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Let M be a smooth manifold and A a Weil algebra. We discuss the diferential forms in the Weil bundles (MA, π, M), and we
established a link between diferential forms in MA and M as well as their cohomology. We also discuss the cohomology in.

1. Introduction

Te theory of bundles of infnitely near points was in-
troduced in 1953 by Andre Weil in [1] and has become
a subject of signifcant interest in diferential geometry. A
commutative, associative, unitary real algebra A is called
Weil algebra if it is a fnite-dimensional local algebra of the
form A � R⊕M (i.e., dim(A/M) � 1) where M is its only
maximal ideal (see [2], from page 625). As an example, one
defnes the algebra D � R[x]/〈x2〉 of dual numbers whose
the maximal ideal is M � xR.

Let M be a smooth manifold and x ∈M. Given a Weil
algebra A with maximal ideal M and basis α1, . . . , αm, one
defnes a morphism of algebras

ε: C
∞

(M)⟶ A, (1)

such that

ε(f) � f(x) · α1 + t � f(x) + t, (2)

where 1 � α1 ∈ R and t ∈M. Such a morphism is called
A-point of M near to x, and one denotes by MA

x the set of all
A-points of M near to x. Tere is a functor TA from the
category of smooth manifolds to itself sending a smooth
manifold M to the bundle (TAM, π, M) which is known as
the bundle of A-points near to points in M; in this case,
TAM � MA � ∪ x∈MMA

x can be regarded as a manifold with
dimR MA � dim(A) · dimR M (see [3]). One of the ques-
tions that draw researcher’s attention is the prolongation of
geometric structures from M to MA (see [4], chap. 4 for the

general theory). Tis approach consists of sending a geo-
metric structure fromM toMA (regarded as anA−manifold,
i.e., dimA MA � dimR M) as developed in [5–10] where the
authors studied the prolongations of vector felds and dif-
ferential forms, linear connections, symplectic structures,
and pseudo-Riemannian structures. Many directions have
been developed from the last decades for these manifolds
such as afne manifold structures studied in [2] and prin-
cipal fber bundles studied in [11], and nice applications to
Grassmann bundles can be found in [12].

Instead of regarding MA as anA−manifold, we discuss in
this paper diferential forms and de Rham cohomology on
MA without any prolongation. Tis approach consists of
regarding MA as an R−manifold (i.e.,
dimR(MA) � dim(A) · dim(M)) (see [13]). More specif-
cally, if Ωk(MA,R) denotes the space of k−forms in MA, we
introduce the map

D: Ωk
M

A
,R􏼐 􏼑⟶Ωk

(M), (3)

sending a k−form from MA to a k−form in M. Conversely,
we introduce the map

C: Ωk
(M)⟶Ωk

M
A

,R􏼐 􏼑, (4)

sending a k−form from M to a k−form in MA. Tese two
maps are central and enable to extend the de Rham complex
in MA by introducing the operator

􏽥d � C°d°D : Ωk
M

A
,R􏼐 􏼑⟶Ωk+1

M
A

,R􏼐 􏼑, (5)
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in MA where d: Ωk(M)⟶Ωk+1(M) is the de Rham
operator in M, and we prove that 􏽥d defnes indeed the de
Rham cohomology operator in MA.

2. Basic Notions

Defnition 1. (Weil functor)
Let A be a Weil algebra with maximal ideal M, M be

a C∞−smooth manifold. Denote by Mfd the category of
smooth manifolds. By the Weil functor of M, we mean
a functor TA: Mfd⟶ Mfd such that

(1) for any M ∈ Ob(Mfd),

T
A

M � ∪
x∈M

M
A
x , (6)

with projection TAM⟶M and fbers MA
x for any

x ∈M.
(2) for any M, N ∈ Ob(Mfd) and f: M⟶ N, we have

TAf: TAM⟶ TAN such that for any
x ∈M, TAf(MA

x ) ⊂ NA
f(x) and the following dia-

gram commutes

M N
f

MA NA
TAf

πM πN

Remark 1

(1) Denote by TAM � MA and TARn � An

(2) If f: M⟶ R is a function, then

f
A

: M
A⟶ A, (7)

such that for any ε ∈MA
x , we have

f
A

(ε) � ε(f) � f(x) + t for t ∈M. (8)

(3) Claim: if 􏽥f: MA⟶ R is a function and ε1, ε2 ∈MA
x ,

then 􏽥f(ε1) � 􏽥f(ε2). Tis is a very important claim
and will be widely used thoughout this paper.

(4) Let α1, . . . , αm􏼈 􏼉 be a basis for A and M be a manifold
such that x1, . . . , xn􏼈 􏼉 is a system of local coordinate
around x ∈ U ⊂M, then there exists
ε ∈ π− 1(U) ⊂MA

x and functions xi,j: π− 1(U)⟶ R,

i � 1, . . . , n; j � 1, . . . , m such that for

ε xi( 􏼁 � 􏽘
m

j�1
xi,j(ε) · αj∀ � i � 1, . . . , n. (9)

Te functions x1,1, . . . , xn,m􏽮 􏽯 are a system of local
coordinate around ε ∈ π− 1(U) ⊂MA

x . It is clear that
dimR(MA) � n · m.

(5) If M and N are smooth manifolds and h: M⟶ N

a smooth map (resp. difeomorphism) then

h
A

: M
A⟶ N

A
, ε⟶ h

A
(ε). (10)

such that ∀ϕ ∈ C∞(N), hA(ε)(ϕ) � ε(ϕ°h) is
a smooth map (resp. difeomorphism).

(6 )Given a Weil bundle (MA, π, M) with
π: MA⟶M and π− 1(x) � MA

x∀x ∈M, defne
a special section α: M⟶MA of π such that for any
x ∈M, α(x) � xA.

Lemma 1. Let 􏽥f: MA⟶ R be a function on MA and
α: M⟶MA be the special section of the Weil bundle
(MA, π, M) (i.e., α(x) � xA). Ten, 􏽥f

°α°π � 􏽥f.

Proof. Let ε ∈MA, then there exists x ∈M such that
ε ∈MA

x . For this, x, α(x) � xA ∈MA
x .

􏽥f
°α°π(ε) � 􏽥f°α[π(ε)] � 􏽥f°α(x) � 􏽥f xA􏼐 􏼑 � 􏽥f(ε), (11)

since xA, ε are both A−points near to x (see the claim on
Remark 2). □

3. Revisiting Tangent Spaces

Let M be a smooth manifold and D � R[y]/〈y2〉 be the
ring of dual numbers, then MD can be identifed with the
tangent TM. Let x ∈M, then the tangent space TxM can
be identifed with the space MD

x of D−points of M near to
x by: if ε ∈MD

x , v ∈ TxM and f ∈ C∞(M), then

ε(f) � f(x) +(v(f)) · y. (12)

Let A be a Weil algebra, then the tangent bundle on MA

can be identifed as (MA)D � (MD)A. If

μ: R × M
D⟶M

D
, (b, ε)↦xε, (13)

is the external multiplication of MD
x , then one can see in [3],

Defnition 1 that the map

μA
: A × M

A
􏼐 􏼑

D
⟶ M

A
􏼐 􏼑

D
, a, ε1( 􏼁↦aε1, (14)

gives to (MA)D the structure of A−module. Since R ⊂ A,
then one can defne naturally the multiplication

􏽥μ: R × M
A

􏼐 􏼑
D
⟶ M

A
􏼐 􏼑

D
, t, ε1( 􏼁↦ tε1, (15)

which gives to (MA)D the structure of R−vector space.

Defnition 2. By a tangent vector on ε, we mean a linear
map

v: C
∞

M
A

,R􏼐 􏼑⟶ R, (16)

satisfying the Leibniz rule, i.e., ∀f, g ∈ C∞(MA)

v(f · g) � f(ε)v(g) + v(f)g(ε). (17)

Such a map is called a derivation. We denote

TεM
A

� v: C
∞

M
A

,R􏼐 􏼑⟶ R | v is a derivation􏽮 􏽯. (18)

Remark 2. Let x1, . . . , xn􏼈 􏼉 be a system of local coordinates
around a neighborhood of x ∈M and
xi,j | i � 1, . . . , n; j � 1, . . . , dim(A)􏽮 􏽯 be a system of local
coordinate around ε ∈MA

x . Denote by
z/zxi | x, i � 1, . . . , n􏼈 􏼉 a basis of TxM where

2 Journal of Mathematics



z

zxi

∣ x: C
∞

(M)⟶ R, and

z

zxi

􏼠 􏼡

A

∣ ε: C
∞

M
A

, A􏼐 􏼑⟶ A,

(19)

is the ε−derivation introduced in [6] (page 4).
Since x1,1, . . . , xn,m􏽮 􏽯 is a system of local coordinate of

MA around ε, defne the tangent vector

z

zxij

∣ ε: C
∞

M
A

,R􏼐 􏼑⟶ R, (20)

of TεM
A around ε such that ∀g ∈ C∞(MA, A)

z

zxi

􏼠 􏼡

A

∣ ε(g) � 􏽘
m

j�1

z

zxij

∣ ε ϕ°g( 􏼁 · αj, (21)

then we claim that

TεM
A

�〈
z

z x1,1􏼐 􏼑
∣ ε, . . . ,

z

z xn,m􏼐 􏼑
∣ ε〉. (22)

Remark 3. Let v ∈ TxM, i.e.,

v: C
∞

(M)⟶ R, (23)

is a derivation. Defne

v
A

: C
∞

M
A

, A􏼐 􏼑⟶ A, (24)

such that for any f ∈ C∞(M), we have

v
A

f
A

􏼐 􏼑 � [v(f)]
A

. (25)

Since v(f) ∈ R and [v(f)]A ∈ A, one can write [v(f)]A

as an R−linear combination of basis elements of A.

Defnition 3. Defne

v
A

f
A

􏼐 􏼑 � [v(f)]
A

� v(f) · α1 + r,
(26)

where r ∈M.

Remark 4. Denote by C∞(MA,R) the set of functions from
MA to R, by C∞(MA, A) those of functions from MA to A.
Defne

T1: C
∞

M
A

,R􏼐 􏼑⟶ C
∞

M
A

, A􏼐 􏼑, (27)

such that

T1(
􏽥f) � 􏽥f

°α􏼐 􏼑
A

, and

T2: C
∞

M
A

, A􏼐 􏼑⟶ C
∞

M
A

,R􏼐 􏼑,
(28)

such that

T2(g) � ϕ°g, (29)

where ϕ: A⟶ R is the linear form ϕ � α∗1 such that
α∗1 , . . . , α∗m is the dual basis of a basis α1, . . . , αm of A. Also,

R1: C
∞

(M)⟶ C
∞

M
A

,R􏼐 􏼑, (30)

such that

R1(f) � f°π,

and

R2: C
∞

M
A

,R􏼐 􏼑⟶ C
∞

(M),

R2(􏽥g) � 􏽥g°α.

(31)

Te above maps play a very important role in our ap-
proach and satisfy the following results, proven in [13].

(i) If 􏽥X∈ X(MA,R) is a vector feld on MA, regarded as
a derivation from C∞(MA,R) to C∞(MA,R), then
so it is for R2

° 􏽥X
°
R1 regarded as a derivation from

C∞(M) to C∞(M)

(ii) If X ∈ X(M) is a vector feld on M, then so it is for
T2

°XA°T1 ∈ X(MA,R) in MA regarded as a deriva-
tion from C∞(MA,R) to C∞(MA,R)

Proposition 1. Te map

L: TεM
A⟶ TxM, (32)

such that

L(􏽥v) � 􏽥v°R1, (33)

is surjective.

Proof. Te linearity of L is straightforward. Let us prove that
L is a tangent vector at x ∈M. Let f, g ∈ C∞(M), then

􏽥v°R1(f · g) � 􏽥v f°π · g°π( 􏼁 � f°π(ε) · 􏽥v g°π( 􏼁 + g°π(ε) · 􏽥v f°π( 􏼁 � f°π(ε) · 􏽥v g°π( 􏼁 + g°π(ε) · 􏽥v f°π( 􏼁

� f(x) · 􏽥v°R1(g) + g(x) · 􏽥v°R1(f).
(34)
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Tis shows that L is well-defned. It remains to prove that
L is surjective. Let v ∈ TxM, then ϕ°vA°T1 ∈ TεM

A and

L ϕ°vA°
T1􏼒 􏼓 � ϕ°vA°T1°R1. (35)

We need to prove that ϕ°vA°T1°R1 � v. Let f ∈ C∞(M),
then

ϕ°vA°
T1°R1(f) � ϕ° v f°π°α( 􏼁􏼂 􏼃

A
� ϕ°[v(f)]

A
� v(f).

(36)

Tus,

L ϕ°vA°
T1􏼒 􏼓 � v. (37)

□

Remark 5. For i � 1, . . . , n defne

dxi: TxM⟶ R,

and

dxi( 􏼁
A

: TxM( 􏼁
A⟶ A,

(38)

such that

dxi( 􏼁
A z

zxj

􏼠 􏼡

A

� dxi

z

zxj

􏼠 􏼡􏼢 􏼣

A

� δij · α1 + r
′∀j,

(39)

where r′ ∈M, and for any w ∈ (TxM)A �

Der(C∞(MA,A),A), defne

dx
A
i (w) � 􏽘

m

j�1
dxij ϕ°w°T1( 􏼁 · αj, (40)

where

dxij: C
∞

M
A

,R􏼐 􏼑⟶ R, (41)

is a linear form. We claim that dx11, . . . , dxnm is the dual
basis for z/zx11

∣ ε, . . . , z/zxnm
∣ ε and

T
∗
ε M

A
�〈dx11, . . . , dxnm〉. (42)

Te map

T
∗
ε M

A⟶ TxM,

dxij↦dxi,
(43)

is surjective. For any k ∈ 1, . . . , n{ }, denote by

∧
k
T
∗
ε M

A
�〈dxi1j1

∧ · · ·∧dxikjk
∣ 1≤ i1 ≤ . . . ≤ ik ≤ n, 1≤ j1 ≤ . . . ≤ jk ≤m and il, jl( 􏼁≠ is, js( 􏼁〉. (44)

 . Differential Form and Cohomology

We denote by Ωk(MA,R) the space of sections of the

bundle ∧
k
T∗MA.

Defnition 4. By a k−form on MA, we mean the
k−multilinear skew-symmetric map

􏽥θ: X MA,R( )×···×X MA,R( )􏽼√√√√√√√√􏽻􏽺√√√√√√√√􏽽
k

⟶ C
∞

M
A

,R􏼐 􏼑.
(45)

Proposition 2. Te map

C: Ωk
(M)⟶Ωk

M
A

,R􏼐 􏼑, (46)

such that

C(θ) 􏽥X1, . . . , 􏽥Xk( 􏼁 � θ R2
° 􏽥X1

°
R1, . . . , R2° 􏽥Xk°R1􏼐 􏼑

°π,

(47)

is well-defned for all 􏽥X1, . . . , 􏽥Xk ∈ X(MA,R) and
θ ∈ Ωk(M). In other words, k−forms of M give rise to
k−forms of MA.

Proof. We need to prove that C(θ)( 􏽥X1, . . . , 􏽥Xk) is a k−form,
i.e., a k−multilinear which is skew-symmetric. Te additivity
and the skew-symmetric condition are straightforward. Let
􏽥f∈ C∞(MA,R), then

C(θ) 􏽥X1, . . . , 􏽥f · 􏽥Xi, . . . , 􏽥Xk􏼐 􏼑 � θ R2
° 􏽥X1

°
R1, . . . , R2° 􏽥f · Xi􏼐 􏼑°R1, . . . , R2° 􏽥Xk°R1􏼐 􏼑

°π. (48)

Observe that for any g ∈ C∞(M), we have
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R2
° 􏽥f · Xi􏼐 􏼑

°
R1(g) � R2°(􏽥f · 􏽥X) g°π( 􏼁

� R2
° 􏽥f · 􏽥X g°π( 􏼁􏼐 􏼑

� R2
􏽥f · 􏽥X g°π( 􏼁􏽨 􏽩

� 􏽥f · 􏽥X g°π( 􏼁􏼐 􏼑
°α

� 􏽥f
°α · 􏽥X g°π( 􏼁

°α

� 􏽥f
°α · R2° 􏽥X°R1(g),

(49)

then

R2
° 􏽥f · Xi􏼐 􏼑

°
R1 � 􏽥f°α · R2° 􏽥X°R1. (50)

Since θ is a k−form, then θ(R2
° 􏽥X1

°
R1, . . . , R2°

(􏽥f · 􏽥Xi)°R1, . . . ,R2°􏽥Xk°R1)
°π � 􏽥f°α°π · θ(R2

°􏽥X1
°R1, . . . ,

R2°(􏽥Xi
°R1, . . . ,R2° 􏽥Xk°R1)°π � 􏽥f · C(θ)(􏽥X1, . . . , 􏽥Xk). Tus,

C(θ) 􏽥X1, . . . , 􏽥f · 􏽥Xi, . . . , 􏽥Xk􏼐 􏼑 � 􏽥f · C(θ) 􏽥X1, . . . , 􏽥XK( 􏼁.

(51)
□

Remark 6. If X is a vector feld on M, it is proven in [13]
(Proposition 3.5) that T2

°XA°T1 is a vector feld on MA

where T1 and T2 are the maps introduced in the Remark 2.
Defne the map

R: X(M)⟶ X M
A

,R􏼐 􏼑, X↦T2 ∘X
A ∘T1, (52)

then we have the following result.

Proposition 3. Te map

D: Ωk
M

A
,R􏼐 􏼑⟶Ωk

(M), (53)

such that

D(􏽥θ) X1, . . . , Xk( 􏼁 � 􏽥θ R X1( 􏼁, . . . , R Xk( 􏼁( 􏼁°α, (54)

is well-defned for any 􏽥θ ∈ Ωk(MA,R), X1, . . . , Xk ∈ X(M).

Proof. Te additivity and the skew-symmetry are straight-
forward. Let f ∈ C∞(M), then

D(􏽥θ) X1, . . . , f · Xi, . . . , Xk( 􏼁 � 􏽥θ R X1( 􏼁, . . . , R f · Xi( 􏼁, . . . , R Xk( 􏼁( 􏼁°α. (55)

Observe that for any 􏽥g ∈ C∞(MA,R), we have

R f · Xi( 􏼁(􏽥g) � T2
° f · Xi( 􏼁

A°
T1(􏽥g) � ϕ° f · Xi 􏽥g°α( 􏼁􏼂 􏼃

A
� ϕ°fA

· T2°X
A
i °T1(􏽥g), (56)

that is,

R f · Xi( 􏼁 � ϕ°fA
· R Xi( 􏼁,

and

D(􏽥θ) X1, . . . , f · Xi, . . . , Xk( 􏼁 � ϕ°fA°α · 􏽥θ R X1( 􏼁, . . . , R Xi( 􏼁, . . . , R Xk( 􏼁( 􏼁°α.

(57)

Observe that if x ∈M, then

ϕ°fA°α(x) � ϕ°fA
x

A
􏼐 􏼑 � ϕ x

A
(f)􏽨 􏽩 � ϕ[f(x) mod M] � f(x), (58)

then

D(􏽥θ) X1, . . . , f · Xi, . . . , Xk( 􏼁 � f · D(􏽥θ) X1, . . . , . . . , Xk( 􏼁.

(59)
□

Defnition 5. For any 0≤ k≤ dim(M), defne the operator

􏽥d: Ωk
M

A
,R􏼐 􏼑⟶Ωk+1

M
A

,R􏼐 􏼑, (60)

such that 􏽥d � C ∘ d ∘D where d: Ωk(M)⟶Ωk+1(M) is the
cohomology operator on M.
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With notations as above, we have the following:

Theorem 1. For any 􏽥θ ∈ Ωk(MA,R) and
􏽥X1, . . . , 􏽥Xk+1 ∈ X(MA,R), we have

􏽥d(􏽥θ) 􏽥X1, . . . , 􏽥Xk+1( 􏼁 � 􏽘
k+1

i�1
(−1)

i−1
· 􏽥Xi

􏽥θ 􏽥X1, . . . , 􏽢􏽥Xi, . . . , 􏽥Xk+1􏼒 􏼓􏼒 􏼓

+ 􏽘
1≤ i<j≤ k+1

(−1)
i+j􏽥θ 􏽥Xi,

􏽥Xj􏽨 􏽩, 􏽥X1, . . . , 􏽢􏽥Xi, . . . , 􏽢􏽥Xj, . . . , 􏽥Xk+1).􏼒

(61)

Proof. By defnition

􏽥d(􏽥θ) 􏽥X1, . . . , 􏽥Xk+1( 􏼁 � C°d°D(􏽥θ) 􏽥X1, . . . , 􏽥Xk+1( 􏼁 � C[d(D(􏽥θ))] 􏽥X1, . . . , 􏽥Xk+1( 􏼁

� d(D(􏽥θ)) R2
° 􏽥X1

°
R1, . . . , R2° 􏽥Xk+1°R1􏼐 􏼑􏼐 􏼑°π (∗).

(62)

Set Y1 � R2
° 􏽥X1

°
R1, . . . , Yk+1 � R2°􏽥Xk+1°R1, then

􏽥d(D(􏽥θ)) Y1, . . . , Yk+1( 􏼁 � 􏽘
k+1

i�1
(−1)

i−1
· Yi D(􏽥θ) Y1, . . . , 􏽢Yi, . . . , Yk+1􏼐 􏼑􏼐 􏼑

+ 􏽘
1≤i<j≤k+1

(−1)
i+j

D(􏽥θ) Yi, Yj􏽨 􏽩, Y1, . . . , 􏽢Yi, . . . , 􏽢Yj, . . . , 􏽥Yk+1􏼐 􏼑.

(63)

Observe that for each i,

Yi D(􏽥θ) Y1, . . . , 􏽢Yi, . . . , Yk+1􏼐 􏼑􏼐 􏼑 � Yi
􏽥θ T2

°Y
A
1 °T1, . . . , 􏽤T2

°YA
i °T1, . . . , T2°Y

A
k+1°T1􏼒 􏼓

°
α􏼒 􏼓. (64)

Observe that for any

T2
°Y

A
j °T1 � T2° R2

°􏽥Xj
°R1􏼐 􏼑

A
°T1. (65)

Let 􏽥f ∈ C∞(MA,R), then

T2
° R2

° 􏽥Xj
°
R1􏼐 􏼑

A°
T1(

􏽥f) � T2° R2
° 􏽥Xj

°
R1􏼐 􏼑

A 􏽥f
°α􏼐 􏼑

A
� T2° R2

° 􏽥Xj°R1
􏽥f
°α􏼐 􏼑􏼐 􏼑

A
� T2

° 􏽥Xj
􏽥f
°α°π􏼐 􏼑􏽨 􏽩

A

� T2° 􏽥Xj(
􏽥f)􏽨 􏽩

A
� ϕ° 􏽥Xj(

􏽥f)􏽨 􏽩
A

� 􏽥Xj(
􏽥f).

(66)

Tus,

Yi D(􏽥θ) Y1, . . . , 􏽢Yi, . . . , Yk+1􏼐 􏼑􏼐 􏼑 � Yi
􏽥θ 􏽥X1, . . . , 􏽢􏽥Xi, . . . , 􏽥Xk+1􏼒 􏼓

°
α􏼒 􏼓. (67)

Observe also that
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Yi
􏽥θ 􏽥X1, . . . , 􏽢􏽥Xi, . . . , 􏽥Xk+1􏼒 􏼓

°
α􏼒 􏼓 � R2

° 􏽥Xi°R1
􏽥θ 􏽥X1, . . . , 􏽢􏽥Xi, . . . , 􏽥Xk+1􏼒 􏼓

°
α􏼒 􏼓

� R2
° 􏽥Xi

􏽥θ 􏽥X1, . . . , 􏽢􏽥Xi, . . . , 􏽥Xk+1􏼒 􏼓
°
α°π􏼒 􏼓􏼔 􏼕

� R2
° 􏽥Xi(

􏽥θ) 􏽥X1, . . . , 􏽢􏽥Xi, . . . , 􏽥Xk+1􏼒 􏼓􏼔 􏼕

� 􏽥Xi(
􏽥θ) 􏽥X1, . . . , 􏽢􏽥Xi, . . . , 􏽥Xk+1􏼒 􏼓

°
α.

(68)

Also,

D(􏽥θ) Yi, Yj􏽨 􏽩, Y1, . . . , 􏽢Yi, . . . , 􏽢Yj, . . . , Yk+1􏼐 􏼑 � 􏽥θ R Yi, Yj􏽨 􏽩􏼑􏼐 , R Y1( 􏼁, . . . , 􏽤R Yi( 􏼁, . . . ,
􏽤

R Yj􏼐 􏼑, . . . , R Yk+1( 􏼁􏼒 􏼓. (69)

Observe that

R Yi, Yj􏽨 􏽩􏼑􏼐 � T2 Yi, Yj􏽨 􏽩
A

T1. (70)

Let 􏽥f ∈ C∞(MA,R), then

T2
° Yi, Yj􏽨 􏽩

A°
T1(

􏽥f) � T2° Yi, Yj􏽨 􏽩
A 􏽥f

°α􏼐 􏼑
A

� T2
° Yi, Yj􏽨 􏽩 􏽥f

°α􏼐 􏼑􏼐 􏼑
A

� T2 Yi Yj
􏽥f
°α􏼐 􏼑􏼐 􏼑 − Yj Yi( 􏼁 􏽥f

°α􏼐 􏼑􏽨 􏽩
A

� T2 R2
° 􏽥Xi

°
R1 R2

° 􏽥Xj°R1
􏽥f
°α􏼐 􏼑􏼐 􏼑 − R2° 􏽥Xj°R1 R2

° 􏽥Xi°R1( 􏼁 􏽥f
°α􏼐 􏼑􏽨 􏽩

A
.

(71)

It is not difcult to see that

R2
° 􏽥Xj

°
R1

􏽥f
°α􏼐 􏼑 � R2° 􏽥Xj

􏽥f
°α°π􏼐 􏼑 � 􏽥Xj(

􏽥f)°π,

andR2
° 􏽥Xi

°
R1 R2

° 􏽥Xj°R1
􏽥f °α􏼐 􏼑􏼐 􏼑 � R2° 􏽥Xi°R1

􏽥Xj(
􏽥f)°π􏼐 􏼑

� R2
° 􏽥Xi

􏽥Xj(
􏽥f)°π°α􏼐 􏼑 � 􏽥Xi

􏽥Xj(
􏽥f)􏼐 􏼑°α.

(72)

Ten,

T2
° Yi, Yj􏽨 􏽩

A°
T1(

􏽥f) � T2
􏽥Xi

􏽥Xj(
􏽥f)􏼐 􏼑

°α − 􏽥Xj
􏽥Xi(

􏽥f)􏼐 􏼑°α􏽨 􏽩
A

� ϕ° 􏽥Xi
􏽥Xj(

􏽥f)􏼐 􏼑
°α􏽨 􏽩

A
− ϕ° 􏽥Xj

􏽥Xi(
􏽥f)􏼐 􏼑

°α􏽨 􏽩
A

� 􏽥Xi
􏽥Xj(

􏽥f)􏼐 􏼑 − 􏽥Xj
􏽥Xi(

􏽥f)􏼐 􏼑

� 􏽥Xi,
􏽥Xj􏽨 􏽩(􏽥f), and

R Yi, Yj􏽨 􏽩􏼑􏼐 � 􏽥Xi,
􏽥Xj􏽨 􏽩, R Yi( 􏼁 � 􏽥Xi.

(73)

Tus,
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D(􏽥θ) Yi, Yj􏽨 􏽩, Y1, . . . , 􏽢Yi, . . . , 􏽢Yj, . . . , Yk+1􏼐 􏼑 � 􏽥θ 􏽥Xi,
􏽥Xj􏽨 􏽩, 􏽥X1, . . . , 􏽢􏽥Xi, . . . , 􏽣􏽥Xj, . . . , 􏽥Xk+1􏼒 􏼓 ∘ α (2). (74)

Replacing (1) and (2) in (∗), we obtain

􏽥d(􏽥θ) 􏽥X1, . . . , 􏽥Xk+1( 􏼁 � 􏽘
k+1

i�1
(−1)

i−1
· 􏽥Xi

􏽥θ 􏽥X1, . . . , 􏽢􏽥Xi, . . . , 􏽥Xk+1􏼒 􏼓􏼒 􏼓

+ 􏽘
1≤i<j≤k+1

(−1)
i+j􏽥θ 􏽥Xi, 􏽥Xj􏽨 􏽩, 􏽥X1, . . . , 􏽢􏽥Xi, . . . , 􏽢􏽥Xj, . . . , 􏽥Xk+1).􏼒

(75)

□
Remark 7 (Conclusion). Te previous result shows that 􏽥d is
the exterior derivative in MA and satisfes 􏽥d

2
� 0, which

makes the sequence (Ω∗(MA,R), 􏽥d) to a complex of dif-
ferential forms on MA, and we write HDR(MA) for the de
Rham cohomology on MA and denote by H(MA,R) the
cohomology associated to the complex (Ω∗(MA,R), 􏽥d).
Tis gives the possibility to extend this area in diferent
directions of diferential geometry with applications.
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diferentielles sur une variété des points proches,” Archivum
Mathematicum, vol. 44, pp. 1959–171, 2008.

[6] V. Nkou, B. G. R. Bossoto, and E. Okassa, “New properties of
prolongations of Linear connections on Weil bundles,” Acta
Mathematica Universitatis Comenianae, vol. 85, no. 1,
pp. 69–80, 2016.

[7] V. Nkou, B. G. R. Bossoto, and E. Okassa, “New character-
izations of vector felds on Weil bundles,” Teoretical
Mathematics and Applications, vol. 5, no. 2, pp. 1792–9709,
2015.

[8] E. Okassa, “Prolongements des champs de vecteurs à des
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