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Probability estimation of small sample data is a key tool to ensure the probability that sample data fall within the confdence
interval at a certain confdence level and probability distribution, which shows its advantages in practical engineering applications.
Ten, regarding a group decision-making (GDM) problem in the situation of indeterminacy and inconsistency, several experts/
decision makers will assign several true, false, and indeterminate fuzzy values to the evaluation values of each alternative over
diferent attributes, and then form a single-valued neutrosophic multivalued set (SvNMVS) as their assessed information. To
ensure some confdence level of the evaluation values in the circumstance of SvNMVSs and GDM reliability, this paper aims to
propose a conversion technique from SvNMVS to a neutrosophic confdence cubic set (NCCS) and a GDM model using the
exponential similarity measure of NCCSs in the circumstance of SvNMVSs. First, we give the defnition of NCCS, which is
transformed from SvNMVS in terms of average values and confdence intervals of true, false, and indeterminate fuzzy sequences
subject to the conditions of the normal distribution and confdence levels. Second, we present the exponential similarity measure
of NCCSs and the weighted exponential similarity measure of NCCSs and their characteristics. Tird, a GDMmodel is developed
by using the weighted exponential similarity measure of NCCSs in the circumstance of SvNMVSs. Fourth, the developed GDM
model is applied to a choice case of landslide treatment schemes in the circumstance of SvNMVSs to reveal its usability and
suitability in actual GDM problems. Compared with the existing GDM models, the developed GDM model indicates its su-
periorities in decision fexibility and credibility/reliability subject to 90%, 95%, and 99% confdence levels.

1. Introduction

In indeterminate and inconsistent environments, the in-
formation expressions and decision-making approaches of
neutrosophic sets, including the subsets such as simplifed
neutrosophic sets (SNSs) and single-valued and interval-
valued neutrosophic sets (SvNSs and IvNSs), show their
merits in actual applications [1–4].Terefore, they have been
applied inmany felds, such as social science, economics, and
medicine [5–11]. Ten, in group decision-making (GDM)
issues with neutrosophic information, the multivalued
neutrosophic information implies its importance and nec-
essary in the expression of group evaluation information.
For instance, multivalued neutrosophic sets (MVNSs)/
neutrosophic hesitant fuzzy sets (NHFSs) were used for the

expression of group evaluation information, and then var-
ious aggregation operators were applied to their GDM issues
[12–16]. However, owing to hesitant characteristics, MVNS/
NHFS may lose some same fuzzy values in the expression of
hesitant information, which shows its faw.

On the other hand, probability MVNSs were used for the
information expression of group evaluation values from
a probability perspective, and then their GDM approaches
were presented to solve multiattribute GDM problems with
probability MVNS information [17–22].Ten, the probability
GDM approaches need a lot of evaluated data to yield rea-
sonable probability values; otherwise, it is difcult to ensure
the credibility and reliability of the probability neutrosophic
values in the GDM process. Terefore, it is difcult to use the
probability GDM models in actual applications.
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To avoid some defects of the expressions and GDM
approaches of MVNSs/NHFSs and probability MVNSs, Ye
et al. [23, 24] proposed single-valued neutrosophic multi-
valued sets (SvNMVSs) with the diferent and/or identical
fuzzy values to ensure the complete expression of all group
evaluation values in the GDM process, and then they in-
troduced two transformation techniques from SvNMVSs to
consistency SvNSs (C-SvNSs) [23] and single-valued neu-
trosophic enthalpy sets [24] to solve the operation issue
between diferent fuzzy sequence lengths in SvNMVSs and
developed the correlation coefcients of C-SvNSs [23] and
the Einstein weighted aggregation operators of single-valued
neutrosophic enthalpy values [24] for GDM issues in the
scenario of SvNMVSs. However, the existing transformation
techniques were based on the mean and standard deviation/
Shannon/probability entropy of true, false, and in-
determinate fuzzy sequences in SvNMVSs [23, 24]. From
a probability estimation perspective, these transformation
techniques cannot refect some confdence level and prob-
ability distribution of multiple fuzzy values, which show
their insufciencies.

Since the neutrosophic number (NN) (u� a+ λI�

[a+ λI−, a+ λI+] for an indeterminacy I� [I−, I+] and a,
λ ∈R) presented by Smarandache [1, 25, 26] shows the
fexible representation merit of indeterminate information
subject to diferent indeterminate ranges of I. Recently, from
a probability perspective, the notion of a confdence neu-
trosophic number (CNN) or confdence interval (CI) [27]
was presented in terms of the 95% confdence level and the
normal and lognormal distributions of multivalued datasets
to ensure the 95% confdence level of multivalued datasets
falling within the CNN/CI, and then CNN linear pro-
gramming methods were introduced subject to the conf-
dence level and normal and lognormal distributions to carry
out production planning problems in indeterminate sce-
narios. However, CNNs/CIs are not used for GDM issues in
the neutrosophic multivalued setting.

In addition, a neutrosophic cubic set (NCS) [28] is
composed of the true, false, and indeterminate interval fuzzy
values and the true, false, and indeterminate fuzzy values,
which implies the representation merit of the mixed in-
formation. Terefore, NCSs have been applied in pattern
recognition [28] and decision-making issues [29–33] in NCS
circumstances. However, NCSs cannot be applied to GDM
issues in the neutrosophic multivalued setting. Meanwhile, it
is difcult to refect some confdence level/reliability of fnite
group evaluation information in the GDM issues.

Since there are the aforementioned insufciencies of the
existing transformation techniques [23, 24], by the moti-
vation of the CI/CNN notion with some confdence level
[27], this paper aims to propose a new transformation
technique from SvNMVS to the neutrosophic confdence
cubic set (NCCS) that consists of CIs and average values of
true, false, and indeterminate fuzzy sequences in SvNMVS
and a GDM model based on the exponential similarity
measure (ESM) of NCCSs to carry out GDM issues subject to
some confdence levels and the normal distribution (the
most common distribution in the real world) in a SvNMVS
circumstance.

Te remainder of this paper consists of the following
parts. Te second part introduces the defnition of NCCS
along with a conversion technique from SvNMVS to NCCS
and some relationships of neutrosophic confdence cubic
elements (NCCEs). Te third part proposes an ESM method
between NCCSs and the weighted ESM of NCCSs. Te
fourth part develops a GDMmodel using the weighted ESM
of NCCSs in a SvNMVS circumstance. Te ffth part applies
the developed GDM model to a choice case of landslide
treatment schemes (LTSs) in the scenario of SvNMVSs to
reveal its usability and suitability in actual GDM problems.
In the sixth part, compared to the existing related GDM
models, the developed GDM model indicates its superiority
in decision fexibility and credibility/reliability subject to
90%, 95%, and 99% confdence levels. Te fnal part remarks
the conclusions and further research issues.

2. NeutrosophicConfidenceCubic Sets (NCCSs)

Tis part presents the defnition of NCCS along with
a conversion technique from SvNMVS to NCCS under the
circumstance of SvNMVSs and some relationships of
NCCEs.

To give the defnition of NCCS, we frst introduce the
notion of SvNMVS [23, 24].

A SvNMVS NM in a nonempty set Z� {z1, z2, . . ., zp} is
defned as NM � zk, τM(zk), κM(zk), υM(zk) | zk ∈ Z􏼈 􏼉,
where τM (zk), κM (zk), and υM (zk) contains multiple true,
indeterminate, and false membership degrees of each ele-
ment zk to the set NM, denoted by the three fuzzy sequences
τM(zk) � (τ1M(zk), τ2M(zk), ..., τgk

M(zk)), κM(yk) � (κ1M(zk),

κ2M(zk), ..., κgk

M(zk)), and υF(zk) � (υ1M(zk), υ2M(zk), ...,

υgk

M(zk)) with diferent and/or identical fuzzy values in [0, 1]
subject to their fuzzy sequence lengths gk and
0≤ supτM(zk) + supκM(zk) + supυM(zk)≤ 3 for zk ∈Z
(k� 1, 2, . . ., p).

For simplicity, the k-th element 〈zk, τM(zk),

κM(zk), υM(zk)〉 in NM is simply represented as the single-
valued neutrosophic multivalued element (SvNMVE) nMk �

〈τMk, κMk, υMk〉 � 〈(τ1Mk, τ2Mk, ..., τgk

Mk), (κ1Mk, κ2Mk, ..., κgk

Mk),

(υ1Mk, υ2Mk, ..., υgk

Mk)〉 in an increasing fuzzy sequence. Es-
pecially when gk � 1 (k� 1, 2, . . ., p), the SvNMVS NM is
reduced to SvNS.

In view of a probability estimation of small-scale sample
data, a confdence level of 1− δ for a level δ refects that the
(1− δ)× 100% probability of sample data will fall within CI
under the normal distribution condition of sample data, and
then the δ × 100% probability of sample data is outside CI. In
light of CI subject to a confdence level of (1− δ)× 100%,we give
the defnition of NCCS based on a conversion technique from
SvNMVS to NCCS. As we all know, the normal distribution is
the most common distribution in the real world.Terefore, this
paper only considers CIs under the normal distribution con-
dition. In this case, we give the following defnition of NCCS.

Defnition 1. Let SvNMVS be NM1 � zk, τM1(zk),􏼈

κM1(zk), υM1(zk) | zk ∈ Z} containing the true, indeterminate,
and false fuzzy sequences τM1(zk) � (τ1M1k, τ2M1k, ..., τgk

M1k),
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κM1(zk) � (κ1M1k, κ2M1k, ..., κgk

M1k), and υM1(zk) � (υ1M1k,

υ2M1k, ..., υgk

M1k) (k� 1, 2, . . ., p). Ten, NCCS can be defned as
the following form:

Nδ1 �

z1, 〈 τ
−
δ11, τ

+
δ11􏼂 􏼃, κ−

δ11, κ
+
δ11􏼂 􏼃, υ−

δ11, υ
+
δ11􏼂 􏼃〉, 〈aτ11, aκ11, aυ11〉( 􏼁,

z2, 〈 τ
−
δ12, τ

+
δ12􏼂 􏼃, κ−

δ12, κ
+
δ12􏼂 􏼃, υ−

δ12, υ
+
δ12􏼂 􏼃〉, 〈aτ12, aκ12, aυ12〉( 􏼁, ...,

(zp, 〈 τ−
δ1p, τ+

δ1p􏽨 􏽩, κ−
δ1p, κ+

δ1p􏽨 􏽩, υ−
δ1p, υ+

δ1p􏽨 􏽩〉, 〈aτ1p, aκ1p, aυ1p〉)
􏼌􏼌􏼌􏼌􏼌 δ ∈ [0, 1]

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

, (1)

whereas the k-th element (zk, 〈[τ−
δ1k, τ+

δ1k], [κ−
δ1k,

κ+
δ1k], [υ−

δ12, υ
+
δ1k]〉, 〈aτ1k, aκ1k, aυ1k〉) in Nδ1 is called the k-th

NCCE and simply denoted as nδ1k � (〈[τ−
δ1k, τ+

δ1k],

[κ−
δ1k, κ+

δ1k], [υ−
δ12, υ

+
δ1k]〉, 〈aτ1k, aκ1k, aυ1k〉) for convenient

expression, where [τ−
δ1k, τ+

δ1k], [κ−
δ1k, κ+

δ1k], and [υ−
δ1k, υ+

δ1k] are
the true, indeterminate, and false CIs of the corresponding
fuzzy sequences, and aτ1k, aκ1k, and aυ1k are the true, in-
determinate, and false average values of the corresponding
fuzzy sequences, which are given by the following formulae:

τ−
δ1k, τ+

δ1k􏼂 􏼃 � aτ1k −
ρτ1k

��
gk

√ sδ/2, aτ1k +
ρτ1k

��
gk

√ sδ/2􏼢 􏼣, (2)

κ−
δ1k, κ+

δ1k􏼂 􏼃 � aκ1k −
ρκ1k

��
gk

√ sδ/2, aκ1k +
ρκ1k

��
gk

√ sδ/2􏼢 􏼣, (3)

υ−
δ1k, υ+

δ1k􏼂 􏼃 � aυ1k −
ρυ1k

��
gk

√ sδ/2, aυ1k +
ρυ1k

��
gk

√ sδ/2􏼢 􏼣, (4)

aτ1k �
1
gk

􏽘

gk

j�1
τj

M1k, (5)

aκ1k �
1
gk

􏽘

gk

j�1
κj

M1k, (6)

aυ1k �
1
gk

􏽘

gk

j�1
υj

M1k, (7)

ρτ1k �

��������������������

1
gk − 1

􏽘

gk

j�1
τj

M1k − aτ1k􏼐 􏼑
2

􏽶
􏽴

(True  standard  deviation),

(8)

ρκ1k �

��������������������

1
gk − 1

􏽘

gk

j�1
κj

M1k
− aκ1k􏼐 􏼑

2

􏽶
􏽴

(Indeterminate standard deviation),

(9)

ρυ1k �

��������������������

1
gk − 1

􏽘

gk

j�1
υj

M1k
− aυ1k􏼐 􏼑

2

􏽶
􏽴

(False standard deviation).

(10)

Ten, sδ/2 in equations (2)–(4) is a specifc value related to
a confdence level of (1− δ)× 100%,which is constructed as two-
sidedCIs for the confdence level of (1− δ)× 100% in the normal
distribution situation of fuzzy data. In actual applications, the
specifc values of sδ/2 are usually specifed as 1.645, 1.960, and
2.576 [27] subject to the confdence levels of 90%, 95%, and 99%
under the normal distribution condition of fuzzy data.

Example 1. Suppose that there is the SvNMVS NM1 � {<z1,
(0.6, 0.7, 0.8, 0.8), (0.1, 0.2, 0.2, 0.3), (0.2, 0.3, 0.3, 0.4)>, <z2,
(0.5, 0.7, 0.8), (0.3, 0.3, 0.4), (0.2, 0.2, 0.2)>} in the two-
element set Z� {z1, z2}. Using equations (1)–(10) at the
confdence level of 95% with sδ/2 �1.96, the SvNMVS NM1
can be converted to the NCCSNδ1 in the normal distribution
situation by the following calculation process.
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First, using equations (5)–(10), the average values and
standard deviations of the fuzzy sequences in NM1 are
yielded as follows:

aτ11 � 0.725, aκ11 � 0.2, aυ11 � 0.3, aτ12 � 0.6667, aκ12 � 0.3333, and aυ12 � 0.2;

ρτ11 � 0.0957, ρκ11 � 0.0816, ρυ11 � 0.0816, ρτ12 � 0.1528, ρκ12 � 0.0577, and ρυ12 � 0.
(11)

Ten, using equations (2)–(4), the true, false and in-
determinate CIs are obtained by the following calculations:

τ−
δ11, τ

+
δ11􏼂 􏼃 � 0.725 −

0.0957
�
4

√ × 1.96, 0.725 +
0.0957

�
4

√ × 1.96􏼢 􏼣

� [0.6312, 0.8188],

κ−
δ11, κ

+
δ11􏼂 􏼃 � 0.2 −

0.0816
�
4

√ × 1.96, 0.2 +
0.0816

�
4

√ × 1.96􏼢 􏼣

� [0.12, 0.28],

υ−
δ11, υ

+
δ11􏼂 􏼃 � 0.3 −

0.0816
�
4

√ × 1.96, 0.3 +
0.0816

�
4

√ × 1.96􏼢 􏼣

� [0.22, 0.38],

τ−
δ12, τ

+
δ12􏼂 􏼃 � 0.6667 −

0.1528
�
3

√ × 1.96, 0.6667 +
0.1528

�
3

√ × 1.96􏼢 􏼣

� [0.4938, 0.8395],

κ−
δ12, κ

+
δ12􏼂 􏼃 � 0.3333 −

0.0577
�
3

√ × 1.96, 0.3333 +
0.0577

�
3

√ × 1.96􏼢 􏼣

� [0.268, 0.3987],

υ−
δ12, υ

+
δ12􏼂 􏼃 � 0.2 −

0
�
3

√ × 1.96, 0.2 +
0
�
3

√ × 1.96􏼢 􏼣

� [0.2, 0.2],

(12)

Lastly, using equation (1), the NCCS Nδ1 for δ � 0.05 is
obtained in the following:

Nδ1 � z1, <[0.6312, 0.8188], [0.12, 0.28], [0.22, 0.38]>, < 0.725, 0.2, 0.3>( 􏼁, z2,(􏼈

<[0.4938, 0.8395], [0.268, 0.3987], [0.2, 0.2]>, < 0.6667, 0.3333, 0.2> ) | δ � 0.05}. (13)

For two NCCEs nδ1k � (〈[τ−
δ1k, τ+

δ1k], [κ−
δ1k, κ+

δ1k],

[υ−
δ1k, υ+

δ1k]〉, 〈aτ1k, aκ1k, aυ1k〉) and nδ2k � (〈[τ−
δ2k, τ+

δ2k],

[κ−
δ2k, κ+

δ2k], [υ−
δ2k, υ+

δ2k]〉, 〈aτ2k, aκ2k, aυ2k〉), their relationships
are given in the following.
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Defnition 2. Set two NCCEs as nδ1k � (〈[τ−
δ1k,

τ+
δ1k], [κ−

δ1k, κ+
δ1k], [υ−

δ1k, υ+
δ1k]〉, 〈aτ1k, aκ1k, aυ1k〉) and nδ2k �

(〈[τ−
δ2k, τ+

δ2k], [κ−
δ2k, κ+

δ2k], [υ−
δ2k, υ+

δ2k]〉, 〈aτ2k, aκ2k, aυ2k〉).
Ten, their relationships are given in the following:

(1) nδ1k⊆nδ2k⇔ [τ−
δ1k, τ+

δ1k]⊆[τ−
δ2k, τ+

δ2k], [κ−
δ1k, κ+

δ1k]⊇
[κ−

δ2k, κ+
δ2k], [υ−

δ1k, υ+
δ1k]⊇[υ−

δ2k, υ+
δ2k], aτ1k ≤ aτ2k,

aκ1k ≥ aκ2k, and aυ1k ≥ aυ2k;
(2) nδ1k � nδ2k⇔ nδ1k⊆nδ2k and nδ1k⊇nδ2k, i.e.,

τ−
δ1k � τ−

δ2k, τ+
δ1k � τ+

δ2k, κ−
δ1k � κ−

δ2k, κ+
δ1k � κ+

δ2k,
υ−
δ1k � υ−

δ2k, υ
+
δ1k � υ+

δ2k, aτ1k � aτ2k, aκ1k � aκ2k, and
aυ1k � aυ2k;

(3) nδ1k ∪ nδ2k �

〈[τ−
δ1k∨τ

−
δ2k, τ+

δ1k∨τ
+
δ2k], [κ−

δ1k∧κ
−
δ2k, κ+

δ1k∧κ
+
δ2k], [υ−

δ1k∧υ
−
δ2k, υ+

δ1k∧υ
+
δ2k]〉,

〈aτ1k∨aτ2k, aκ1k∧aκ2k, aυ1k∧aυ2k〉
􏼒 􏼓;

(4) nδ1k ∩ nδ2k �

〈[τ−
δ1k∧τ

−
δ2k, τ+

δ1k∧τ
+
δ2k], [κ−

δ1k∨κ
−
δ2k, κ+

δ1k∨κ
+
δ2k], [υ−

δ1k∨υ
−
δ2k, υ+

δ1k∨υ
+
δ2k]〉

〈aτ1k∧aτ2k, aκ1k∨aκ2k, aυ1k∨aυ2k〉
􏼒 􏼓;

(5) nc
δ1k � (〈[υ−

δ1k, υ+
δ1k], [1 − κ+

δ1k, 1 − κ−
δ1k], [τ−

δ1k, τ+
δ1k]〉,

〈aυ1k, 1 − aκ1k, aτ1k〉) (Complement of nδ1k ).

3. ESM between NCCSs

Tis part proposes ESM between NCCSs in a SvNMVS
circumstance.

Defnition 3. Set Nδ1 � {nδ11, nδ12, . . ., nδ1p} and Nδ2 � {nδ21,
nδ22, . . ., nδ2p} as two NCCSs, where nδ1k � (〈[τ−

δ1k, τ+
δ1k],

[κ−
δ1k, κ+

δ1k], [υ−
δ1k, υ+

δ1k]〉, 〈aτ1k, aκ1k, aυ1k〉) and nδ2k �

(〈[τ−
δ2k, τ+

δ2k], [κ−
δ2k, κ+

δ2k], [υ−
δ2k, υ+

δ2k]〉, 〈aτ2k, aκ2k, aυ2k〉)

(k� 1, 2, . . ., p) are two groups of NCCEs. Tus, ESM of two
NCCSs Nδ1 and Nδ2 is given as follows:

Eδ Nδ1, Nδ2( 􏼁 �
1
p

􏽘

p

k�1
exp −

τ−
δ1k − τ−

δ2k( 􏼁
2

+ τ+
δ1k − τ+

δ2k( 􏼁
2

+ κ−
δ1k − κ−

δ2k( 􏼁
2

+ κ+
δ1k − κ+

δ2k( 􏼁
2

+ υ−
δ1k − υ−

δ2k( 􏼁
2

+ υ+
δ1k − υ+

δ2k( 􏼁
2

+ aτ1k − aτ2k( 􏼁
2

+ aκ1k − aκ2k( 􏼁
2

+ aυ1k − aυ2k( 􏼁
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
− exp(−9)

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

/ 1 − exp(−9)􏼈 􏼉. (14)

Proposition 1. Te ESM Eδ (Nδ1, Nδ2) refects the following
characteristics:

(a) Eδ (Nδ1, Nδ2)� Eδ (Nδ2, Nδ1);
(b) 0≤Eδ (Nδ1, Nδ2)≤ 1;
(c) Eδ (Nδ1, Nδ2)� 1 if Nδ1 �Nδ2;
(d) If Nδ1⊆Nδ2⊆Nδ3 for three NCCSs Nδ1, Nδ2, and Nδ3,

then Eδ (Nδ1, Nδ2)≥ Eδ (Nδ1, Nδ3) and Eδ (Nδ2, Nδ3)≥
Eδ (Nδ1, Nδ3) exist.

Proof

(a) Tis characteristic is clear.
(b) Since there are the following inequalities:
0≤ τ−

δ1k − τ−
δ2k( 􏼁

2
+ κ−

δ1k − κ−
δ2k( 􏼁

2
+ υ−

δ1k − υ−
δ2k( 􏼁

2 ≤ 3,

0≤ τ+
δ1k − τ+

δ2k( 􏼁
2

+ κ+
δ1k − κ+

δ2k( 􏼁
2

+ υ+
δ1k − υ+

δ2k( 􏼁
2 ≤ 3,

0≤ aτ1k − aτ2k( 􏼁
2

+ aκ1k − aκ2k( 􏼁
2

+ aυ1k − aυ2k( 􏼁
2 ≤ 3.

(15)

Tus, exp(0) � 1≤ exp − (τ−
δ1k − τ−

δ2k)
2

+ (τ+
δ1k − τ+

δ2k)
2

+ (κ−
δ1k − κ−

δ2k)
2

+(κ+
δ1k − κ+

δ2k )
2

+ (υ−
δ1k − υ−

δ2k)
2

+ (υ+
δ1k − υ+

δ2k)
2

+(aτ1k − aτ2k)
2
+

(( (aκ1k − aκ2k)
2
+

(aυ1k − aυ2k)
2
))≤ exp(−9) can hold. Terefore, the

value of equation (14) also belongs to [0, 1], i.e.,
0≤ Eδ (Nδ1, Nδ2)≤ 1.

(c) If Nδ1 �Nδ2, then nδ1k � nδ2k (k� 1, 2, . . ., p). Tus,
there are τ−

δ1k � τ−
δ2k, τ+

δ1k � τ+
δ2k, κ−

δ1k � κ−
δ2k,

κ+
δ1k � κ+

δ2k, υ−
δ1k � υ−

δ2k, υ+
δ1k � υ+

δ2k, aτ1k � aτ2k,
aκ1k � aκ2k, and aυ1k � aυ2k (k� 1, 2, . . ., p). In this
case, the value of exp (0) in equation (14) is equal to
1, and then Eδ (Nδ1, Nδ2)� 1 exists.
If Eδ (Nδ1, Nδ2)� 1, then the value of exp (0) in
equation (14) is equal to 1. Tus, τ−

δ1k � τ−
δ2k,

τ+
δ1k � τ+

δ2k, κ−
δ1k � κ−

δ2k, κ+
δ1k � κ+

δ2k, υ−
δ1k � υ−

δ2k,
υ+
δ1k � υ+

δ2k, aτ1k � aτ2k, aκ1k � aκ2k, and aυ1k � aυ2k

exist. Terefore, there are nδ1k � nδ2k (k� 1, 2, . . ., p),
and then Nδ1,�Nδ2.

(d) If Nδ1⊆Nδ2⊆Nδ3, there are nδ1k ⊆ nδ2k⊆ nδ3k, and
then [τ−

δ1k, τ+
δ1k]⊆[τ−

δ2k, τ+
δ2k]⊆[τ−

δ3k, τ+
δ3k], [κ−

δ1k, κ+
δ1k]

⊇[κ−
δ2k, κ+

δ2k]⊇[κ−
δ3k, κ+

δ3k], [υ−
δ1k, υ+

δ1k]⊇[υ−
δ2k, υ+

δ2k]⊇
[υ−

δ3k, υ+
δ3k], aτ1k ≤ aτ2k ≤ aτ3k, aκ1k ≥ aκ2k ≥ aκ3k, and

aυ1k ≥ aυ2k ≥ aυ3k (k� 1, 2, . . ., p). Tus, they have the
following inequalities:
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τ−
δ1k − τ−

δ2k( 􏼁
2 ≤ τ−

δ1k − τ−
δ3k( 􏼁

2
,

τ+
δ1k − τ+

δ2k( 􏼁
2 ≤ τ+

δ1k − τ+
δ3k( 􏼁

2
,

τ−
δ2k − τ−

δ3k( 􏼁
2 ≤ τ−

δ1k − τ−
δ3k( 􏼁

2
,

τ+
δ2k − τ+

δ3k( 􏼁
2 ≤ τ+

δ1k − τ+
δ3k( 􏼁

2
,

κ−
δ1k − κ−

δ2k( 􏼁
2 ≤ κ−

δ1k − κ−
δ3k( 􏼁

2
,

κ+
δ1k − κ+

δ2k( 􏼁
2 ≤ κ+

δ1k − κ+
δ3k( 􏼁

2
,

κ−
δ2k − κ−

δ3k( 􏼁
2 ≤ κ−

δ1k − κ−
δ3k( 􏼁

2
,

κ+
δ2k − κ+

δ3k( 􏼁
2 ≤ κ+

δ1k − κ+
δ3k( 􏼁

2
,

υ−
δ1k − υ−

δ2k( 􏼁
2 ≤ υ−

δ1k − υ−
δ3k( 􏼁

2
,

υ+
δ1k − υ+

δ2k( 􏼁
2 ≤ υ+

δ1k − υ+
δ3k( 􏼁

2
,

υ−
δ2k − υ−

δ3k( 􏼁
2 ≤ υ−

δ1k − υ−
δ3k( 􏼁

2
,

υ+
δ2k − υ+

δ3k( 􏼁
2 ≤ υ+

δ1k − υ+
δ3k( 􏼁

2
,

aτ1k − aτ2k( 􏼁
2 ≤ aτ1k − aτ3k( 􏼁

2
,

aτ2k − aτ3k( 􏼁
2 ≤ aτ1k − aτ3k( 􏼁

2

aκ1k − aκ2k( 􏼁
2 ≤ aκ1k − aκ3k( 􏼁

2
,

aκ2k − aκ3k( 􏼁
2 ≤ aκ1k − aκ3k( 􏼁

2
,

aυ1k − aυ2k( 􏼁
2 ≤ aυ1k − aυ3k( 􏼁

2
,

aυ2k − aυ3k( 􏼁
2 ≤ aυ1k − aυ3k( 􏼁

2
.

(16)

Since exp (−z) for z≥ 0 is a decreasing function, Eδ (Nδ1,
Nδ2)≥Eδ (Nδ1, Nδ3), and Eδ (Nδ2, Nδ3)≥ Eδ (Nδ1, Nδ3)
can hold.

Considering the weight value of nδik (k� 1, 2, . . ., p; i� 1,
2), it is assigned by φk ∈ [0, 1] for 􏽐

p

k�1φk � 1. Tus, the
weighted ESM of NCCSs is presented by the measure
equation:

EWδ Nδ1, Nδ2( 􏼁 � 􏽘

p

k�1
φk exp −

τ−
δ1k − τ−

δ2k( 􏼁
2

+ τ+
δ1k − τ+

δ2k( 􏼁
2

+ κ−
δ1k − κ−

δ2k( 􏼁
2

􏼌􏼌􏼌􏼌􏼌

+ κ+
δ1k − κ+

δ2k( 􏼁
2

+ υ−
δ1k − υ−

δ2k( 􏼁
2

+ υ+
δ1k − υ+

δ2k( 􏼁
2

+ aτ1k − aτ2k( 􏼁
2

+ aκ1k − aκ2k( 􏼁
2

+ aυ1k − aυ2k( 􏼁
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ − exp(−9)

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

/ 1 − exp(−9)􏼈 􏼉.

(17)

□
Proposition  . Te weighted ESM of EWδ (Nδ1, Nδ2) also
implies the following characteristics:

(a) EWδ (Nδ1, Nδ2)� EWδ (Nδ2, Nδ1);
(b) 0≤EWδ (Nδ1, Nδ2)≤ 1;
(c) EWδ (Nδ1, Nδ2)� 1 if Nδ1 �Nδ2;
(d) If Nδ1⊆Nδ2⊆Nδ3 for three NCCSs Nδ1, Nδ2, and Nδ3,

then EWδ (Nδ1, Nδ2)≥ EWδ (Nδ1, Nδ3) and EWδ (Nδ2,
Nδ3)≥EWδ (Nδ1, Nδ3) exist.

In view of the same proof process of Proposition 1, we
can easily verify Proposition 2 (omitted).

 . GDM Model Using ESM of NCCSs

In multiple attribute GDM problems, there are usually a set
of potential alternatives Pa� {Pa1, Pa2, . . ., Paq} and a set of
several important assessment attributes Ac� {Ac1, Ac2, . . .,
Acp}. Taking into account the importance of various

attributes, the weight vector of Ac is assigned by φ� (φ1, φ2,
. . ., φp). In the assessment process, a team of experts/de-
cision makers can be invited to provide their evaluation
values of each alternative with respect to the attributes by
true, false, and indeterminate fuzzy values and to form
SvNMVS.

In the GDM problem, the GDM model can be
established and described by the following decision
procedures.

Step 1: A team of experts/decision makers gives their
evaluation values of each alternative Pai with respect to
the attributes Ack, which are expressed by the true,
indeterminate, and false fuzzy sequences
τMik � (τ1Mik, τ2Mik, ..., τgk

Mik), κMik � (κ1Mik, κ2Mik, ...,

κgk

Mik), and υMik � (υ1Mik, υ2Mik, ..., υgk

Mik) (k� 1, 2, . . ., p;
i� 1, 2, . . ., q) and constructed as the SvNMVS NMi �

{nMi1, nMi2, . . ., nMip} containing SvNMVEs
nMik � 〈τMik, κMik, υMik〉 � 〈(τ1Mik, τ2Mik, ..., τgk

Mik),
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(κ1Mik, κ2Mik, ..., κgk

Mik), (υ1Mik, υ2Mik, ..., υgk

Mik)〉, and then
establishes the decision matrix MN � (nMik)q× p.
Step 2: Using equations (2)–(10) corresponding to
some confdence levels of (1− δ) 100% with the cor-
responding values of sδ/2, the SvNMVSs NMi can be
converted to the NCCSs Nδi � {nδi1, nδi2, . . ., nδip}
containing the NCCEs nδik � (〈[τ−

δik, τ+
δik],

[κ−
δik, κ+

δik], [υ−
δik, υ+

δik]〉, 〈aτik, aκik, aυik〉) (i� 1, 2, . . ., q;
k� 1, 2, . . ., p) for some levels of δ. Tus, their decision
matrix is denoted as Mδ � (nδik)q× p.

Step 3: Since the maximum interval-valued neu-
trosophic number and the maximum single-valued
neutrosophic number are <[1, 1], [0, 0], [0, 0]>, <1,
0, 0>, respectively, we can consider the most ideal
solution (the maximumNCCS) as N∗ � {(z1,< [1, 1], [0,
0], [0, 0]>, <1, 0, 0>), (z2,< [1, 1], [0, 0], [0, 0]>, <1, 0,
0>), . . ., (zp,< [1, 1], [0, 0], [0, 0]>, <1, 0, 0>)}, then the
weighted ESM values of EWδ(Nδi, N∗) are given by the
following equation:

EWδ Nδi, N
∗

( 􏼁 � 􏽘

p

k�1
φk exp −

τ−
δik − 1( 􏼁

2
+ τ+

δik − 1( 􏼁
2

+ κ−
δik( 􏼁

2
+ κ+

δik( 􏼁
2

+ υ−
δik( 􏼁

2
+ υ+

δik( 􏼁
2

+ aτik − 1( 􏼁
2

+ a
2
κik + a

2
υik

⎛⎝ ⎞⎠⎛⎝ ⎞⎠ − exp(−9)
⎧⎨

⎩

⎫⎬

⎭/ 1 − exp(−9)􏼈 􏼉. (18)

Step 4:Te sorting order of the alternatives and the best
choice are given in terms of the weighted ESM values.
Step 5: End.

5. Actual GDM Example

Tis section provides an actual GDM example, which is
a choice case of LTSs in the circumstance of SvNMVSs, to
refect the feasibility and rationality of the proposed GDM
model subject to the 90%, 95%, and 99% confdence levels.

A construction company wants to select the optimal LTS
from six potential LTSs for Shaoxing City in China, which
are denoted as a set of alternatives Pa� {Pa1, Pa2, Pa3, Pa4,
Pa5, Pa6}. Ten, the six potential LTSs are detailed in the
following:

Pa1: Mortar rubble masonry pavements, retaining
walls, and surface water treatment;
Pa2: Surface-drainage works, grid beams, and moni-
toring measures;
Pa3: Cut-of drains treatment, anchor antislide pile, and
monitoring measures;

Pa4: Cantilever piles, anchor antislide piles, and slope
protection;
Pa5: Retaining walls, antislide piles, and cut-of drain
treatment;
Pa6: Antislide piles, reduce-loading works, and surface-
drainage works.

Regarding the assessment of the six alternatives, they
must meet four important attributes: Ac1 (construction
cost), Ac2 (technique condition), Ac3 (treatment risk), and
Ac4 (environment situation). Ten, the weight vector
φ� (0.3, 0.22, 0.25, 0.23) is assigned to a set of the four
attributes Ac� {Ac1, Ac2, Ac3, Ac4}.

Based on the choice case of LTSs, the proposed GDM
model can be used for the GDM problem and addressed by
the following decision procedures.

Step 1:Te three experts/decisionmakers invited by the
technical department give their evaluation values of
each alternative Paj (j� 1, 2, . . ., 6) with respect to the
attributes Ack (k� 1, 2, 3, 4), which are constructed as
the SvNMVS decision matrix:

Table 1: Decision results subject to the 90%, 95%, and 99% confdence levels.

δ sδ/2 EWδ (Nδi, N∗) Sorting order Optimal LTS
0.1 1.645 0.6237, 0.6526, 0.6268, 0.6033, 0.5286, and 0.5685 Pa2>Pa3>Pa1> Pa4>Pa6>Pa5 Pa2
0.05 1.96 0.6209, 0.6462, 0.6222, 0.5993, 0.5234, and 0.5603 Pa2>Pa3>Pa1> Pa4>Pa6>Pa5 Pa2
0.01 2.576 0.6142, 0.6310, 0.6112, 0.5896, 0.5105, and 0.5408 Pa2>Pa1>Pa3> Pa4>Pa6>Pa5 Pa2
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MN �

〈(0.6, 0.6, 0.6), (0.1, 0.2, 0.2), (0.1, 0.15, 0.15)〉

〈(0.7, 0.7, 0.75), (0.1, 0.2, 0.25), (0.1, 0.1, 0.15)〉

〈(0.6, 0.6, 0.65), (0.1, 0.15, 0.2), (0.15, 0.15, 0.2)〉

〈(0.6, 0.7, 0.7), (0.1, 0.2, 0.25), (0.1, 0.25, 0.35)〉

〈(0.6, 0.7, 0.75), (0.15, 0.2, 0.3), (0.15, 0.2, 0.3)〉

〈(0.65, 0.7, 0.7), (0.1, 0.2, 0.25), (0.1, 0.15, 0.3)〉

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈(0.6, 0.65, 0.65), (0.2, 0.2, 0.25), (0.1, 0.1, 0.15)〉

〈(0.75, 0.8, 0.8), (0.1, 0.2, 0.25), (0.15, 0.2, 0.25)〉

〈(0.7, 0.7, 0.8), (0.1, 0.2, 0.25), (0.1, 0.15, 0.2)〉

〈(0.75, 0.75, 0.8), (0.2, 0.2, 0.25), (0.1, 0.2, 0.25)〉

〈(0.7, 0.7, 0.75), (0.2, 0.3, 0.3), (0.15, 0.2, 0.25)〉

〈(0.6, 0.7, 0.75), (0.1, 0.2, 0.25), (0.15, 0.2, 0.25)〉

,

〈(0.7, 0.8, 0.85), (0.15, 0.2, 0.3), (0.1, 0.15, 0.2)〉

〈(0.7, 0.75, 0.8), (0.2, 0.2, 0.25), (0.1, 0.25, 0.25)〉

〈(0.75, 0.8, 0.8), (0.1, 0.2, 0.25), (0.1, 0.2, 0.25)〉

〈(0.6, 0.7, 0.7), (0.15, 0.2, 0.25), (0.1, 0.15, 0.15)〉

〈(0.6, 0.7, 0.7), (0.1, 0.2, 0.25), (0.2, 0.25, 0.3)〉

〈(0.65, 0.7, 0.7), (0.2, 0.3, 0.35), (0.15, 0.2, 0.2)〉

〈(0.8, 0.8, 0.8), (0.15, 0.15, 0.2), (0.15, 0.2, 0.2)〉

〈(0.75, 0.8, 0.8), (0.1, 0.2, 0.3), (0.1, 0.25, 0.35)〉

〈(0.65, 0.7, 0.8), (0.15, 0.2, 0.2), (0.15, 0.2, 0.25)〉

〈(0.65, 0.7, 0.75), (0.15, 0.2, 0.2), (0.15, 0.2, 0.25)〉

〈(0.5, 0.65, 0.7), (0.1, 0.2, 0.35), (0.2, 0.2, 0.25)〉

〈(0.6, 0.8, 0.8), (0.1, 0.2, 0.4), (0.15, 0.15, 0.2)〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(19)

Step 2: Using equations (2)–(10) corresponding to the
confdence levels of 90%, 95%, and 99% with the
specifed values sδ/2 �1.645, 1.96, and 2.576 for δ � 0.1,

0.05, and 0.01, the SvNMVS decision matrixMN can be
converted to the NCCS decision matrix Mδ:

Mδ�0.1 �

(〈[0.6000, 0.6000], [0.1118, 0.2215], [0.1059, 0.1608]〉, 〈0.6000, 0.1667, 0.1333〉)

(〈[0.6893, 0.7441], [0.1108, 0.2559], [0.0892, 0.1441]〉, 〈0.7167, 0.1833, 0.1167〉)

(〈[0.5893, 0.6441], [0.1025, 0.1975], [0.1392, 0.1941]〉, 〈0.6167, 0.1500, 0.1167〉)

(〈[0.6118, 0.7215], [0.1108, 0.2559], [0.1177, 0.2823]〉, 〈0.6667, 0.1833, 0.2000〉)

(〈[0.6108, 0.7559], [0.1441, 0.2892], [0.1441, 0.2892]〉, 〈0.6833, 0.2167, 0.2167〉)

(〈[0.6559, 0.7107], [0.1108, 0.2559], [0.0845, 0.2822]〉, 〈0.6833, 0.1833, 0.1833〉)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(〈[0.6059, 0.6607], [0.1893, 0.2441], [0.0892, 0.1441]〉, 〈0.6333, 0.2167, 0.1167〉)

(〈[0.7559, 0.8107], [0.1108, 0.2559], [0.1525, 0.2475]〉, 〈0.7833, 0.1833, 0.2000〉)

(〈[0.6785, 0.7882], [0.1108, 0.2559], [0.1025, 0.1975]〉, 〈0.7333, 0.1833, 0.1500〉)

(〈[0.7392, 0.7941], [0.1893, 0.2441], [0.1118, 0.2215]〉, 〈0.7667, 0.2167, 0.1667〉)

(〈[0.6893, 0.7441], [0.2118, 0.3215], [0.1525, 0.2475]〉, 〈0.7167, 0.2667, 0.2000〉)

(〈[0.6108, 0.7559], [0.1108, 0.2559], [0.1525, 0.2475]〉, 〈0.6833, 0.1833, 0.2000〉)

(〈[0.7108, 0.8559], [0.1441, 0.2892], [0.1025, 0.1975]〉, 〈0.7833, 0.2167, 0.1500〉)

(〈[0.7025, 0.7975], [0.1893, 0.2441], [0.1177, 0.2823]〉, 〈0.7500, 0.2167, 0.2000〉)

(〈[0.7559, 0.8107], [0.1108, 0.2559], [0.1108, 0.2559]〉, 〈0.7833, 0.1833, 0.1833〉)

(〈[0.6118, 0.7215], [0.1525, 0.2475], [0.1059, 0.1608]〉, 〈0.6667, 0.2000, 0.1333〉)

(〈[0.6118, 0.7215], [0.1108, 0.2559], [0.2025, 0.2975]〉, 〈0.6667, 0.1833, 0.2500〉)

(〈[0.6559, 0.7107], [0.2108, 0.3559], [0.1559, 0.2108]〉, 〈0.6833, 0.2833, 0.1833〉)

(〈[0.8000, 0.8000], [0.1392, 0.1941], [0.1559, 0.2108]〉, 〈0.8000, 0.1667, 0.1833〉)

(〈[0.7559, 0.8107], [0.1050, 0.2950], [0.1138, 0.3528]〉, 〈0.7833, 0.2000, 0.2333〉)

(〈[0.6441, 0.7892], [0.1559, 0.2108], [0.1763, 0.2475]〉, 〈0.7167, 0.1833, 0.2000〉)

(〈[0.6525, 0.7475], [0.1559, 0.2108], [0.1525, 0.2475]〉, 〈0.7000, 0.1833, 0.2000〉)

(〈[0.5178, 0.7155], [0.0972, 0.3362], [0.1893, 0.2441]〉, 〈0.6167, 0.2167, 0.2167〉)

(〈[0.6237, 0.8430], [0.0883, 0.3784], [0.1392, 0.1941]〉, 〈0.7333, 0.2333, 0.1667〉)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Mδ�0.05 �

(〈[0.6000, 0.6000], [0.1013, 0.2320], [0.1007, 0.1660]〉, 〈0.6000, 0.1667, 0.1333〉)

(〈[0.6840, 0.7493], [0.0969, 0.2698], [0.0840, 0.1493]〉, 〈0.7167, 0.1833, 0.1167〉)

(〈[0.5840, 0.6493], [0.0934, 0.2066], [0.1340, 0.1993]〉, 〈0.6167, 0.1500, 0.1167〉)

(〈[0.6013, 0.7320], [0.0969, 0.2698], [0.1020, 0.2980]〉, 〈0.6667, 0.1833, 0.2000〉)

(〈[0.5969, 0.7698], [0.1302, 0.3031], [0.1302, 0.3031]〉, 〈0.6833, 0.2167, 0.2167〉)

(〈[0.6507, 0.7160], [0.0969, 0.2698], [0.0656, 0.3011]〉, 〈0.6833, 0.1833, 0.1833〉)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(〈[0.6007, 0.6660], [0.1840, 0.2493], [0.0840, 0.1493]〉, 〈0.6333, 0.2167, 0.1167〉)

(〈[0.7507, 0.8160], [0.0969, 0.2698], [0.1434, 0.2566]〉, 〈0.7833, 0.1833, 0.2000〉)

(〈[0.6680, 0.7987], [0.0969, 0.2698], [0.0934, 0.2066]〉, 〈0.7333, 0.1833, 0.1500〉)

(〈[0.7340, 0.7993], [0.1840, 0.2493], [0.1013, 0.2320]〉, 〈0.7667, 0.2167, 0.1667〉)

(〈[0.6840, 0.7493], [0.2013, 0.3320], [0.1434, 0.2566]〉, 〈0.7167, 0.2667, 0.2000〉)

(〈[0.5969, 0.7698], [0.0969, 0.2698], [0.1434, 0.2566]〉, 〈0.6833, 0.1833, 0.2000〉)

(〈[0.6969, 0.8698], [0.1302, 0.3031], [0.0934, 0.2066]〉, 〈0.7833, 0.2167, 0.1500〉)

(〈[0.6934, 0.8066], [0.1840, 0.2493], [0.1020, 0.2980]〉, 〈0.7500, 0.2167, 0.2000〉)

(〈[0.6013, 0.7320], [0.1434, 0.2566], [0.1007, 0.1660]〉, 〈0.6667, 0.2000, 0.1333〉)

(〈[0.6013, 0.7320], [0.1434, 0.2566], [0.1007, 0.1660]〉, 〈0.6667, 0.2000, 0.1333〉)

(〈[0.6013, 0.7320], [0.0969, 0.2698], [0.1934, 0.3066]〉, 〈0.6667, 0.1833, 0.2500〉)

(〈[0.6507, 0.7160], [0.1969, 0.3698], [0.1507, 0.2160]〉, 〈0.6833, 0.2833, 0.1833〉)

(〈[0.8000, 0.8000], [0.1340, 0.1993], [0.1507, 0.2160]〉, 〈0.8000, 0.1667, 0.1833〉)

(〈[0.7507, 0.8160], [0.0868, 0.3132], [0.0909, 0.3757]〉, 〈0.7833, 0.2000, 0.2333〉)

(〈[0.6302, 0.8031], [0.1507, 0.2160], [0.1717, 0.2566]〉, 〈0.7167, 0.1833, 0.2000〉)

(〈[0.6434, 0.7566], [0.1507, 0.2160], [0.1434, 0.2566]〉, 〈0.7000, 0.1833, 0.2000〉)

(〈[0.4989, 0.7344], [0.0743, 0.3591], [0.1840, 0.2493]〉, 〈0.6167, 0.2167, 0.2167〉)

(〈[0.6027, 0.8640], [0.0605, 0.4062], [0.1340, 0.1993]〉, 〈0.7333, 0.2333, 0.1667〉)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Mδ�0.01 �

(〈[0.6000, 0.6000], [0.0808, 0.2525], [0.0904, 0.1763]〉, 〈0.6000, 0.1667, 0.1333〉)

(〈[0.6737, 0.7596], [0.0697, 0.2969], [0.0737, 0.1596]〉, 〈0.7167, 0.1833, 0.1167〉)

(〈[0.5737, 0.6596], [0.0756, 0.2244], [0.1237, 0.2096]〉, 〈0.6167, 0.1500, 0.1167〉)

(〈[0.5808, 0.7525], [0.0697, 0.2969], [0.0712, 0.3288]〉, 〈0.6667, 0.1833, 0.2000〉)

(〈[0.5697, 0.7969], [0.1031, 0.3303], [0.1031, 0.3303]〉, 〈0.6833, 0.2167, 0.2167〉)

(〈[0.6404, 0.7263], [0.0697, 0.2969], [0.0285, 0.3381]〉, 〈0.6833, 0.1833, 0.1833〉)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(〈[0.5904, 0.6763], [0.1737, 0.2596], [0.0737, 0.1596]〉, 〈0.6333, 0.2167, 0.1167〉)

(〈[0.7404, 0.8263], [0.0697, 0.2969], [0.1256, 0.2744]〉, 〈0.7833, 0.1833, 0.2000〉)

(〈[0.6475, 0.8192], [0.0697, 0.2969], [0.0756, 0.2244]〉, 〈0.7333, 0.1833, 0.1500〉)

(〈[0.7237, 0.8096], [0.1737, 0.2596], [0.0808, 0.2525]〉, 〈0.7667, 0.2167, 0.1667〉)

(〈[0.6737, 0.7596], [0.1808, 0.3525], [0.1256, 0.2744]〉, 〈0.7167, 0.2667, 0.2000〉)

(〈[0.5697, 0.7969], [0.0697, 0.2969], [0.1256, 0.2744]〉, 〈0.6833, 0.1833, 0.2000〉)

(〈[0.6697, 0.8969], [0.1031, 0.3303], [0.0756, 0.2244]〉, 〈0.7833, 0.2167, 0.1500〉)

(〈[0.6756, 0.8244], [0.1737, 0.2596], [0.0712, 0.3288]〉, 〈0.7500, 0.2167, 0.2000〉)

(〈[0.7404, 0.8263], [0.0697, 0.2969], [0.0697, 0.2969]〉, 〈0.7833, 0.1833, 0.1833〉)

(〈[0.5808, 0.7525], [0.1256, 0.2744], [0.0904, 0.1763]〉, 〈0.6667, 0.2000, 0.1333〉)

(〈[0.5808, 0.7525], [0.0697, 0.2969], [0.1756, 0.3244]〉, 〈0.6667, 0.1833, 0.2500〉)

(〈[0.6404, 0.7263], [0.1697, 0.3969], [0.1404, 0.2263]〉, 〈0.6833, 0.2833, 0.1833〉)

(〈[0.8000, 0.8000], [0.1237, 0.2096], [0.1404, 0.2263]〉, 〈0.8000, 0.1667, 0.1833〉)

(〈[0.7404, 0.8263], [0.0513, 0.3487], [0.0462, 0.4205]〉, 〈0.7833, 0.2000, 0.2333〉)

(〈[0.6031, 0.8303], [0.1404, 0.2263], [0.1628, 0.2744]〉, 〈0.7167, 0.1833, 0.2000〉)

(〈[0.6256, 0.7744], [0.1404, 0.2263], [0.1256, 0.2744]〉, 〈0.7000, 0.1833, 0.2000〉)

(〈[0.4619, 0.7715], [0.0295, 0.4038], [0.1737, 0.2596]〉, 〈0.6167, 0.2167, 0.2167〉)

(〈[0.5616, 0.9051], [0.0062, 0.4605], [0.1237, 0.2096]〉, 〈0.7333, 0.2333, 0.1667〉)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

. (20)
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Step 3: Using equation (18) for the confdence levels of
90%, 95%, and 99%, the weighted ESM values of EWδ
(Nδi, N∗) are given in Table 1.
Step 4: Te sorting orders of the alternatives and the
optimal LTS are given in terms of the weighted ESM
values, which are also shown in Table 1.

In view of the decision results in Table 1, diferent confdence
levels can make the sorting orders changeable. Terefore, it is
clear that the sorting results reveal some sensitivity and fexibility
to diferent confdence levels. Ten, the optimal LTS is Pa2.

6. Comparative Investigation

To conveniently compare the proposed GDM model with the
related GDM model [23] in the circumstance of SvNMVSs, we
frst introduced the notion of C-SvNS Nci� {nci1, nci2, . . ., ncip}
including the p consistency single-valued neutrosophic elements
ncik � (〈aτik, aκik, aυik〉 , 〈cτik, cκik, cυik〉), which are trans-
formed from SvNMVSs by the average values of equations
(5)–(7) and the following consistency degrees of cτik, cκik, and cυik
[23]:

cτik � 1 − ρτik � 1 −

��������������������

1
gk − 1

􏽘

gk

j�1
τj

Mik − aτik􏼐 􏼑
2

􏽶
􏽴

(True  consistency  degree), (21)

cκik � 1 − ρκik � 1 −

��������������������

1
gk − 1

􏽘

gk

j�1
κj

Mik − aκik􏼐 􏼑
2

􏽶
􏽴

(Indeterminate  consistency  degree), (22)

cυik � 1 − ρυik �

��������������������

1
gk − 1

􏽘

gk

j�1
υj

Mik − aυik􏼐 􏼑
2

􏽶
􏽴

(False  consistency  degree). (23)

Since the maximum single-valued neutrosophic number
and the most ideal consistency single-valued neutrosophic
number (the complete consistency of group arguments) are
<1, 0, 0> and <1, 1, 1>, respectively, we can consider the
most ideal solution/C-SvNS as N∗ � {(z1, <1, 0, 0>, <1, 1,
1>), (z2, <1, 0, 0>, <1, 1, 1>), . . ., (zp, <1, 0, 0>, <1, 1, 1>)},
then the weighted correlation coefcient of C-SvNSs is in-
troduced in the following [23]:

Rw Nci, N
∗

( 􏼁 �
􏽐

p

k�1φkaτik + 􏽐
p

k�1φk cτik + cκik + cυik( 􏼁

2
�����������������������������������

􏽐
p

k�1φk a
2
τik + a

2
τik + a

2
τik + c

2
τik + c

2
τik + c

2
τik􏼐 􏼑

􏽱 .

(24)

In view of the existing GDM model using the cor-
relation coefcient of C-SvNSs in the scenario of
SvNMVSs [23], we can utilize it in the above GDM
example.

Table 2: Standard deviations of all the measure values and the sorting results of the six alternatives.

Measure method Measure value Standard deviation of
measure values Sorting result

EWδ (Nδi, N∗) for δ� 0.1 0.6237, 0.6526, 0.6268, 0.6033, 0.5286, and 0.5685 0.0450 Pa2>Pa3>Pa1>Pa4> Pa6>Pa5
EWδ (Nδi, N∗) for δ� 0.05 0.6209, 0.6462, 0.6222, 0.5993, 0.5234, and 0.5603 0.0456 Pa2>Pa3>Pa1>Pa4> Pa6>Pa5
EWδ (Nδi, N∗) for δ� 0.01 0.6142, 0.6310, 0.6112, 0.5896, 0.5105, and 0.5408 0.0472 Pa2>Pa1>Pa3>Pa4> Pa6>Pa5
Rw (Nc1, N∗) [23] 0.9818, 0.9842, 0.9830, 0.9814, 0.9756, and 0.9793 0.0031 Pa2>Pa3>Pa1>Pa4> Pa6>Pa5
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First, using equations (5)–(7) and (21)–(23), SvNMVSs
are transformed into C-SvNSs, which are constructed as the
following C-SvNS matrix:

Mc �

〈(0.6000, 1.0000), (0.1667, 0.9423), (0.1333, 0.9711)〉

〈(0.7167, 0.9711), (0.1833, 0.9236), (0.1167, 0.9711)〉

〈(0.6167, 0.9711), (0.1500, 0.9500), (0.1667, 0.9711)〉

〈(0.6667, 0.9423), (0.1833, 0.9236), (0.2000, 0.9134)〉

〈(0.6833, 0.9236), (0.2167, 0.9236), (0.2167, 0.9236)〉

〈(0.6833, 0.9711), (0.1833, 0.9236), (0.1833, 0.8959)〉

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈(0.6333, 0.9711), (0.2167, 0.9711), (0.1167, 0.9711)〉

〈(0.7833, 0.9711), (0.1833, 0.9236), (0.2000, 0.9500)〉

〈(0.7333, 0.9423), (0.1833, 0.9236), (0.1500, 0.9500)〉

〈(0.7667, 0.9711), (0.2167, 0.9711), (0.1667, 0.9423)〉

〈(0.7167, 0.9711), (0.2667, 0.9423), (0.2000, 0.9500)〉

〈(0.6833, 0.9236), (0.1833, 0.9236), (0.2000, 0.9500)〉

,

〈(0.7833, 0.9236), (0.2167, 0.9236), (0.1500, 0.9500)〉

〈(0.7500, 0.9500), (0.2167, 0.9711), (0.2000, 0.9134)〉

〈(0.7833, 0.9711), (0.1833, 0.9236), (0.1833, 0.9236)〉

〈(0.6667, 0.9423), (0.2000, 0.9500), (0.1333, 0.9711)〉

〈(0.6667, 0.9423), (0.1833, 0.9236), (0.2500, 0.9500)〉

〈(0.6833, 0.9711), (0.2833, 0.9236), (0.1833, 0.9711)〉

〈(0.8000, 1.0000), (0.1667, 0.9711), (0.1833, 0.9711)〉

〈(0.7167, 0.9236), (0.1833, 0.9711), (0.2000, 0.9500)〉

〈(0.7167, 0.9236), (0.1833, 0.9711), (0.2000, 0.9500)〉

〈(0.7000, 0.9500), (0.1833, 0.9711), (0.2000, 0.9500)〉

〈(0.6167, 0.8959), (0.2167, 0.8742), (0.2167, 0.9711)〉

〈(0.7333, 0.8845), (0.2333, 0.8472), (0.1667, 0.9711)〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(25)

Ten, using equation (24), we give the weighted cor-
relation coefcient values

Rw Nc1, N
∗

( 􏼁 � 0.9818,

Rw Nc2, N
∗

( 􏼁 � 0.9842,

Rw Nc3, N
∗

( 􏼁 � 0.9830,

Rw Nc4, N
∗

( 􏼁 � 0.9814,

Rw Nc5, N
∗

( 􏼁 � 0.9756,

Rw Nc6, N
∗

( 􏼁 � 0.9793.

(26)

Finally, the sorting order of the six alternatives is
Pa2>Pa3> Pa1>Pa4> Pa6>Pa5 and the optimal LTS is Pa2.

For the convenient comparison of the decision results in
light of the situations of C-SvNSs and NCCSs under the
SvNMVS circumstance, we give the standard deviations of
the measure values corresponding to the proposed GDM
model and the existing GDM model [23] to indicate the
diference degree of the measure values, and then the
standard deviations and the sorting results of the six al-
ternatives are shown in Table 2.

In view of the sorting results of the six alternatives in
Table 2, the proposed GDM model using the weighted ESM
for δ � 0.1, 0.05 and the existing GDM model using the
weighted correlation coefcient [23] refect their same
sorting results, but the sorting result of the proposed GDM
model using the weighted ESM for δ � 0.01 is diferent from
that of the existing GDM model [23]. Since the proposed
GDMmodel contains diferent sorting orders depending on
diferent confdence levels of the true, indeterminate, and
false fuzzy sequences in the SvNMVS setting, it reveals the
decision fexibility and credibility/reliability in the situation
of NCCSs from a probabilistic estimation perspective; while

the existing GDM model [23] cannot refect the decision
fexibility and credibility in the situation of C-SvNSs al-
though it contains consistency levels of the true, in-
determinate, and false fuzzy sequences in the SvNMVS
setting. Terefore, the proposed GDM model reveals ob-
vious superiority over the existing GDMmodel [23] in GDM
fexibility and credibility.

In view of the standard deviations of the diferent
measure methods in Table 2, it is obvious that the proposed
ESM method for NCCSs reveals larger standard deviations
of the measure values than the weighted correlation co-
efcient of C-SvNSs [23]. In light of the concept of the
standard deviation, the proposed weighted ESM method of
NCCSs has better discriminative ability than the weighted
correlation coefcient of C-SvNSs since the measure values
of the weighted correlation coefcient imply smaller dif-
ference. Terefore, the proposed ESM of NCCSs is superior
to the weighted correlation coefcient of C-SvNSs in the
SvNMVS setting.

Furthermore, existing probabilistic neutrosophic GDM
models [17–21] are difcultly applied to the above GDM
example with small-scale group arguments because they lack
some confdence levels of the neutrosophic evaluation
values, so as to difcultly ensure the credibility and ratio-
nality of the probability neutrosophic values and the de-
cision results in the small-scale GDM process, while the
proposed GDMmodel can guarantee some confdence levels
of the neutrosophic evaluation values from a probability
estimation perspective in the circumstance of SvNMVSs and
reveal its usability and suitability in small-scale GDM
problems. Terefore, the proposed GDMmodel is obviously
superior to the probabilistic neutrosophic GDM models
[17–21] with respect to the credibility and rationality of
GDM in a SvNMVS circumstance.
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7. Conclusion

From a probability estimation perspective in a circumstance
of SvNMVSs, this article presented the defnition of NCCS,
which was obtained by a conversion technique from
SvNMVS to NCCS based on the average values and CIs of
true, false, and indeterminate fuzzy sequences in SvNMVS.
Since NCCS is composed of the average values and CIs, this
information representation can ensure that the true, false,
and indeterminate fuzzy values in SvNMVSs fall within their
CIs subject to some confdence levels.Ten, we proposed the
ESM of NCCs and its GDM model corresponding to some
confdence levels of (1− δ)× 100% (usually using 90%, 95%,
and 99% confdence levels). Moreover, the proposed GDM
model was applied to a choice problem of LTSs in a cir-
cumstance of SvMVSs as an actual case in Shaoxing City,
China, to reveal its usability and suitability in actual GDM
problems. Compared with the related GDM models in the
setting of SvNMVSs [17–23], the proposed GDM model
indicated the following superiorities over existing methods:

(a) NCCS implies obvious merits in the conversion
method based on the average values and CIs cor-
responding to some confdence levels under the
circumstance of SvNMVSs because it makes the
information expression more confdent and rea-
sonable in light of the probability estimation of fuzzy
data (small-scale sample data with normal
distribution).

(b) Te proposed weighted ESM method of NCCSs has
better discriminative ability than the weighted cor-
relation coefcient method of C-SvNSs in the
identifcation process of their measure values.

(c) Te proposed GDM model is more credible and
more reasonable subject to some confdence levels of
(1− δ)× 100% than the existing GDM models under
the circumstance of SvNMVSs.

(d) Te proposed GDM model reveals the decision
fexibility and credibility in the GDM application of
the LTS selection problem.

In this study, the proposed conversion technique and
GDM model are only suitable for GDM problems in the
normal distribution situation of the fuzzy data in SvNMVSs,
but cannot solve GDM problems in other distribution sit-
uations of the fuzzy data in SvNMVSs, which shows the
limitations/insufciencies of this paper. In future research,
we shall further extend the proposed GDM model to GDM
models corresponding to lognormal, logarithmic, and ex-
ponential distributions of fuzzy data and their applications
in the situation of SvNMVSs.
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