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Let M be a smooth manifold and A a Weil algebra. We discuss the differential forms in the Weil bundles (M*, &, M), and we
established a link between differential forms in M# and M as well as their cohomology. We also discuss the cohomology in.

1. Introduction

The theory of bundles of infinitely near points was in-
troduced in 1953 by Andre Weil in [1] and has become
a subject of significant interest in differential geometry. A
commutative, associative, unitary real algebra A is called
Weil algebra if it is a finite-dimensional local algebra of the
form A =Re& ./ (ie., dim(A/.#) = 1) where / is its only
maximal ideal (see [2], from page 625). As an example, one
defines the algebra D = R [x]/{x*) of dual numbers whose
the maximal ideal is ./ = xR.

Let M be a smooth manifold and x € M. Given a Weil

algebra A with maximal ideal .# and basis «,, ..., «a,,, one
defines a morphism of algebras
e CP (M) — A, (1)
such that
e(fl=f(x) o +t=f(x)+t, (2)

where 1 =a; € R and t € /. Such a morphism is called
A-point of M near to x, and one denotes by M# the set of all
A-points of M near to x. There is a functor T4 from the
category of smooth manifolds to itself sending a smooth
manifold M to the bundle (TAM, 7, M) which is known as
the bundle of A-points near to points in M; in this case,
TAM = M# = U ,;M# can be regarded as a manifold with
dimgp M4 = dim (A) - dimgy M (see [3]). One of the ques-
tions that draw researcher’s attention is the prolongation of
geometric structures from M to M4 (see [4], chap. 4 for the

general theory). This approach consists of sending a geo-
metric structure from M to M (regarded as an A—manifold,
ie.,, dim, M# = dimp M) as developed in [5-10] where the
authors studied the prolongations of vector fields and dif-
ferential forms, linear connections, symplectic structures,
and pseudo-Riemannian structures. Many directions have
been developed from the last decades for these manifolds
such as affine manifold structures studied in [2] and prin-
cipal fiber bundles studied in [11], and nice applications to
Grassmann bundles can be found in [12].

Instead of regarding M# as an A—manifold, we discuss in
this paper differential forms and de Rham cohomology on
M# without any prolongation. This approach consists of
regarding M4 as an R-manifold (ie.,
dimg (M%) = dim (A) - dim (M)) (see [13]). More specifi-
cally, if QF (M4, R) denotes the space of k—forms in M*, we
introduce the map

D: Qf(M*,R) — Q* (M), 3

sending a k—form from MA* to a k—form in M. Conversely,
we introduce the map

c: f (M) — QY (M*,R), (4)
sending a k—form from M to a k—form in M*. These two

maps are central and enable to extend the de Rham complex
in M*# by introducing the operator

d=CdD: Qk(MA, R) — Q" (M4, R), (5)
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in M4 where d: QF(M) — Qk+1~(M) is the de Rham
operator in M, and we prove that d defines indeed the de
Rham cohomology operator in M4,

2. Basic Notions

Definition 1. (Weil functor)

Let A be a Weil algebra with maximal ideal ./, M be
a C®-smooth manifold. Denote by Mfd the category of
smooth manifolds. By the Weil functor of M, we mean
a functor T4: Mfd — Mfd such that

(1) for any M € Ob(Mfd),

T M = U M2,
U M (6)

with projection TAM — M and fibers M# for any
x € M.

(2) forany M, N € Ob(Mfd) and f: M — N, we have
TAf: TAM — TAN  such  that  for any
x €M, TAf(M2) ¢ N?(x) and the following dia-
gram commutes

f

M ——> N

S
Tf

M ————= N

Remark 1
(1) Denote by TAM = M# and TAR" = A"
(2) If f: M — R is a function, then
A M* — A, (7)
such that for any ¢ € M4, we have

&) =e(f) = f(x)+t forte L. (8)

(3) Claim:if f: M4 — Risafunctionand e, e, € M4,
then f(e;) = f(g,). This is a very important claim
and will be widely used thoughout this paper.

(4) Let{ay,...,a,} be a basis for A and M be a manifold
such that {x,,...,x,} is a system of local coordinate
around  x €U C M, then there exists

e € 71 (U) ¢ M% and functions X ) 71 (U) — R,
i=1,...,n j=1,...,m such that for

m
s(x,-):Zx,-,j(s)-och=i=1,...,n. 9)

=
The functions {xl)l,...,xnm} are a system of local

coordinate around e € =1 (U) ¢ Mf. It is clear that
dimg (M#) =n-m.

(5) If M and N are smooth manifolds and h: M — N
a smooth map (resp. diffeomorphism) then

W M2 — N4 e — B (e). (10)

such  that V¢ € C®(N),h*(e)(¢) = e(¢’h) s
a smooth map (resp. diffeomorphism).
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(6 )Given a Weil bundle (M2, m, M) with
mMA— M and 7 l(x) = M2Vx € M, define
a special section a: M — M* of 7 such that for any
x € M,a(x) = x2

Lemma 1. Let f: M4 — R be a function on M* and
a: M — M* be the special section_of the Weil bundle
(M2, 71, M) (i.e, a(x) = x*). Then, f «’n = f.

Proof. Let €€ M4, then there exists x € M such that
€ € M2. For this, x, a(x) = x* € M2

j’oocuﬂ(s) = ]~‘°oc[n(s)] = foa (x) = ?(XA) =1(e), (11)

since x4, ¢ are both A-—points near to x (see the claim on

Remark 2). O

3. Revisiting Tangent Spaces

Let M be a smooth manifold and D = R[y]/{y*) be the
ring of dual numbers, then MP can be identified with the
tangent TM. Let x € M, then the tangent space T, M can
be identified with the space M” of D—points of M near to
x by:if e e MP,v € T,M and f € C® (M), then

e(f)=f)+())y (12)

Let A be a Weil algebra, then the tangent bundle on M4
can be identified as (M4)P = (MP)2. If

e R x MP — MP, (b, &) xe, (13)

is the external multiplication of M E, then one can see in [3],
Definition 1 that the map

ut A X(MA)D — (MA)D, (a,&)—ae,, (14)

gives to (M*)P the structure of A—module. Since R C A,
then one can define naturally the multiplication

i x(MA)D — (MA)D, (t, &) tey, (15)
which gives to (M#)P the structure of R—vector space.

Definition 2. By a tangent vector on ¢, we mean a linear
map

v: C°(M*,R) — R, (16)

satisfying the Leibniz rule, ie., Vf, g € C* (M*)
v(f-9)=f(ev(g) +v(g(e. (17)

Such a map is called a derivation. We denote

T M* ={v: C*(M*,R) — R|visaderivation}. (18)

Remark 2. Let {x,,...,x,} be a system of local coordinates
around a neighborhood of xeM and
{xi,jli =1,...,mj= 1,...,dim(A)} be a system of local
coordinate around €€ M. Denote by
{olox;|x,i=1,...,n} a basis of T,M where
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9 | ,: C*(M) — R,and
0x;

5\ (19)
( ) |2 CO(M*,A) — A,

o,

is the e—derivation introduced in [6] (page 4).

Since {x1,1’ . .,xn)m} is a system of local coordinate of
M# around e, define the tangent vector
0 00 A
s 1€ (MY R) — R, (20)

ij

of T,M* around ¢ such that Vg € C® (M4, A)

Y 0-32 9 2
Ox e\g _jzlaxij £ ¢g '(xj’ ( )

i

then we claim that

T.M* =( | oreees | .. (22)
a(xu) a(xn)m)
Remark 3. Let v e T M, ie.,
v: C® (M) — R, (23)
is a derivation. Define
vi C®(M*,A) — 4, (24)

such that for any f € C* (M), we have
() = (% (25)

Since v(f) € R and [v(f)]A € A, one can write [v(f)]A
as an R-linear combination of basis elements of A.

Definition 3. Define
V) =vH

=v(f) -a, +r,

(26)

where r € /.

Remark 4. Denote by C® (M*, R) the set of functions from
M* to R, by C® (M*, A) those of functions from M* to A.
Define

3
T,: C°(M4,R) — C®(M*, A), (27)
such that
- —~o \A
T, (f) =(f «) ,and (28)
T,: C¥(M*, A) — C®(M*,R),
such that
T,(9)=¢'g, (29)
where ¢: A— R is the linear form ¢ = «f such that
af,...,a is the dual basis of a basis «y, ..., «,, of A. Also,
R;: C* (M) — C®(M*,R), (30)
such that
R (f)=f'm
and
(31)

Ry: C¥(MA,R) — C™ (M),
R, () =7 o

The above maps play a very important role in our ap-
proach and satisfy the following results, proven in [13].

(i) If Xe £ (M4, R) is a vector field on M4, regarded as
a derivation from C® (M4, R) to C® (M4, R), then
so it is for R,"X R, regarded as a derivation from
C® (M) to C® (M)

(1) If X € oae (M) is a vector field on M, then so it is for
T,"X4 T, € (M4, R) in M* regarded as a deriva-
tion from C® (M4, R) to C® (M4, R)
Proposition 1. The map
L: T.M* — T M, (32)
such that
L(V) =7V R,, (33)

is surjective.

Proof. The linearity of L is straightforward. Let us prove that
L is a tangent vector at x € M. Let f,g € C* (M), then

VR (f-9)=7(fn-gon)=fn(e)-(gn)+gmn(e) - v(fn)=fnle) v(gn)+gn(e) v(fn)

= f(x) ‘vORl (9) +9(x) 'VoRl (f).

(34)



This shows that L is well-defined. It remains to prove that
L is surjective. Let v € T, M, then ¢"v* T, € T,M* and

L<¢°VA°T1> = ¢’v T °R,. (35)

We need to prove that ¢"vA T °R, = v. Let f € C® (M),
then

oV TR, (f) = o [v(f 7 @)]" = o lv (HI* = v(f).
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where r €.#, and for any we (TXM)A =
Der (C® (M*, A), A), define
dxf' (w) = ) dx;; ($'w'T)) - aj, (40)
=
where
dx;;: C°(M*Y,R) — R, (41)

(36) is a linear form. We claim that dx,;,...,dx,,, is the dual
Thus, basis for 0/0, |, ...,0/0, |, and
o a° T:M* =(dxyy,. .., dx,,,). 42
L(¢ v T1> = . (37) ¢ (dxy Xom) (42
O The map
* A
Remark 5. Fori=1,...,n define T.M" —T.M, (43)
dx; T.M — R, dox;j—dx;,
and (38)  is surjective. For any k € {1,...,n}, denote by
(dx)" (T, M) — 4,
such that
2 )" 2\
00 (55) =[]
= 81] . (Xl + r’Vj,
k
AT; M =(dx;, A Adxg |10 S L <ie<n 1<y < < jp<mand (i i) # (i .))- (44)

4. Differential Form and Cohomology

We denote by QK (MA,R) the space of sections of the
k
bundle AT* M4.

Definition 4. By a k—form on M#, we mean the
k—multilinear skew-symmetric map
5 A
6: X (MAR)x--xX (MAR) _’COO(M ’R)‘ (45)
k

Proposition 2. The map

c: F (M) — (M*,R), (46)

COXp.o s f X

Observe that for any g € C*® (M), we have

X)) =0(R,X|'R,, ...

such that
CO)(Xph.... %) = 0(R X, Rys.. .. ReX R, ) T,
(47)

is well-defined for all X,,...,X, € X(M*R) and
6 € OK(M). In other words, k—forms of M give rise to
k—forms of M*.

Proof. We need to prove that C(0) (X, ..., X;) is a k—form,
i.e., a k—multilinear which is skew-symmetric. The additivity
and the skew-symmetric condition are straightforward. Let
fe C®(MA,R), then

Ryo(F - X,)°Ry, .. R X R, ) . (48)
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°(F ° _ 7 RV Remark 6. If X is a vector field on M, it is proven in [13]
R(f-X;)Ri(9) =Rpe(f-X . p
2 (f 1) 1(9) =R, (~ )(8m) (Proposition 3.5) that T,°X4 T, is a vector field on M4
= R2°( f-X( g°n)) where T, and T, are the maps introduced in the Remark 2.
R [f (4 )] Define the map
=) AgT
(49) R: X(M) — %(M*,R), XsT, 0 X" o T}, (52)

=(F-X(¢m)a

}o %(gn) then we have the following result.
=fa-X(gn)a

= }Ooc -R,°X°R, (g), Proposition 3. The map
. Ok(AmA k
then D: Of(M*,R) — QF (M), (53)
Rzo(}’ . Xi)aRl = foa- R,°X°R,. (50)  such that
_Since 6 is a_ k-form, then Q(RZ‘LXJQRI, LRy D(0)(Xy,..., X)) = 0(R(X,),...,R(Xy)) a, (54)
(f- Z(iO)ORl, .. ’R2°z(k°R1) m = feaor - 0(~R2°X1 R~1, RN is well-defined for any D¢ Ok (MA,R), X, X, € X (M).
Re(X'R,...,Re° X °R))emr = - C(0)(X,,...,X,). Thus,
CONXpoon f- X s X)) = F-CO (X .., Xy) Proof. The additivity and the skew-symmetry are straight-
O(Xp . X X)) = F-COX,- -, Kk) e T e e o e
(51)
O
DO) Xy f - Xppo o X)) = O(R(X)), ., R(f - X)), R(Xp)) e (55)

Observe that for any § € C® (M4, R), we have

R(f-X)@ =T, (f-X)* T (@) = ¢o[f - X; (@ &))" = gof* - TyoX T, (), (56)

that is,

R(f : Xi) = ¢°fA 'R(Xi)’
and (57)
DO Xy fXpo s X)) = ¢ fA - O(R(X,), -, R(X), ..., R(X))o0

Observe that if x € M, then

¢ M ax) = ¢of(x*) = ¢[x* (H] = ¢Lf (x) mod 4] = f(x), (58)
then Definition 5. For any 0 <k <dim (M), define the operator
DO Xy s f-Xipoo s X)) = f-DO(Xps s, Xp). d: of(M*,R) — o*'(M*,R), (60)

(590 suchthatd = Codo D whered: QF (M) —> QX1 (M) is the
= cohomology operator on M.
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With notations as above, we have the following:

Theorem 1. For any 0 € O (M4, R) and
Xy Xpyy € X(MAR), we have

k+1

A (X ) = ) D7 E (0K K K ) )
i=1

(61)
b Y ER([X X)) K K X K)
1<i<j<k+1l
Proof. By definition
A (X X)) = CADO (K. Xir) = CLAD O (Ko - Kir) .
=(d(D@)(R,X, Ry, ..., Ry°Xy,1°R, ) o ().
Set Y, =R,°X, R,,...,Y,; = R,°X,,,°R,, then
_ _ k+1 - _ _
dDO) (Y., V) =) D) Y(DO(Y),.... V.., Yyy))
i=1 o (63)
+ Y CDO([YY] Y LY T )
1<i <j<k+1
Observe that for each i,
Y(D@O(Yiroo s Vi) = Yi<§<T2°Yf°T1, L TSYRT, ,T2°Y,‘§‘+1°T1> (x>. (64)
Observe that for any Let f € C®(M*4,R), then
TyY2T, = T,o(R, X Ry ) o, (65)
o o= © A° ~ 0= © As~0 A 0= ~ o o
T, (R,X;R) T, (f) =T(R,X; R) (f ) =T,°(R,X°R,(f )" =T, [X;(f a'7)] 6
= ,~ 1A = ,~14 = ,~
=1 [X;(D]" = ¢[X,(D]" = X ().
Thus,
V(DO Ve Yi)) = y(é(xixk) oc). (67)

Observe also that
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Also,

DO([v,Y;],Yy,....Y

Observe that

R([ov]) = malroy )T,

T[YY] T(f) T[YY](})

It is not difficult to see that

Then,

Thus,

T, [Y

Ry'XRy(F @) = RyoX;(F aem) = X, (frem,

= Rz”

“X,R,(RyX R (F ) = RyoX R, (X ()')
Xi(f(j (_?)07'["06)

= Xi()?j (,7))(’0&

Koo Xh4>a>::R2XfR&§<X1 ..... Koo th)a)
= Rzo[Xi<5<X1 ..... Xo..., Xk+1>ooc°7r)]
-r[%, (é)(}?l ..... Koo, Xkﬂ)]
e (?9)(5(1 ..... X XkH)ooc
Vi) ='é(R( [V, Y;]),R(Y,),.. ,R(Y)), ..., R(Y\j) ..... R(Yk+1)>
Let f € C®°(M*,R), then
(70)
T ([¥,Y,)(F o)
=BP%%GWD—jWMf@f
= T,[R, X, Ry (R, X °R, (f ) ) - R,°X R, (R;)"(ioRl)(}"a)]A.

(68)

(69)

(71)

(72)

(73)



DO([Yo Y], Y YV, Yy) =
Replacing (1) and (2) in (*), we obtain

k+1

d@(X,,...

DIV {05 415 IS A

1<i<j<k+1

Remark 7 (Conclusion). The previous result shows that dis
the exterior derivative in M4 and satisfies d = 0, which
makes the sequence (Q*(M4,R),d) to a complex of dif-
ferential forms on M*, and we write Hp (M*) for the de
Rham cohomology on M# and denote by H(M*,R) the
cohomology associated to the complex (Q*(M4,R),d).
This gives the possibility to extend this area in different
directions of differential geometry with applications.
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