-
tions. In addition,Takur et al. [28] proposed the new three-
step iterative method for solving fxed points of non-
expansive mapping.

Motivated by Dang et al., we propose an efcient iter-
ative method which generates a sequence un􏼈 􏼉 by

wn � 1 − cn( 􏼁un + cnTun,

ςn � 1 − βn( 􏼁wn + βnTwn,

un+1 � 1 − αn( 􏼁Tun + αnTςn,

(5)

where T � PC[I − cA∗(I − PQ)A] and αn􏼈 􏼉, βn􏼈 􏼉, cn􏼈 􏼉

are real sequences in (0, 1).

2. Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and
induce norm ‖.‖. I denotes the identity operator in H. We
will denote the set of fxed points of: H⟶H by
F(T) � u ∈H: Tu � u{ }. For the sequence un􏼈 􏼉 to u inH,
the strong convergence and the weak convergence are
denoted by un⟶ u and un⇀u, respectively. An operatorT
on H is nonexpansive if, for each u, v ∈H,

‖Tu − Tv‖≤ ‖u − v‖, (6)

T is said to be λ-Lipschitz continuous, if each u, v ∈H,
we have

‖Tu − Tv‖≤ λ‖u − v‖, (7)

for a constant λ> 0. Assume φ> 0. Ten, T is called
φ-inverse strongly monotone (φ-ism), if each u, v ∈H, we
have

〈u − v,Tu − Tv〉≥φ‖Tu − Tv‖
2
. (8)

Recall that 1-ismT is also know as being frmly non-
expensive, that is, for each u, v ∈H,

〈u − v,Tu − Tv〉≥ ‖Tu − Tv‖
2
. (9)

Let the solution set Ω � u ∈ C: Au ∈ Q{ } � C∩A− 1Q

of the SFP (1) be a closed, convex, and nonempty set. LetPC

denote the projection from H onto a nonempty closed
convex subset C of H that is, PC(u) ≔ argminv∈C‖u − v‖.
Suppose that d(u,C) ≔ inf ‖u − v‖: v ∈ C{ }. We have the
following important lemma due to Feng et al. [29]:

Lemma 1. If T � PC[I − cA∗(I − PQ)A], where
0< c< 2/‖A‖2, then T is a nonexpansive map.

Lemma 2 (see [30]). Let un􏼈 􏼉 be a sequence of Hilbert space
H. If un􏼈 􏼉 converges weakly to u, then for any v ∈H and
v≠ u, we have limn⟶∞ inf‖un − u‖< limn⟶∞ inf‖un − v‖.

Lemma 3 (see [30]). Let C be a closed, convex, and non-
empty subset of real Hilbert space H, and T: C⟶ C be

a nonexpansive mapping. Ten,I − T is demiclosed at zero,
i.e., if un⇀u ∈ C and un − Tun⟶ 0, then u � Tu.

Lemma 4 (see [31]). Let X be a uniformly convex Banach
space and 0<p≤ tn ≤ q< 1 for all n ∈ N. Let un􏼈 􏼉 and vn􏼈 􏼉 be
two sequences of X such that limsupn⟶∞‖un‖≤ r,
limsupn⟶∞‖vn‖≤ r and limsupn⟶∞‖tnun + (1 − tn)vn‖ � r

hold for some r≥ 0. Ten, limsupn⟶∞‖un − vn‖ � 0.

3. Convergence Results

Lemma 5. Let un􏼈 􏼉 be generated by (5) and
T � PC[I − cA∗(I − PQ)A]. Ten, limn⟶∞‖un − u∗‖

exists for any u∗ ∈ F(T).

Proof. Given u∗ ∈ F(T). By nonexpansiveness of T and
using (5), we have

wn − u
∗����
���� � 1 − cn( 􏼁un + cnTun − u

∗����
����

≤ 1 − cn( 􏼁 un − u
∗����
���� + cn Tun − u

∗����
����

≤ 1 − cn( 􏼁 un − u
∗����
���� + cn un − u

∗����
����

� un − u
∗����
����,

(10)

and so

ςn − u
∗����
���� � 1 − βn( 􏼁wn + βnTwn − u

∗����
����

≤ 1 − βn( 􏼁 wn − u
∗����
���� + βn Twn − u

∗����
����

≤ 1 − βn( 􏼁 wn − u
∗����
���� + βn wn − u

∗����
����

� wn − u
∗����
����

≤ un − u
∗����
����.

(11)

Using (10) and (11), we have

un+1 − u
∗����
���� � 1 − αn( 􏼁Tun + αnTςn − u

∗����
����

≤ 1 − αn( 􏼁 Tun − u
∗����
���� + αn Tςn − u

∗����
����

≤ 1 − αn( 􏼁 un − u
∗����
���� + αn ςn − u

∗����
����

≤ 1 − αn( 􏼁 un − u
∗����
���� + αn un − u

∗����
����

� un − u
∗����
����.

(12)

Since u∗ is chosen arbitrarily in F(T), one deduces that
‖un − u∗‖􏼈 􏼉n is decreasing. It follows that limn⟶∞‖un − u∗‖

exists for any u∗ ∈ F(T). Tis completes the proof. □

Lemma 6. Let un􏼈 􏼉 be generated by (5). and T � PC

[I − cA∗(I − PQ)A]. Ten, limn⟶∞‖un − Tun‖ � 0.

Proof. By Lemma 5, we see that limn⟶∞‖un − u∗‖ exists for
any u∗ ∈ F(T). Assume that

lim
n⟶∞

un − u
∗����
���� � c. (13)

We take the lim sup of (10) and (11), and we get
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limsup
n⟶∞

wn − u
∗����
����≤ c, (14)

and

limsup
n⟶∞

ςn − u
∗����
����≤ c. (15)

In addition, by nonexpensiveness of T, we have

Tun − u
∗����
����≤ un − u

∗����
����, Twn − u

∗����
����

≤ wn − u
∗����
����, Tςn − u

∗����
����≤ ςn − u

∗����
����.

(16)

Again, by taking the lim sup on both sides, we get

limsup
n⟶∞

Tun − u
∗����
����≤ c, (17)

limsup
n⟶∞

Twn − u
∗����
����≤ c, (18)

and

limsup
n⟶∞

Tςn − u
∗����
����≤ c. (19)

In addition,

c � lim
n⟶∞

un+1 − u
∗����
����

� lim
n⟶∞

1 − αn( 􏼁 Tun − u
∗

( 􏼁 − αn Tςn − u
∗

( 􏼁
����

����.
(20)

Using (17)–(19) and Lemma 4, we have

lim
n⟶∞

Tun − Tςn

����
���� � 0. (21)

In addition,

un+1 − u
∗����
���� � 1 − αn( 􏼁 Tun − u

∗
( 􏼁 + αn Tςn − u

∗
( 􏼁

����
����

≤ 1 − αn( 􏼁 Tun − u
∗����
���� + αn Tςn − u

∗����
����

≤ 1 − αn( 􏼁 Tun − u
∗����
���� + αn Tun − Tςn

����
����

+ αn Tun − u
∗����
����

� Tun − u
∗����
���� + αn Tςn − Tun

����
����,

(22)

and taking the lim inf on both sides in this inequality, we
have

c≤ liminf
n⟶∞

Tun − u
∗����
����. (23)

Using (17) and (23), we have

lim
n⟶∞

Tun − u
∗����
���� � c. (24)

Since,

Tun − u
∗����
����≤ Tun − Tςn

����
���� + Tςn − u

∗����
����

≤ Tun − Tςn

����
���� + ςn − u

∗����
����.

(25)

Using (21) and (24) and take the lim inf of (25), and we
get

c≤ lim
n⟶∞

inf ςn − u
∗����
����. (26)

From (15) and (26), we get

lim
n⟶∞

ςn − u
∗����
���� � c. (27)

In addition,

c � lim
n⟶∞

ςn − u
∗����
����

� lim
n⟶∞

1 − βn( 􏼁 wn − u
∗

( 􏼁 + βn Twn − u
∗

( 􏼁
����

����.
(28)

By (14), (18), and (28) and Lemma 4, we have

lim
n⟶∞

Twn − wn

����
���� � 0. (29)

In addition,

ςn − u
∗����
���� � 1 − βn( 􏼁wn + βnTwn − u

∗����
����

≤ 1 − βn( 􏼁 wn − u
∗����
���� + βn Twn − u

∗����
����

≤ 1 − βn( 􏼁 wn − u
∗����
���� + βn Twn − wn

����
����

+ βn wn − u
∗����
����

� wn − u
∗����
���� + βn Twn − wn

����
����.

(30)

Using (27) and (29) and take the lim inf of (30), and we
get

c≤ liminf
n⟶∞

wn − u
∗����
����. (31)

From (14) and (31), we get

lim
n⟶∞

wn − u
∗����
���� � c. (32)

By using (32), we have

c � lim
n⟶∞

wn − u
∗����
����

� lim
n⟶∞

1 − cn( 􏼁 un − u
∗

( 􏼁 + cn Tun − u
∗

( 􏼁
����

����.
(33)

It follows from (13), (17), and (33) and Lemma 4 that

lim
n⟶∞

Tun − un

����
���� � 0. (34)

Additionally, the solution set, denoted by Ω, is the same
as the fxed point set, denoted by T, i.e,
Ω � F(T) � C∩A− 1Q≠∅ (see [11, 12]) for more
details. □

Theorem 1. Let un􏼈 􏼉 be generated (5) and
T � PC[I − cA∗(I − PQ)A]. Ten, un􏼈 􏼉 converges
weakly to a point in Ω.

Proof. SinceΩ� F(T)≠∅.Ten, we only need to show that
the sequence un􏼈 􏼉 converges weakly to a point in F(T).
Taking u∗ ∈ F(T), using Lemma 5, limn⟶∞‖un − u∗‖ ex-
ists. We show that the subsequences of un􏼈 􏼉 only have a weak

limit in F(T). Suppose that subsequences uni
􏽮 􏽯 and unj

􏼚 􏼛 of

un􏼈 􏼉 converge weakly to ξ and ς, respectively. From Lemma
6, we have
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lim
n⟶∞

uni
− Tuni

�����

����� � 0 � lim
n⟶∞

unj
− Tunj

�����

�����. (35)

It follows from Lemma 3 that ξ, ς ∈ F(T). Next, we show
that the weak limit is unique. Since T � PC[I−

cA∗(I − PQ)A] is nonexpansive mapping. Using Lemma
5, we have limn⟶∞‖un − u∗‖ exists. Suppose that ξ ≠ ς.
Using Lemma 2, we have

lim
n⟶∞

un − ξ
����

���� � lim
ni⟶∞

uni
− ξ

�����

�����< lim
ni⟶∞

uni
− ς

�����

�����

� lim
n⟶∞

un − ς
����

���� � lim
nj⟶∞

unj
− ς

�����

�����

< lim
nj⟶∞

unj
− ξ

�����

����� � lim
n⟶∞

un − ξ
����

����.

(36)

Tis is clearly contradictory, hence, ξ � ς.Terefore, un􏼈 􏼉

converges weakly to a point in F(T). Tus the sequence
un􏼈 􏼉, converges weakly to a point in Ω.

Mapping T in H is called averaged if there exist
α ∈ (0, 1) and a nonexpansive operator S such that
T � (1 − α)I + αS. Set

q(u) ≔
1
2

I − PQ( 􏼁T( 􏼁u
����

����, u ∈ C. (37)

We consider

find min
u∈C

q(u). (38)

By [32], the gradient of q is ∇q � T∗(I − PQ)T, where
T∗ is the adjoint of T. Since I − PQ is nonexpansive, it
follows that ∇q is L-Lipschitzian with L � ‖T‖2. Terefore,
∇q is 1/L − ism and for any 0< μ< 2/L,I − μ∇q is averaged.
Terefore, the composition PC(I − μ∇q) is also averaged.
Set T ≔ PC(I − μ∇q). Note that the solution set of SFP is
F(T). Te following new three-step can be used to fnd
solutions of SFP: □

Theorem 2. Assume that SFP is consistent. Suppose {αn},
{βn} and {cn} are sequences in [δ, 1 − δ] for all n ∈ N and for
some δ in (0, 1). Let un􏼈 􏼉 be a sequence in C generated by

wn � 1 − cn( 􏼁un + cnPC(I − μ▽q)un,

ςn � 1 − βn( 􏼁wn + βnPC(I − μ▽q)wn,

un+1 � 1 − αn( 􏼁PC(I − μ▽q)un + αnPC(I − μ▽q)ςn, n ∈ N,

(39)

where 0< μ< 2/‖T‖2. Ten, un􏼈 􏼉 converges weakly to a so-
lution of SFP.

Proof. Since T ≔ PC(I − μ∇q) is nonexpansive, from
Teorem 1.

Next, we prove the strong convergence results. □

Theorem 3. Let un􏼈 􏼉 be generated by (5) and
T � PC[I − cA∗(I − PQ)A]. Ten, un􏼈 􏼉 converges
strongly to a point in Ω if and only if
liminfn⟶∞d(un,Ω) � 0.

Proof. If the sequence un􏼈 􏼉 has a strong convergence to
a point inΩ, then it follows that liminfn⟶∞d(un,Ω) � 0. To
get to the converse, suppose that liminfn⟶∞d(un,Ω) � 0.
Since F(T) � Ω≠∅. It follows that liminfn⟶∞d

(un, F(T)) � 0. Let u∗ ∈ F(T). Using Lemma 5, we have
limn⟶∞‖un − u∗‖ exists. Tus, limn⟶∞ d(un, F(T)) exists
and limn⟶∞ d(un, F(T)) � 0.

Next, we show that un􏼈 􏼉 is a Cauchy sequence inC. Since
limn⟶∞ d(un, F(T)) � 0, given ε> 0, there exists a natural
number n0 such that for all n≥ n0, d(un, F(T))< ε/2.
Meanwhile,

inf un0
− u
∗

�����

�����: u
∗ ∈ F(T)􏼚 􏼛<

ε
2

. (40)

So, we can fnd v∗ ∈ F(T) such that ‖un0
− v∗‖< ε/2. For

n≥ n0 and m≥ 1, we have

un+m − un

����
����≤ un+m − v

∗����
���� + un − v

∗����
����

≤ un0
− v
∗

�����

����� + un0
− v
∗

�����

�����

<
ε
2

+
ε
2

� ε.

(41)

Tis shows that un􏼈 􏼉 is a Cauchy sequence inC. FromC

is a closed subset in H. Ten, there exists ξ ∈ C such that
limn⟶∞un � ξ. Now limn⟶∞ d(un, F(T)) � 0 gives that
d(ξ, F(T)) � 0. Note that F(T) is closed. Terefore,
ξ ∈ F(T). Again, using F(T) � Ω, we have ξ ∈ Ω. Tus,
un􏼈 􏼉 converges to a point in Ω. Tis completes the proof.

A mapping T satisfy Condition A (see [33]) if there
exists a nondecreasing function f: [0, +∞)⟶ [0, +∞)

with f(0) � 0 and f(r)> 0 for all r ∈ (0, +∞) such that

‖u − Tu‖≥f\\((d(u, F(T)), (42)

for all u ∈ C.
Next, we can prove strong convergence of (5) under

Condition A, which is weaker than the compactness of the
mappings’ domain. □

Theorem 4. If T satisfes Condition A, then the sequence
un􏼈 􏼉 defned by (5) converges strongly to a point in Ω.

Proof. Using Lemma 6, we also get

lim
n⟶∞

un − Tun

����
���� � 0. (43)

Since T is a given, it follows that

lim
n⟶∞

f d( un, F(T)( 􏼁≤ lim
n⟶∞

un − Tun

����
���� � 0. (44)

Now f: [0, +∞)⟶ [0, +∞) with f(0) � 0 and
f(r)> 0 for all r ∈ (0, +∞), gives that

lim
n⟶∞

d un, F(T)( 􏼁 � 0, (45)

and it follows that

lim
n⟶∞

d un,Ω( 􏼁 � 0. (46)
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From Teorem 3, we have un􏼈 􏼉 converges strongly to
a point in Ω. Tis completes the proof. □

4. Numerical Examples

In this part, we study and compare numerical results of the
proposed algorithm (5) with the Dang algorithm (4) to
declare that the proposed algorithm is more efective.

Example 1. Suppose that H1 � H2 � R3, C � u ∈ R3:􏼈

‖u‖≤ 1}, Q � u ∈ R3: ‖u‖≤ 2􏼈 􏼉, and Tu � Mu.

M �

−3 1 2

−1 0 1

1 2 −1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (47)

and take an initial point u0 � 0.6, 0.5, 1.1{ }.

Example 2. Suppose that H1 � H2 � R3, C � u ∈ R3:􏼈

‖u‖≤ 1}, Q � u ∈ R3: ‖u‖≤ 2􏼈 􏼉, and Tu � Mu.

M �

2 −1 0

−1 2 −1

0 −1 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (48)

and take an initial point u0 � 1.2, 0.6, 0.4{ }.
Te projectionsPC andPQ of u onto setsC andQ are as

follows:

PC(u) �

u, ‖u‖≤ 1,

u

‖u‖
, ‖u‖≥ 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

PQ(u) �

u, ‖u‖≤ 2,

u

‖u‖
, ‖u‖≥ 2.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(49)

Meanwhile, choose

αn � βn

� cn

�
n

n + 1

� 0.99 and

λn �
1

A‖‖
2
2

����
,

(50)

for Dang and proposed methods. We take
‖un+1 − un‖< 10− 15 as the standard of stopping in the process
of calculation. All codes were written in MATLAB 2019b. By
computing, we obtain the iteration steps and CPU time of
these three comparing algorithms in converging to the
solution of Examples 1 and 2 as shown in Table 1.

Tables 2 and 3 show the convergence of comparing
sequences of Examples 1 and 2 generated by Dang and
proposed methods. It can be found from the computing
results of Tables 1–3 that, under the same conditions, the
results of the proposed method are highly efective com-
pared with Dang method.

 . Applications

Tis section is devoted to some applications by using the
proposed algorithm (5).

5.1. Image Restoration Problems. Assume that B is a matrix
with 􏽥m rows and 􏽥n columns that represents the degraded
representation of the true image X. Te restoration model
can be obtained by stacking the columns of B and X into two
long vectors, b and u, both of which have lengths of n � 􏽥m􏽥n.
Te following linear equation system may be used to de-
scribe the restoration model as a one-dimensional vector:

b � Mu, (51)

where the true image is represented by u ∈ Rn, the observed
image is represented by b ∈ Rn, and the blurring matrix is
represented by M ∈ Rn×n.

Issue (52) is a least squares (LS) problem that needs to be
resolved in order to resemble the true image on the resto-
ration model (51).

min
u

1
2
b − Mu‖‖

2
2. (52)

Wewill use our key fndings for resolving the restoration
model (51) by setting the following by using q(u) as above
equation. And the following methods are used to resolve the
image restoration problem.:

zn � 1 − cn( 􏼁un + cn un − μM
T

Mun − b( 􏼁􏼐 􏼑,

yn � 1 − βn( 􏼁zn + βn zn − μM
T

Mzn − b( 􏼁􏼐 􏼑,

un+1 � 1 − αn( 􏼁 un − μM
T

Mun − b( 􏼁􏼐 􏼑

+ αn yn − μM
T

Myn − b( 􏼁􏼐 􏼑.

(53)

Te problem (51) is solved using (53), using the pa-
rameter (50) and μ � 1/‖MTM‖2.

To illustrate the viability of the suggested algorithm, the
true RGB (color image) is presented in Figure 1. Peak signal-
to-noise ratio (PSNR) is a quantitative metric that is used to
assess how well the contrasting algorithms at un work during
the image deblurring process. Moreover, we employ the
following formula:

un − u
����

����∞
‖u‖∞

, (54)

to measure the fgure error, which is called the relative
fgure norm.

We then show how to restore photos that have been
damaged by the matrices MG (Gaussian blur of flter size
9 × 9 with standard deviation sigma � 4), MO (out focus
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blur with radius r � 6), and MM (motion blur specifying
with 21 pixels of motion length) (see Figure 2). Te
reconstructed RGB image shown in Figures 3–5 employs
three blurring matrices MG, MO, and MM for 50th, 1,000th,
and 20,000th iterations to address the restoration problem.
Tese fgures show that the quality of restored images uti-
lizing (53) for solving (51) improve for the three types of
degraded images.

Additionally, employing the suggested algorithms with
100,000th iterations, the behavior of the relative fgure error
and the PSNR quality of the deteriorated RGB image are
exhibited.

It is interesting to note that the relative errors plot of the
suggested technique decreases with the number of iterations.
As the number of iterations increases, their graphs also grow,
according to the PSNR plots in Figure 6. It can be said that
the suggested approach improves the quality of the three
distinct types of real RGB images.

5.2. Signal Recovering Problems. Compressed sensing can be
defned in signal processing given by

y � Au + ], (55)

where u ∈ Rn is the original signal, ] is the noise, y ∈ Rm is
the observed signal with noisy, and A ∈ Rm×n is a degraded
matrix. Solving the LASSO problem, (56) can be thought of
as fnding solutions to previously determined linear equa-
tion systems.

min
u∈RN

1
2

y − Au‖‖
2
2 subject to

����
����u1 ≤ t, (56)

where t> 0 is a given constant. We can use our strategy to
solve the issue (56) by putting T � PC(I − μ∇q), where
q(u) � y − Au‖‖22/2 and ∇q(u) � AT(Au − y). We demon-
strate how to use our approach in signal recovery issues (55).
Let un􏼈 􏼉 generated by C � u ∈ Rn: ‖u‖1 ≤ t􏼈 􏼉, we acquire
techniques for solving

wn � 1 − cn( 􏼁un + cnTun,

zn � 1 − βn( 􏼁wn + βnTwn,

un+1 � 1 − αn( 􏼁Tun + αnTzn,

(57)

where μ ∈ (0, 2/‖AtA‖2) and αn, βn, cn ∈ (0, 1), ∀n ∈ N.
Following that, various experiments are shown to

demonstrate the convergence and usefulness of algorithm
(50). yi � Aiu + ]i, i � 1, 2, 3 with m � 512 is generated by u
with n � 1024 formed by the uniform distribution in the
range [−2, 2] with 70 nonzero items. Te original signal is
shown in Figure 7.

Te procedure begins when the begin data u0 with n �

1024 is chosen at random and t is the number of nonzero
elements (see Figure 8).

Te observation signal yi is shown in Figure 9.
Ai formed by the normal distribution with mean of zero

and variance of one and white Gaussian noise ]i, i � 1, 2, 3
(see Figure 10).

Te convergence features of algorithm (57) with the
permutation of the blurring matrices A1, A2, and A3 are
illustrated and analyzed.Te relative inaccuracy is calculated
by using ‖un − u2/‖u2. Te signal-to-noise ratio (SNR) is
used to quantify the performance of the recovered signal at
the nth iteration (SNR). In addition, the comparative

Table 3: Comparative sequences of the Dang method (4) and
proposed method (5) for the numerical experiment of Example 2
with three decimal places.

Iteration number
Example 2

Dang (4) Proposed (5)
1 (1.200, 0.600, 0.400) (1.200, 0.600, 0.400)
2 (1.117, 0.557, 0.979) (0.857, 0.428, 0.285)
3 (1.054, 0.527, 0.943)
4 (1.010, 0.505, 0.915)
5 (0.977, 0.488, 0.815)
⋮ ⋮
28 (0.857, 0.428, 0.285)
⋮ ⋮
112 (0.857, 0.428, 0.285)

Figure 1: True images (243 × 349 × 3).

Table 1: Iteration steps and CPU time of the Dang method (4) and
proposed method (5) for the numerical experiment of Examples 1
and 2.

Algorithm
Iterations number CPU time (sec)

Example 1 Example 2 Example 1 Example 2
Dang (4) 111 112 7.973e− 04 9.648e− 04
Proposed (5) 2 2 3.985e− 04 4.091e− 04

Table 2: Comparative sequences of the Dang method (4) and
proposed method (5) for the numerical experiment of Example 1
with three decimal places.

Iteration number
Example 1

Dang (4) Proposed (5)
1 (0.600, 0.500, 1.100) (0.600, 0.500, 1.100)
2 (0.561, 0.467, 1.028) (0.444, 0.370, 0.815)
3 (0.534, 0.445, 0.979)
4 (0.514, 0.428, 0.943)
5 (0.499, 0.416, 0.915)
⋮ ⋮
29 (0.444, 0.370, 0.815)
⋮ ⋮
111 (0.444, 0.370, 0.815)
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algorithms’ parameters αn, βn, and cn are set to the default
parameter (50).

Figure 11 depicts the behavior of relative signal error and
SNR quality of the proposed approach with the blurring
matrices A1, A2, and A3.

Te relative signal error plot reduces until it converges to
some fxed value, which is impressive. Te SNR quality plot
of the provided approach shows that the SNR value grows
until it also converges to a constant number.

Figures 12–14 demonstrate the recovered signal using
the proposed techniques with the group of operator and
noise Ai and ]i, i � 1, 2, 3. Te improvement of SNR quality
for the recovering signals based on 5,000th, 10,000th, and
20,000th number of iterations are also shown on these fg-
ures. As illustrated in Figures 12–14, the proposed algo-
rithms (57) to solve the signal recovery problem have been
shown to improve the quality of recovered signals for three
diferent types of degraded signals.

Figure 2: True images are blurred by matrices MG, MO, and MM respectively.

Figure 3: Rebuilt images degraded by blurred matrices MG being 50th, 1,000th, and 20,000th used iterations.

Figure 4: Rebuilt images degraded by blurred matrices MO being 50th, 1,000th, and 20,000th used iterations.

Figure 5: Rebuilt images degraded by blurred matrices MM being 50th, 1,000th, and 20,000th used iterations.
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5.3. Polynomiography. In 2005, polynomiography is defned
by Kalantari (see, e.g. [34–40]). Te formula for Newton’s
method of calculating the roots of a complex polynomial P is
as follows:

zn+1 � zn −
p zn( 􏼁

p′ zn( 􏼁
, n � 0, 1, 2, . . . , (58)

where z0 ∈ C is an initial point. Here, we have (59) by using
(58). Consider a Hilbert space H � C, vo � (xo, y0), and
αn􏼈 􏼉, βn􏼈 􏼉, cn􏼈 􏼉 ⊂ (0, 1). Te following formula generates
polynomiographs:

wn � 1 − cn( 􏼁vn + cn vn −
p vn( 􏼁

p′ vn( 􏼁
􏼠 􏼡,

zn � 1 − βn( 􏼁wn + βn wn −
p wn( 􏼁

p′ wn( 􏼁
􏼠 􏼡,

vn+1 � 1 − αn( 􏼁 vn −
p vn( 􏼁

p′ vn( 􏼁
􏼠 􏼡 + αn zn −

p zn( 􏼁

p′ zn( 􏼁
􏼠 􏼡,

(59)

where αn􏼈 􏼉, βn􏼈 􏼉, cn􏼈 􏼉 are real sequences in (0, 1).
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Figure 8: Initial signals u0.
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Tis subsection shows some examples of the poly-
nomiographs obtained by using (59) with real and complex-
valued parameters using diferent color maps.

5.3.1. Polynomiographs with Real-Valued Parameters of
Iterations. Polynomiographs for complex polynomial
equation p1(z) � z3 − 3z2 + 1 and p2(z) � z4 + z2 − 1 are
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Figure 9: Degraded signals y1, y2, and y3.
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Figure 10: Noise signals ]1, ]2, and ]3.
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presented in Figures 15 and 16, respectively. Polynomio-
graphs were generated by resolution 500 × 500 pixels,
number of iterations n � 15, accuracy ϵ � 0.001, and
A � [2, 2]2. Te following parameters were fxed in the it-
erations: αn � 0.35, βn � 0.65, and c � 0.55.

5.3.2. Polynomiographs with Complex-Valued Parameters of
Iterations. Polynomiographs for complex polynomial

equations, p1(z) � z3 − 3z2 + 1 and p2(z) � z4 + z2 − 1, are
presented in Figures 17 and 18, respectively. Polynomio-
graphs were generated by resolution 500 × 500 pixels,
number of iterations n � 15, accuracy ϵ � 0.001, and
A � [2, 2]2. Te following parameters were fxed in the it-
erations: αn � 0.35 + 0.3i, βn � 0.65 + 0.4i, and
c � 0.55 + 0.75i.

Figures 15 and 16 show how real parameter components
afect symmetry, whereas Figures 17 and 18 show how
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Figure 11: Te relative signal error and SNR plots of the proposed algorithm with the blurring matrices A1, A2, and A3 in recovering the
observed signal with 200,000th iterations.
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Figure 13: Recovering signals based on the SNR quality for the degraded signal with operator A2 and noise ]2.
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Figure 15: Examples of polynomiographs of diferent color maps for p1 with real-valued parameters of (59).
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Figure 17: Examples of polynomiographs of diferent color maps for p1 with complex-valued parameters of (59).
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Figure 18: Examples of polynomiographs of diferent color maps for p2 with complex-valued parameters of (59).
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imaginary parameter components produce asymmetric
twisting of the polynomiographs and afect the statics or
dynamics of the pictures.
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