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Probability estimation of small sample data is a key tool to ensure the probability that sample data fall within the confidence
interval at a certain confidence level and probability distribution, which shows its advantages in practical engineering applications.
Then, regarding a group decision-making (GDM) problem in the situation of indeterminacy and inconsistency, several experts/
decision makers will assign several true, false, and indeterminate fuzzy values to the evaluation values of each alternative over
different attributes, and then form a single-valued neutrosophic multivalued set (SYNMVS) as their assessed information. To
ensure some confidence level of the evaluation values in the circumstance of SYNMVSs and GDM reliability, this paper aims to
propose a conversion technique from SYNMVS to a neutrosophic confidence cubic set (NCCS) and a GDM model using the
exponential similarity measure of NCCSs in the circumstance of SYNMVSs. First, we give the definition of NCCS, which is
transformed from SYNMVS in terms of average values and confidence intervals of true, false, and indeterminate fuzzy sequences
subject to the conditions of the normal distribution and confidence levels. Second, we present the exponential similarity measure
of NCCSs and the weighted exponential similarity measure of NCCSs and their characteristics. Third, a GDM model is developed
by using the weighted exponential similarity measure of NCCSs in the circumstance of SYNMVSs. Fourth, the developed GDM
model is applied to a choice case of landslide treatment schemes in the circumstance of SYNMVSs to reveal its usability and
suitability in actual GDM problems. Compared with the existing GDM models, the developed GDM model indicates its su-

periorities in decision flexibility and credibility/reliability subject to 90%, 95%, and 99% confidence levels.

1. Introduction

In indeterminate and inconsistent environments, the in-
formation expressions and decision-making approaches of
neutrosophic sets, including the subsets such as simplified
neutrosophic sets (SNSs) and single-valued and interval-
valued neutrosophic sets (SVNSs and IvNSs), show their
merits in actual applications [1-4]. Therefore, they have been
applied in many fields, such as social science, economics, and
medicine [5-11]. Then, in group decision-making (GDM)
issues with neutrosophic information, the multivalued
neutrosophic information implies its importance and nec-
essary in the expression of group evaluation information.
For instance, multivalued neutrosophic sets (MVNSs)/
neutrosophic hesitant fuzzy sets (NHFSs) were used for the

expression of group evaluation information, and then var-
ious aggregation operators were applied to their GDM issues
[12-16]. However, owing to hesitant characteristics, MVNS/
NHES may lose some same fuzzy values in the expression of
hesitant information, which shows its flaw.

On the other hand, probability MVNSs were used for the
information expression of group evaluation values from
a probability perspective, and then their GDM approaches
were presented to solve multiattribute GDM problems with
probability MVNS information [17-22]. Then, the probability
GDM approaches need a lot of evaluated data to yield rea-
sonable probability values; otherwise, it is difficult to ensure
the credibility and reliability of the probability neutrosophic
values in the GDM process. Therefore, it is difficult to use the
probability GDM models in actual applications.
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To avoid some defects of the expressions and GDM
approaches of MVNSs/NHFSs and probability MVNSs, Ye
et al. [23, 24] proposed single-valued neutrosophic multi-
valued sets (SYNMVSs) with the different and/or identical
fuzzy values to ensure the complete expression of all group
evaluation values in the GDM process, and then they in-
troduced two transformation techniques from SYNMVSs to
consistency SvNSs (C-SvNSs) [23] and single-valued neu-
trosophic enthalpy sets [24] to solve the operation issue
between different fuzzy sequence lengths in SYNMVSs and
developed the correlation coefficients of C-SvNSs [23] and
the Einstein weighted aggregation operators of single-valued
neutrosophic enthalpy values [24] for GDM issues in the
scenario of SYNMVSs. However, the existing transformation
techniques were based on the mean and standard deviation/
Shannon/probability entropy of true, false, and in-
determinate fuzzy sequences in SYNMVSs [23, 24]. From
a probability estimation perspective, these transformation
techniques cannot reflect some confidence level and prob-
ability distribution of multiple fuzzy values, which show
their insufficiencies.

Since the neutrosophic number (NN) (u=a+Al=
[a+AI", a+AI"] for an indeterminacy I=[I", I"] and 4,
AeR) presented by Smarandache [1, 25, 26] shows the
flexible representation merit of indeterminate information
subject to different indeterminate ranges of I. Recently, from
a probability perspective, the notion of a confidence neu-
trosophic number (CNN) or confidence interval (CI) [27]
was presented in terms of the 95% confidence level and the
normal and lognormal distributions of multivalued datasets
to ensure the 95% confidence level of multivalued datasets
falling within the CNN/CI, and then CNN linear pro-
gramming methods were introduced subject to the confi-
dence level and normal and lognormal distributions to carry
out production planning problems in indeterminate sce-
narios. However, CNNs/ClIs are not used for GDM issues in
the neutrosophic multivalued setting.

In addition, a neutrosophic cubic set (NCS) [28] is
composed of the true, false, and indeterminate interval fuzzy
values and the true, false, and indeterminate fuzzy values,
which implies the representation merit of the mixed in-
formation. Therefore, NCSs have been applied in pattern
recognition [28] and decision-making issues [29-33] in NCS
circumstances. However, NCSs cannot be applied to GDM
issues in the neutrosophic multivalued setting. Meanwhile, it
is difficult to reflect some confidence level/reliability of finite
group evaluation information in the GDM issues.

Since there are the aforementioned insufficiencies of the
existing transformation techniques [23, 24], by the moti-
vation of the CI/CNN notion with some confidence level
[27], this paper aims to propose a new transformation
technique from SYNMVS to the neutrosophic confidence
cubic set (NCCS) that consists of CIs and average values of
true, false, and indeterminate fuzzy sequences in SYNMVS
and a GDM model based on the exponential similarity
measure (ESM) of NCCSs to carry out GDM issues subject to
some confidence levels and the normal distribution (the
most common distribution in the real world) in a SYNMVS
circumstance.
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The remainder of this paper consists of the following
parts. The second part introduces the definition of NCCS
along with a conversion technique from SYNMVS to NCCS
and some relationships of neutrosophic confidence cubic
elements (NCCEs). The third part proposes an ESM method
between NCCSs and the weighted ESM of NCCSs. The
fourth part develops a GDM model using the weighted ESM
of NCCSs in a SYNMVS circumstance. The fifth part applies
the developed GDM model to a choice case of landslide
treatment schemes (LTSs) in the scenario of SYNMVSs to
reveal its usability and suitability in actual GDM problems.
In the sixth part, compared to the existing related GDM
models, the developed GDM model indicates its superiority
in decision flexibility and credibility/reliability subject to
90%, 95%, and 99% confidence levels. The final part remarks
the conclusions and further research issues.

2. Neutrosophic Confidence Cubic Sets (NCCSs)

This part presents the definition of NCCS along with
a conversion technique from SYNMVS to NCCS under the
circumstance of SYNMVSs and some relationships of
NCCEs.

To give the definition of NCCS, we first introduce the
notion of SYNMVS [23, 24].

A SYNMVS NM in a nonempty set Z={z;, 25, . . ., Zp} is
defined as Ny = {z;, T (2), ka1 (20), Vg (20) | 2 € Z},
where T (21), Kar (2i), and vy (i) contains multiple true,
indeterminate, and false membership degrees of each ele-
ment z to the set N, denoted by the three fuzzy sequences
Ty (21) = (T3 (20), Ty (2005 T35 (20))s Kpg (1) = (e (20,
K2 (2)s o ks (2)),  and  vp(zg) = (VY (20), V3, (200), oes
vik (2,)) with different and/or identical fuzzy values in [0, 1]

subject to their fuzzy sequence lengths gy and
0 <supty, (z) + supk,, (z;) + supvy, (2,) <3 for  zeZ
(k=1,2,..., p).

For simplicity, the k-th element <{z, 7, (2zy),

Kpr (21), Upr (1)) in Ny is simply represented as the single-
valued neutrosophic multivalued element (SYNMVE) n, =
(Tt Kagio Ut = (Tt Taggo o Taia)s (Kigio Kiggo -0 Kgi)s
(v}\,lk,v%\,lk,...,vﬁk» in an increasing fuzzy sequence. Es-
pecially when g, =1 (k=1, 2, ..., p), the SINMVS Ny, is
reduced to SvNS.

In view of a probability estimation of small-scale sample
data, a confidence level of 1 -9 for a level § reflects that the
(1-96)x100% probability of sample data will fall within CI
under the normal distribution condition of sample data, and
then the 6 x 100% probability of sample data is outside CL In
light of CI subject to a confidence level of (1 — §) x 100%, we give
the definition of NCCS based on a conversion technique from
SVNMVS to NCCS. As we all know, the normal distribution is
the most common distribution in the real world. Therefore, this
paper only considers CIs under the normal distribution con-
dition. In this case, we give the following definition of NCCS.

Definition 1. Let SWNMVS  be N, = {zp 1o (20)s
®an (26 Uan (21) | 2 € Z} containing the true, indeterminate,
and false fuzzy sequences 7, (z;) = (Tj 0 Tf\,nk,...,r‘z/knk),
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K1 (25) = (K}\/Ilk’K%vIlk""’Kg/l;lk)’ and vy (2) = (Vpp0
v%mk, s v%lk) (k=1,2,..., p). Then, NCCS can be defined as
the following form:
(z1> 501> T§11]> (ko115 "gn]’ [vgll’vgll]% (15815 8411))>
- + - + - +
Ng = (2 U120 Tora ) [K120 K512 ] [Vs120 V51210 €812 G120 30120 )s -oos , (1)
- + - + - +
()< [761p> Tﬁlp]’ [KMP’ Kélp]’ [U&p’ U61P]>> ar1p> Gy o avlp>)' d€0,1]
. = 7t - 1 &

V\:hereas_ thf k-th element (?k, <[T5}k) T [k P = > (thawk — aﬂk)2 (True standard deviation),
K51e)s (0512 V51105 {@rs Gyiie Gp1x ) in Ny is called the k-th g -1
NCCE and simply denoted as ng; = ([T T34l ()

(K510 K11)> Vo120 V31i]2s {@ripo Gaps @y1x2) for convenient
expression, where [75,,, 75 ] [K5,0 €314, and [vg,,, U5, ] are
the true, indeterminate, and false CIs of the corresponding
fuzzy sequences, and a1y, d.k and d,x are the true, in-
determinate, and false average values of the corresponding
fuzzy sequences, which are given by the following formulae:

- Prik Prik
(7500 Torx] = [“rlk - \/T%S&/b ang + \;%58/2} (2)
- Prik Prik
(K510 Kglk] = [“xlk - \/K%SM’ Ak t+ \/’(%35/2]’ (3)
- Poik Puik
(V516> Us1k] = |:avlk - —\/v% 8120 Apik + \/1%55/2]) (4)
1 i ;
Ak =— ) Thii (5)
kT gy g Tk
1 ik: ;
Ak =— ) K10 (6)
Wk gy & ik
1 Ik
al)lk = valk) (7)
k j=1

1 &, 2
Peik = \gk 1 Z (K;V“k - a,dk) (Indeterminate standard deviation),
=1

(9)

1 9k .
Dotk = \gk 1 z (“fvnk - avlk)z (False standard deviation).
=1

(10)

Then, ss/, in equations (2)-(4) is a specific value related to
a confidence level of (1 — &) x 100%, which is constructed as two-
sided ClIs for the confidence level of (1 — §) x 100% in the normal
distribution situation of fuzzy data. In actual applications, the
specific values of ss/, are usually specified as 1.645, 1.960, and
2.576 [27] subject to the confidence levels of 90%, 95%, and 99%
under the normal distribution condition of fuzzy data.

Example 1. Suppose that there is the SYNMVS Ny = {<z;,
(0.6,0.7, 0.8, 0.8), (0.1, 0.2, 0.2, 0.3), (0.2, 0.3, 0.3, 0.4)>, <z,
(0.5, 0.7, 0.8), (0.3, 0.3, 0.4), (0.2, 0.2, 0.2)>} in the two-
element set Z={z;, z,}. Using equations (1)-(10) at the
confidence level of 95% with ss,, =1.96, the SYNMVS N,
can be converted to the NCCS Ny, in the normal distribution
situation by the following calculation process.
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First, using equations (5)-(10), the average values and
standard deviations of the fuzzy sequences in N, are
yielded as follows:

a,, = 0.725,a,,, = 0.2,a,,, = 0.3,a,;, = 0.6667,a,,, = 0.3333,and a,, = 0.2;

(11)
Pe11 = 0.0957,p,,, = 0.0816,p,,; = 0.0816,p.,, = 0.1528,p,,, = 0.0577,and p,;, = 0.
Then, using equations (2)-(4), the true, false and in-
determinate Cls are obtained by the following calculations:
o, 0.0957 .0957
[T511> Ta11 ] =10.725 77 " 1.96,0.725 + i 1.96
=1[0.6312,0.8188],
_ 0.0816 0.0816
[Kou1o 1] = [ 0.2 = = 7= X 1.96,0.2+ = 7= x 1.96
=1{0.12,0.28],
_ 0.0816 0.0816
(5110311 = | 0.3 = = 7= X 1.96,0.3+ == x 1.96
=1{0.22,0.38],
(12)
o, 0.1528 1528
(o2 Tor2] = | 06667 = = == x 1.96,0.6667 + = == x 1.9
=[0.4938,0.8395],
o, 0.0577 .0577
(K120 Kg512] =0.3333 5 " 1.96,0.3333 + V.l 1.96
=[0.268,0.3987],
o, 0 0
[v812’v(§12] =10.2- % x 1.96,0.2 + % x 1.96
=1{0.2,0.2],
Lastly, using equation (1), the NCCS Ng; for §=0.05 is
obtained in the following:
Ny ={(z,, <[0.6312,0.8188], [0.12,0.28], [0.22,0.38] >, < 0.725,0.2,0.3> ), (2,
<[0.4938,0.8395], [0.268,0.3987], [0.2,0.2] >, <0.6667,0.3333,0.2>) | = 0.05}. (13)
For two NCCEs ngs; = ([T Thkls (K5 €51k) (K5ages K3a1)s (U Va1 > {@rate> Aages Ay )s their relationships

(V510 Vsik)>  $Opipo Gaio A1) and  ngy = ({7500 Thorls are given in the following.
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Definition 2. Set two NCCEs as ng = ({[T5y

Tuh K510 K1) [V10 Vi) €ariio o Auie?) and. gy =
- + - + - +

(s Tookd (5o K5kl WWsapo Vi 125 @i Aicaser Gt )-

Then, their relationships are given in the following:

- +
(110 K51ic) 2
Ak < Ak

1) M1k gnéfk © [T51k_’ T:§1k+]§ [ngk: ngkl’
(Koo Kol (V110 Va1 2 Wi Ui s
A1k 2 Aiok> and Ayik 2 Ayoks

(2) Ns1 = Mok (=1 1’151k§1’l(§2k and n(;len(;zk, i.e.,
- = + — g + gt
To1k = Tooko f&lk —fﬁzk’ Kotk = Ksoko Ksik = Koo
Usik = Usake Usik = Usako Grik = Gk ik = Bopo and
Apik = Gk
(3) My Ungy, =

- ~ + + - - + + — — + +
{16V T2 TorkV ookl (K51t K1 N5 [0511A Vs Vo1 N1 ;
A1V At A1k Nt 1 Nyfe)

(4) ngy Nngy =

- - + + - - + + — — + +
[r51e 50 To1 N s> (K51 Koapo K1V Ksare)s [V510V Vst Vg1 VVsaic ] ;
AN gt AtV yaior A1V o)

(5) M5 = (CT05ppo Vaiieds [1 = #5000 1= K5 )s (75000 Tl
Ay 1 — G 1) (Complement of ng;; ).

3. ESM between NCCSs

This part proposes ESM between NCCSs in a SYNMVS
circumstance.

Definition 3. Set Ns; = {ns11, Ns12 - - -» No1p} and Nz = {1551,
Ns22> - -+ Nozp) as two NCCSs, where ng); = ({75 Thi)s
(K1 K31 )> (V510 Va1l {Oriper i dp11?) - and - ngy =
(75 Toakds (Koo Ksic s [V Vi 1D > o Ao Aoie?)
(k=1,2,...,p)are two groups of NCCEs. Thus, ESM of two
NCCSs Ng; and N, is given as follows:

_ — 2 2 — — 2
(Towe = Took)” + (Touk = Tor) ™ + (Kprx = Kionge)

p

1
E5(Ng;, Nyy) = ; Z €xp
k=1

2 - — 2 2
+ (g = o)+ (Va1 = Vo)™ + (Vsrx = Visor)

—exp(-9) t/{l1 —exp(-9)}. (14)

+ (A — arzk)z + Bk = axzk)z + (@~ “uzk)2

Proposition 1. The ESM Es (Ns;, Ns,) reflects the following

characteristics:
(a) Es (Ns;, Nsz) =Es (Ns2 Ns1);
(b) 0<Es (N(Sl: N52) <I
(c) Es (N1, Ns2) =1 iff Ns; = N5z
(d) If Ns; € Nsy € Ngs for three NCCSs Ngj, Ny, and N3,

then Es (N51, N52) >Es (Nsj, N53) and Es (N, N63) >
Es (Ns1, Ns3) exist.

Proof

(a) This characteristic is clear.

(b) Since there are the following inequalities:
0< (T5u — ngk)z + (g — ngk)z + (Vg1 — ngk)z <3,
0< (5 — To) + (51 = o) + (Vg — Vi) <3, (15)
0= (arg = Arak)” + (@ = G)” + (@i — ap)* <3.

Thus, exp(0) =1<exp(—( Ak — aKZk)2+
(A — avzk)z)) <exp(—9) can hold. Therefore, the

value of equation (14) also belongs to [0, 1], i..,
0<Es (Ns1, Nsz) < 1.

(C) If Ns1 =Ns», then Ne1k = Ne2k (k= 1,2, ..., p) Thus,
o o A

t}iere e To = Topeo Tork = Tk Kouk = Koopo

Ksik = Ksoko Usik = Usak> Usik = Usak»  rik = Gn2ko

Ak = Ao and a, . = ay (k=1, 2, ..., p). In this
case, the value of exp (0) in equation (14) is equal to
1, and then Es (Ng;, Ngp) =1 exists.

If Es (Ns;, Ns;)=1, then the value of exp (0) in
equation (14) is equal to 1. Thus, 75 = Toy
Tok = Tooke Ksuk = Kook Kok = Koz Uik = Usieo
Usik = Usoko Grik = Gealo Gk = Gyapo AN Ay = Ay
exist. Therefore, there are ng = ns (k=1,2,..., p),
and then Ng;, = Nj,.

(d) If NjySN;,CNy,, there are ngyy € nisar S ngsp, and
- + - + - + - +
then [Taya Toul < [Tsz+k> Tool S [TSSk’IMk]’ [Kélk’félk]
2 (Koo Ko |2 [Ksgeo Kzl [Ws1pe0 V51112 (V3000 Vi 12
- +

(Vsko Vssk b Grik S Apak S A3 Gy 2 Aok 2 A, and
Ak = Apoi = Ayai (k=1,2, .., p). Thus, they have the
following inequalities:
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(Tou - ngk)z < (Tou - Taak)z’
(T5ik ngk)z < (Tou - Taak)z»
(o = Tgyc)z < (T51x Taak)z»
(o = T:;3k)2 < (5 — T53k)
(o1 — K(;zk)z < (Ko — K63k) >
(51 — ngk)z < (k5 Kaak)z’
(oo = Kgak)z < (ou = Kaak)z’
(re5ok — KgSk)Z < (K5 K63k)2’
(vou ~ ngk)z < (vou ~ Ug3k)2’ (16)
(Vo1 — ngk)z < (V51 v83k)2’
(Vo ~ Ug3k)2 < (Vsi — v83k)2’
(V5o = Ugsk)z < (V51 - vgsk)z’
(@ = @)’ < (rx — arsi)’
(@ = @)’ < (@ — i)’
(@ = Bk)” < (s — Bar)’s
(@ar = st)” < (s — Bar) s
(@1 = Bu2k)” < (Gyrk — Auar)
(@uase = ust)” < (s — Buai)

P
= Z P €Xp
k=1

Ey5 (N> Noy) + (K3, —

+ (arlk -

Proposition 2. The weighted ESM of Eyws (Ns;, Nsz) also
implies the following characteristics:

(@) Ews (Ns1» Ns2) =Ews (Nsz, Ns1)s

(b) 0<Ews (Nsp, Ns2) < 1;

(c) Ews (Nsp, Ns2)=1 iff No; = Nsz

(d) If Ns; € Ns» € N3 for three NCCSs Ngj, Nsp, and N3,

then EW5 (N51) N@Z)ZEW(s (N(?b Né‘3) and EW8 (N52)
Ns3) = Ews (Nsi, Ns3) exist.

In view of the same proof process of Proposition 1, we
can easily verify Proposition 2 (omitted).

4. GDM Model Using ESM of NCCSs

In multiple attribute GDM problems, there are usually a set
of potential alternatives Pa = {Pa,, Pa,, . .., Pag} and a set of
several important assessment attributes Ac={Ac;, Acy, ...,
Acp}. Taking into account the importance of various

Journal of Mathematics

Since exp (—z) for z>0 is a decreasing function, Es (N,
Nsz) 2Es (Nsi, Ness3), and Es (Nsz, Ns3)2Es (Nsp, Ne3)
can hold.

Considering the weight value of ngy (k=1,2, ..., p;i=1,
2), it is assigned by g€ [0, 1] for Y2 ¢, = 1. Thus, the
weighted ESM of NCCSs is presented by the measure
equation:

— — \2 2 - - \2
(Toi = Too)” + (Toie = Tom)” + | (Ka1k = Foat)
+ 32 —
Koo) + (Vo1k —
2
Arok)” + (Aerk =

ngk)2 + (U:;lk - v§2k)2 —exp(=9) /{1 - exp(-9)}.

axzk)z + (avlk - avZk)z
(17)

O
attributes, the weight vector of Ac is assigned by ¢ = (¢, ¢»,
. @p). In the assessment process, a team of experts/de-
cision makers can be invited to provide their evaluation
values of each alternative with respect to the attributes by
true, false, and indeterminate fuzzy values and to form
SVNMVS.
In the GDM problem, the GDM model can be
established and described by the following decision
procedures.

Step 1: A team of experts/decision makers gives their
evaluation values of each alternative Pa; with respect to
the attributes Acy, which are expressed by the true,
indeterminate, and  false  fuzzy  sequences
Tatik = (Thgier Tagitor - Tagit)s Kngik = (Khgir Kagiko -+
k), and vy = (Vg Vo oo Vi) (k=1,2, .., p3
i=1,2, ..., q) and constructed as the SYNMVS N, =
{npmin» containing SvNMVEs

_ _ 1 2 g
Matik = i Kntiteo Umtik? = <(Tgito Tagito -+ Tzvlfik)’

Mptizs « - o nMip}
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TaBLE 1: Decision results subject to the 90%, 95%, and 99% confidence levels.

8 Ss/2 Ews (Nsi» N*) Sorting order Optimal LTS
0.1 1.645 0.6237, 0.6526, 0.6268, 0.6033, 0.5286, and 0.5685 Pa, > Pas > Pa, > Pa, > Pag > Pas Pa,
0.05 1.96 0.6209, 0.6462, 0.6222, 0.5993, 0.5234, and 0.5603 Pay> Pasy > Pa, > Pay > Pag > Pas Pa,
0.01 2.576 0.6142, 0.6310, 0.6112, 0.5896, 0.5105, and 0.5408 Pa, > Pa, > Pas > Pa, > Pag > Pas Pa,

(K i Kagito -+ Kok )y (Uhgigo Vagigo -0 U9k )Y, and  then
establishes the decision matrix My = (1pik)g x -

Step 2: Using equations (2)-(10) corresponding to
some confidence levels of (1 -68) 100% with the cor-
responding values of ss,, the SYNMVSs N,; can be

converted to the NCCSs Ny;={nsi;, sins -- Noip}
containing  the = NCCEs  ng; = ({[T5 Thi)>
(K> Ksite)> Wi Vi) {Griger Ao o)) (1=1, 2, .., g5

k=1,2,..., p) for some levels of §. Thus, their decision
matrix is denoted as Ms= (15ik) g x p-

Step 3: Since the maximum interval-valued neu-
trosophic number and the maximum single-valued
neutrosophic number are <[1, 1], [0, 0], [0, 0]>, <1,
0, 0>, respectively, we can consider the most ideal
solution (the maximum NCCS) as N* ={(z;, < [1, 1], [0,
0], [0, 0]>, <1, 0, 0>), (z,, < [1, 1], [0, 0], [0, 0]>, <1, O,
0>), ..., (25, <[1, 1], [0, 0], [0, 0]>, <1, 0, 0>)}, then the
weighted ESM values of Eyys(Ns;, N*) are given by the
following equation:

P — 2 + 2 - \2 + \2
Ews(N&,N*)=Z¢k{exp<—< (Fae 1)+ (2= 1) )™ () >>_exp(_9>}/{1-exp<_9>}. (18)
k=1

— \2 2 2
+ (V5)? + (Vi) + (g — 1) + apy + asy

Step 4: The sorting order of the alternatives and the best
choice are given in terms of the weighted ESM values.

Step 5: End.
5. Actual GDM Example

This section provides an actual GDM example, which is
a choice case of LTSs in the circumstance of SYNMVSs, to
reflect the feasibility and rationality of the proposed GDM
model subject to the 90%, 95%, and 99% confidence levels.

A construction company wants to select the optimal LTS
from six potential LTSs for Shaoxing City in China, which
are denoted as a set of alternatives Pa = {Pa,, Pa,, Pas, Pay,
Pas, Pag}. Then, the six potential LTSs are detailed in the
following:

Pa;: Mortar rubble masonry pavements, retaining
walls, and surface water treatment;

Pa,: Surface-drainage works, grid beams, and moni-
toring measures;

Paj: Cut-off drains treatment, anchor antislide pile, and
monitoring measures;

Pa,: Cantilever piles, anchor antislide piles, and slope
protection;

Pas: Retaining walls, antislide piles, and cut-oft drain
treatment;

Pag: Antislide piles, reduce-loading works, and surface-
drainage works.

Regarding the assessment of the six alternatives, they
must meet four important attributes: Ac; (construction
cost), Ac, (technique condition), Ac; (treatment risk), and
Ac, (environment situation). Then, the weight vector
9=1(0.3, 0.22, 0.25, 0.23) is assigned to a set of the four
attributes Ac={Ac,, Acy, Acs, Acyl.

Based on the choice case of LTSs, the proposed GDM
model can be used for the GDM problem and addressed by
the following decision procedures.

Step 1: The three experts/decision makers invited by the
technical department give their evaluation values of
each alternative Pa; (j=1, 2, ..., 6) with respect to the
attributes Acy (k=1, 2, 3, 4), which are constructed as
the SYNMVS decision matrix:



r¢(0.6,0.6,0.6), (0.1,0.2,0.2), (0.1,0.15,0.15))
{(0.7,0.7,0.75), (0.1,0.2,0.25), (0.1,0.1,0.15))
{(0.6,0.6,0.65), (0.1,0.15,0.2), (0.15,0.15,0.2))
{(0.6,0.7,0.7), (0.1,0.2,0.25), (0.1,0.25,0.35))
{(0.6,0.7,0.75), (0.15,0.2,0.3), (0.15,0.2,0.3))

[ <(0.65,0.7,0.7), (0.1,0.2,0.25), (0.1,0.15,0.3))
{(0.7,0.8,0.85), (0.15,0.2,0.3), (0.1,0.15,0.2))
{(0.7,0.75,0.8), (0.2,0.2,0.25), (0.1,0.25,0.25))
{(0.75,0.8,0.8), (0.1,0.2,0.25), (0.1,0.2,0.25))
{(0.6,0.7,0.7), (0.15,0.2,0.25), (0.1,0.15,0.15))
{(0.6,0.7,0.7), (0.1,0.2,0.25), (0.2,0.25,0.3))
(0.65,0.7,0.7), (0.2,0.3,0.35), (0.15,0.2,0.2))

Step 2: Using equations (2)-(10) corresponding to the

confidence

levels of 90%, 95%, and 99% with the

specified values s5, =1.645, 1.96, and 2.576 for §=0.1,

M1 =

Ms_05 =

Mso0 =

([0.6000, 0.6000], [0.1118,0.2215], [0.1059, 0.1608]y, (0.6000, 0.1667,0.1333))

(€[0.6893,0.7441], [0.1108, 0.2559], [0.0892, 0.1441]), 0.7167,0.1833,0.1167))

1
I8

(€[0.5893,0.6441], [0.1025, 0.1975], [0.1392, 0.1941]), {0.6167,0.1500,0.1167))
I8

([0.6118,0.7215], [0.1108, 0.2559], [0.1177, 0.2823]), {0.6667, 0.1833,0.2000))

(€[0.6108,0.7559], [0.1441,0.2892], [0.1441, 0.2892]), (0.6833,0.2167,0.2167))
([0.6559,0.7107], [0.1108, 0.2559], [0.0845, 0.2822]), (0.6833,0.1833,0.1833))

([0.7108,0.8559], [0.1441, 0.2892], [0.1025,0.1975]), (0.7833, 0.2167, 0.1500))

([0.7025,0.7975], [0.1893, 0.2441], [0.1177,0.2823]), (0.7500, 0.2167, 0.2000))

0.1108, 0.2559], [0.1108,0.2559]), (0.7833, 0.1833,0.1833))

([0.6118,0.7215], [0.1525, 0.2475], [0.1059,0.1608]), {0.6667, 0.2000, 0.1333))

([0.6118,0.7215], , [0.2025,0.2975]), (0.6667, 0.1833,0.2500))

(

(
(¢[0.7559,0.8107],
(

( 0.1108, 0.2559
(

,[0.1559,0.2108]), €0.6833, 0.2833,0.1833))
[0.1007, 0.1660]», €0.6000, 0.1667,0.1333))

([0.6559,0.7107], [0.2108, 0.3559
(¢[0.6000, 0.6000], [0.1013,0.2320
([0.6840, 0.7493], [0.0969, 0.2698], [0.0840, 0.1493], {0.7167,0.1833,0.1167))

[0.1340,0.1993]), 0.6167, 0.1500,0.1167))

[
[
(€[0.5840, 0.6493], [0.0934, 0.2066
[
[ [0.1302,0.3031]), 0.6833,0.2167,0.2167))

1,
1,
1,
(€[0.6013,0.7320], [0.0969, 0.2698], [0.1020, 0.2980], (0.6667, 0.1833,0.2000)
(€[0.5969, 0.7698], [0.1302,0.3031],
1,

([0.6507, 0.7160], [0.0969,0.2698], [0.0656,0.3011], (0.6833,0.1833,0.1833))
(€[0.6969, 0.8698], [0.1302,0.3031], [0.0934, 0.2066], {0.7833,0.2167,0.1500)
(€[0.6934, 0.8066], [0.1840,0.2493], [0.1020,0.2980]y, {0.7500, 0.2167, 0.2000)
([0.6013,0.7320], [0.1434, 0.2566], [0.1007, 0.1660], {0.6667, 0.2000, 0.1333))
(€[0.6013,0.7320], [0.1434, 0.2566], [0.1007, 0.1660], {0.6667, 0.2000, 0.1333))
(€[0.6013,0.7320], [0.0969,0.2698], [0.1934,0.3066], {0.6667, 0.1833,0.2500)
(¢[0.6507,0.7160], [0.1969, 0.3698], [0.1507, 0.2160]y, {0.6833,0.2833,0.1833))

(¢[0.6000, 0.6000], [0.0808, 0.2525], [0.0904, 0.1763], (0.6000, 0.1667,0.1333))
([0.6737,0.7596], [0.0697,0.2969], [0.0737, 0.1596], (0.7167,0.1833,0.1167))

[

([0.5737,0.6596], [0.0756, 0.2244], [0.1237, 0.2096]), 0.6167,0.1500,0.1167))

([0.5808, 0.7525], [0.0697, 0.2969], [0.0712, 0.3288]), 0.6667, 0.1833,0.2000))

(€[0.5697,0.7969], [0.1031,0.3303], [0.1031, 0.3303]), 0.6833,0.2167,0.2167))
(€[0.6404,0.7263], [0.0697, 0.2969], [0.0285, 0.3381]), 0.6833,0.1833,0.1833))

(€[0.6697, 0.8969], [0.1031, 0.3303], [0.0756,0.2244], (0.7833,0.2167,0.1500)

(€[0.6756, 0.8244], [0.1737,0.2596], [0.0712, 0.3288], (0.7500, 0.2167, 0.2000)

(€[0.7404, 0.8263], [0.0697,0.2969], [0.0697, 0.2969], (0.7833,0.1833, 0.1833)

(€[0.5808, 0.7525], [0.1256, 0.2744

(€[0.5808, 0.7525], , [0.1756,0.3244], €0.6667,0.1833,0.2500)

)

)

, [0.0904,0.1763]), €0.6667,0.2000, 0.1333))
0.0697, 0.2969 )
)

(€[0.6404, 0.7263], [0.1697,0.3969], [0.1404,0.2263], (0.6833,0.2833, 0.1833)
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{(0.6,0.65,0.65), (0.2,0.2,0.25), (0.1,0.1,0.15))
{(0.75,0.8,0.8), (0.1,0.2,0.25), (0.15,0.2,0.25))
{(0.7,0.7,0.8), (0.1,0.2,0.25), (0.1,0.15,0.2))
{(0.75,0.75,0.8), (0.2,0.2,0.25), (0.1,0.2,0.25)) "
{(0.7,0.7,0.75), (0.2,0.3,0.3), (0.15,0.2,0.25))
{(0.6,0.7,0.75), (0.1,0.2,0.25), (0.15,0.2,0.25))
{(0.8,0.8,0.8), (0.15,0.15,0.2), (0.15,0.2,0.2)) 7
{(0.75,0.8,0.8), (0.1,0.2,0.3), (0.1,0.25,0.35))
{(0.65,0.7,0.8), (0.15,0.2,0.2), (0.15,0.2,0.25))
{(0.65,0.7,0.75), (0.15,0.2,0.2), (0.15,0.2,0.25))
{(0.5,0.65,0.7), (0.1,0.2,0.35), (0.2,0.2,0.25))
{(0.6,0.8,0.8), (0.1,0.2,0.4), (0.15,0.15,0.2)) |

0.05, and 0.01, the SYNMVS decision matrix M, can be

converted to the NCCS decision matrix Ms:

(€[0.6059, 0.6607], [0.1893,0.2441], [0.0892, 0.1441], {0.6333,0.2167,0.1167))

([0.7559,0.8107], [0.1108, 0.2559], [0.1525, 0.2475]), (0.7833,0.1833,0.2000))

([0.6785,0.7882], [0.1108, 0.2559], [0.1025, 0.1975]), {0.7333,0.1833,0.1500))

(€[0.7392,0.7941], [0.1893,0.2441], [0.1118, 0.2215]), {0.7667,0.2167,0.1667))

(€[0.6893,0.7441], [0.2118,0.3215], [0.1525,0.2475]), {0.7167,0.2667, 0.2000))
(€[0.6108,0.7559], [0.1108, 0.2559], [0.1525, 0.2475], (0.6833,0.1833,0.2000))

(¢[0.8000,0.8000], [0.1392, 0.1941], [0.1559,0.2108]), {0.8000,0.1667,0.1833)) ] "

(€[0.7559, 0.8107], [0.1050, 0.2950], [0.1138, 0.3528], (0.7833,0.2000,0.2333)

(€[0.6441,0.7892], [
(€[0.6525, 0.7475], [0.1559,0.2108], [0.1525, 0.2475], {0.7000, 0.1833,0.2000)

)
)
)
,0.0972,0.3362], [0.1893,0.2441]Y, {0.6167,0.2167,0.2167))

[ 1
[ ]
0.1559,0.2108], [0.1763,0.2475], (0.7167, 0.1833,0.2000)
[ ]
(€[0.5178,0.7155 I ]
[

,[0.0883,0.3784], [0.1392,0.1941]), {0.7333,0.2333, 0.1667))
, [0.1840, 0.2493], [0.0840, 0.1493]), 0.6333,0.2167,0.1167))

(€[0.6237,0.8430

(<[0.6007, 0.6660 [

([0.7507, 0.8160], [0.0969, 0.2698], [0.1434,0.2566] ), 0.7833,0.1833, 0.2000))
([0.6680, 0.7987], [0.0969, 0.2698], [0.0934, 0.2066] ), 0.7333,0.1833,0.1500))
({[0.7340,0.7993 [

[

({[0.6840, 0.7493

)
)
, [0.1840,0.2493], [0.1013,0.2320], {0.7667, 0.2167,0.1667))
,[0.2013,0.3320], [0.1434, 0.2566], €0.7167, 0.2667, 0.2000))
] )

(€[0.5969, 0.7698], [0.0969,0.2698], [0.1434, 0.25661, {0.6833,0.1833,0.2000)

%, €0.8000,0.1667, 0.1833))

([0.8000, 0.8000], [0.1340, 0.1993], [0.1507, 0.2160

([0.7507, 0.8160], [0.0868, 0.3132], [0.0909, 0.3757]), 0.7833,0.2000, 0.2333))

»,€0.7167,0.1833,0.2000))

[

[
(€[0.6302,0.8031], [0.1507,0.2160], [0.1717,0.2566
[

({[0.6434,0.7566], [0.1507, 0.2160], [0.1434,0.2566], 0.7000, 0.1833, 0.2000))

7,€0.6167,0.2167,0.2167))

({[0.4989, 0.7344], [0.0743, 0.3591], [0.1840, 0.2493

, [0.0605,0.4062], [0.1340, 0.1993]), €0.7333,0.2333,0.1667))
,[0.1737,0.2596], [0.0737,0.1596], (0.6333,0.2167,0.1167)

(<[0.6027,0.8640
(¢[0.5904,0.6763
(¢[0.7404, 0.8263], [0.0697, 0.2969], [0.1256,0.2744]), (0.7833,0.1833, 0.2000)
(€[0.6475, 0.8192], [0.0697,0.2969], [0.0756, 0.2244]), €0.7333,0.1833,0.1500)
(¢[0.7237,0.8096], [0.1737, 0.2596], [0.0808,0.2525]), {0.7667, 0.2167, 0.1667)

,[0.1808, 0.3525], [0.1256, 0.2744] ), {0.7167, 0.2667, 0.2000)

)
)
)
)
([0.6737,0.7596 )
)

, [0.0697,0.2969], [0.1256, 0.2744], {0.6833,0.1833,0.2000)
3, ¢0.8000, 0.1667, 0.1833)

(10.5697,0.7969

({[0.8000,0.8000], [0.1237, 0.2096], [0.1404, 0.2263

({[0.7404, 0.8263], [0.0513, 0.3487], [0.0462, 0.4205] ), {0.7833, 0.2000, 0.2333)

({[0.6031, 0.8303 »,<0.7167,0.1833,0.2000)

({[0.6256,0.7744], [0.1404, 0.2263], [0.1256, 0.2744] ), {0.7000, 0.1833, 0.2000)

({[0.4619,0.7715], [0.0295, 0.4038], [0.1737,0.2596] ), {0.6167, 0.2167,0.2167)

[ )
[ )
0.1404,0.2263], [0.1628,0.2744 )
[ )
[ )
[ )

(€[0.5616,0.9051], [0.0062, 0.4605], [0.1237, 0.2096], {0.7333,0.2333,0.1667)

(20)
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TaBLE 2: Standard deviations of all the measure values and the sorting results of the six alternatives.

Measure method Measure value

Standard deviation of

Sorting result
measure values

Ews (Ngi» N*) for §=0.1

Rw (Ncb N*) [23]

0.6237, 0.6526, 0.6268, 0.6033, 0.5286, and 0.5685
Ews (N5 N*) for §=0.05 0.6209, 0.6462, 0.6222, 0.5993, 0.5234, and 0.5603
Ews (Ng, N*) for §=0.01 0.6142, 0.6310, 0.6112, 0.5896, 0.5105, and 0.5408
0.9818, 0.9842, 0.9830, 0.9814, 0.9756, and 0.9793

0.0450 Pa, > Pas > Pa, > Pa, > Pas > Pas
0.0456 Pa, > Pas > Pa, > Pa, > Pag > Pas
0.0472 Pa, > Pa, > Pa; > Pa, > Pag > Pas
0.0031 Pa, > Pas > Pa, > Pay > Pag > Pas

Step 3: Using equation (18) for the confidence levels of
90%, 95%, and 99%, the weighted ESM values of Eyys
(Nsi» N*) are given in Table 1.

Step 4: The sorting orders of the alternatives and the
optimal LTS are given in terms of the weighted ESM
values, which are also shown in Table 1.

In view of the decision results in Table 1, different confidence
levels can make the sorting orders changeable. Therefore, it is
clear that the sorting results reveal some sensitivity and flexibility
to different confidence levels. Then, the optimal LTS is Paj.

6. Comparative Investigation

To conveniently compare the proposed GDM model with the
related GDM model [23] in the circumstance of SYNMVSs, we
first introduced the notion of C-SVNS N,;= {r;1, ficios - - > Meip}
including the p consistency single-valued neutrosophic elements
e = (laiks Ayt Byi) > (Crigs i Coi?)» Which are trans-
formed from SVNMVSs by the average values of equations
(5)-(7) and the following consistency degrees of ¢, ¢, and ¢,
[23]:

l Ik . 2
Ca=1-pa=1- P Z (T{Vﬁk - aﬁk) (True consistency degree), (21)
k™ =1
1 Ik . 2
ik =1-pa=1- ﬁ Z (KJMik - a,dk) (Indeterminate consistency degree), (22)
k™t j=1
1 Ik i 5 )
Coie =1 = pyir = o1 Z (vMik - aw-k) (False consistency degree). (23)
=

Since the maximum single-valued neutrosophic number
and the most ideal consistency single-valued neutrosophic
number (the complete consistency of group arguments) are
<1, 0, 0> and <1, 1, 1>, respectively, we can consider the
most ideal solution/C-SvNS as N* ={(z,;, <1, 0, 0>, <1, 1,
1>), (25, <1,0, 0>, <1, 1, 1>), .. ., (zp, <1,0,0>, <1, 1, 1>)},
then the weighted correlation coefficient of C-SvNSs is in-
troduced in the following [23]:

p p
Y it Pk + Doy Pr (Coik + Coik + Cuik)
P 2 2 2 2 2 2\
2\/Zk=1¢k(“rik A T Ot ot C t Crik)

(24)

R, (N, N") =

ci>

In view of the existing GDM model using the cor-
relation coefficient of C-SvNSs in the scenario of
SYNMVSs [23], we can utilize it in the above GDM
example.
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First, using equations (5)-(7) and (21)-(23), SYNMVSs
are transformed into C-SvNSs, which are constructed as the
following C-SvNS matrix:

r ¢ (0.6000, 1.0000), (0.1667,0.9423), (0.1333,0.9711))
{(0.7167,0.9711), (0.1833,0.9236), (0.1167,0.9711))
{(0.6167,0.9711), (0.1500, 0.9500), (0.1667,0.9711))
{(0.6667,0.9423), (0.1833,0.9236), (0.2000, 0.9134))
{(0.6833,0.9236), (0.2167,0.9236), (0.2167,0.9236))

[ €(0.6833,0.9711), (0.1833,0.9236), (0.1833,0.8959))

{(0.7833,0.9236), (0.2167,0.9236), (0.1500, 0.9500))

{(0.7500, 0.9500), (0.2167,0.9711), (0.2000, 0.9134))

{(0.7833,0.9711), (0.1833,0.9236), (0.1833,0.9236))

{(0.6667,0.9423), (0.2000, 0.9500), (0.1333,0.9711))

{(0.6667,0.9423), (0.1833,0.9236), (0.2500, 0.9500))

{(0.6833,0.9711), (0.2833,0.9236), (0.1833,0.9711))

Then, using equation (24), we give the weighted cor-
relation coeflicient values

R, (N, N") =0.9818,
R, (N, N*) =0.9842,
R, (N, N™) =0.9830, (26)
R, (N, N") =0.9814,
R, (N, N™) = 0.9756,
R, (N N*) =0.9793.

Finally, the sorting order of the six alternatives is
Pa, > Paz > Pa, > Pay > Pag > Pas and the optimal LTS is Pas,.

For the convenient comparison of the decision results in
light of the situations of C-SvNSs and NCCSs under the
SYNMVS circumstance, we give the standard deviations of
the measure values corresponding to the proposed GDM
model and the existing GDM model [23] to indicate the
difference degree of the measure values, and then the
standard deviations and the sorting results of the six al-
ternatives are shown in Table 2.

In view of the sorting results of the six alternatives in
Table 2, the proposed GDM model using the weighted ESM
for §=0.1, 0.05 and the existing GDM model using the
weighted correlation coeflicient [23] reflect their same
sorting results, but the sorting result of the proposed GDM
model using the weighted ESM for § =0.01 is different from
that of the existing GDM model [23]. Since the proposed
GDM model contains different sorting orders depending on
different confidence levels of the true, indeterminate, and
false fuzzy sequences in the SYNMVS setting, it reveals the
decision flexibility and credibility/reliability in the situation
of NCCSs from a probabilistic estimation perspective; while
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{(0.6333,0.9711), (0.2167,0.9711), (0.1167,0.9711))
{(0.7833,0.9711), (0.1833,0.9236), (0.2000, 0.9500))
{(0.7333,0.9423), (0.1833,0.9236), (0.1500, 0.9500))
{(0.7667,0.9711), (0.2167,0.9711), (0.1667,0.9423)) "
{(0.7167,0.9711), (0.2667, 0.9423), (0.2000, 0.9500))
{(0.6833,0.9236), (0.1833,0.9236), (0.2000, 0.9500))
{(0.8000, 1.0000), (0.1667,0.9711), (0.1833,0.9711)) T
{(0.7167,0.9236), (0.1833,0.9711), (0.2000, 0.9500))
{(0.7167,0.9236), (0.1833,0.9711), (0.2000, 0.9500))
{(0.7000, 0.9500), (0.1833,0.9711), (0.2000,0.9500) |
{(0.6167,0.8959), (0.2167, 0.8742), (0.2167,0.9711))
{(0.7333,0.8845), (0.2333,0.8472), (0.1667,0.9711)}

(25)

)
)
)
)

the existing GDM model [23] cannot reflect the decision
flexibility and credibility in the situation of C-SvNSs al-
though it contains consistency levels of the true, in-
determinate, and false fuzzy sequences in the SVNMVS
setting. Therefore, the proposed GDM model reveals ob-
vious superiority over the existing GDM model [23] in GDM
flexibility and credibility.

In view of the standard deviations of the different
measure methods in Table 2, it is obvious that the proposed
ESM method for NCCSs reveals larger standard deviations
of the measure values than the weighted correlation co-
efficient of C-SvNSs [23]. In light of the concept of the
standard deviation, the proposed weighted ESM method of
NCCSs has better discriminative ability than the weighted
correlation coefficient of C-SvNSs since the measure values
of the weighted correlation coefficient imply smaller dif-
ference. Therefore, the proposed ESM of NCCSs is superior
to the weighted correlation coefficient of C-SvNSs in the
SVNMYVS setting.

Furthermore, existing probabilistic neutrosophic GDM
models [17-21] are difficultly applied to the above GDM
example with small-scale group arguments because they lack
some confidence levels of the neutrosophic evaluation
values, so as to difficultly ensure the credibility and ratio-
nality of the probability neutrosophic values and the de-
cision results in the small-scale GDM process, while the
proposed GDM model can guarantee some confidence levels
of the neutrosophic evaluation values from a probability
estimation perspective in the circumstance of SYNMVSs and
reveal its usability and suitability in small-scale GDM
problems. Therefore, the proposed GDM model is obviously
superior to the probabilistic neutrosophic GDM models
[17-21] with respect to the credibility and rationality of
GDM in a SYNMVS circumstance.
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7. Conclusion

From a probability estimation perspective in a circumstance
of SYNMVSs, this article presented the definition of NCCS,
which was obtained by a conversion technique from
SVNMVS to NCCS based on the average values and Cls of
true, false, and indeterminate fuzzy sequences in SYNMVS.
Since NCCS is composed of the average values and Cls, this
information representation can ensure that the true, false,
and indeterminate fuzzy values in SYNMVSs fall within their
ClIs subject to some confidence levels. Then, we proposed the
ESM of NCCs and its GDM model corresponding to some
confidence levels of (1 — &) x 100% (usually using 90%, 95%,
and 99% confidence levels). Moreover, the proposed GDM
model was applied to a choice problem of LTSs in a cir-
cumstance of SVMVSs as an actual case in Shaoxing City,
China, to reveal its usability and suitability in actual GDM
problems. Compared with the related GDM models in the
setting of SYNMVSs [17-23], the proposed GDM model
indicated the following superiorities over existing methods:

(a) NCCS implies obvious merits in the conversion
method based on the average values and ClIs cor-
responding to some confidence levels under the
circumstance of SYNMVSs because it makes the
information expression more confident and rea-
sonable in light of the probability estimation of fuzzy
data (small-scale sample data with normal
distribution).

(b) The proposed weighted ESM method of NCCSs has
better discriminative ability than the weighted cor-
relation coefficient method of C-SvNSs in the
identification process of their measure values.

(c) The proposed GDM model is more credible and
more reasonable subject to some confidence levels of
(1-6) % 100% than the existing GDM models under
the circumstance of SYNMVSs.

(d) The proposed GDM model reveals the decision
flexibility and credibility in the GDM application of
the LTS selection problem.

In this study, the proposed conversion technique and
GDM model are only suitable for GDM problems in the
normal distribution situation of the fuzzy data in SYNMVSs,
but cannot solve GDM problems in other distribution sit-
uations of the fuzzy data in SYNMVSs, which shows the
limitations/insufficiencies of this paper. In future research,
we shall further extend the proposed GDM model to GDM
models corresponding to lognormal, logarithmic, and ex-
ponential distributions of fuzzy data and their applications
in the situation of SYNMVSs.
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