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Te objective of ranked set sampling is to gather observations from a population that is more likely to cover the population’s full
range of values. In this paper, the ordered ranked set sample is obtained using the idea of order statistics from independent and
nonidentically distributed random variables under progressive-stress accelerated life tests. Te lifetime of the item tested under
normal conditions is suggested to be subject to the Rayleigh distribution with a scale parameter satisfying the inverse power law
such that the applied stress is a nonlinear increasing function of time. Considering the type-II censoring scheme, one-sample
prediction for censored lifetimes is discussed. Numerous point predictors including the Bayes point predictor, conditional median
predictor, and best unbiased predictor for future order statistics are discussed. Additionally, conditional prediction intervals for
future order statistics are also studied. Te theoretical fndings reported in this work are shown by illustrative examples based on
simulated data as well as real data sets. Te efectiveness of the prediction methods is then evaluated by a Monte Carlo
simulation study.

1. Introduction

Modern devices have been designed and engineered to
function fawlessly for an extended period of time under
regular operating settings thanks to ongoing advancements
in manufacturing technology.

As a result, when conducting traditional life research
experiments, manufacturers struggle to provide sufcient
information about the failure times for their products.
Because of this, accelerated life tests (ALTs) or partial ALTs
(PALTs) are used to quickly obtain the required information
regarding product failure times and establish the relation-
ship between product life and external stress variables. In
ALTs, products are checked under situations that are more
stressful than usual to discover early failure times, whereas in
PALTs, they are checked in both normal and accelerated

situations. Stress levels higher than those used during
manufacturing are applied to products during ALTs and
PALTs. Te observed failures of the products collected from
such ALTs or PALTs are used to predict how long they will
live under normal conditions of use.

Several techniques, including progressive stress, step
stress, and constant stress, can be used to apply stress to
ALTs. For further explanation on ALTs and PALTs, one can
refer to [1–15].

Te researcher or experimenter may not be able to obtain
complete data on the failure times of the units in the test trial
as the units may be broken or excluded from the test prior to
failure or when the unit is canceled. Censored data are those
obtained from such situations. Censoring may have the
signifcant beneft of reducing the total cost and duration of
the experiment. Type-I and type-II censoring are the two
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methods that are frequently employed. In type-I censoring,
the number of observed failures is a random variable (RV),
while the experimental time is fxed. In contrast, the ex-
perimental time is an RV in type-II censoring, whereas the
observed failure rate is fxed. A number of studies, see
[16–18], have covered these two CSs in some detail.

Prediction is viewed as a signifcant problem in statistical
inference. It has numerous uses in reliability, quality control,
engineering, business, meteorology, medical sciences, and
other felds as well. It is the challenge of predicting the values
of unobserved (future) observations or functions of such
observations from currently accessible (informative) ob-
servations. Two frequently used prediction strategies are the
one- and two-sample techniques. An interval predictor and
a point predictor are both examples of predictors. It has been
discussed by a number of authors, including [5, 7, 19–22].

Te ranked set sampling method was proposed in [23] as
a more accurate way to compute the mean pasture yield.
When determining the population mean, a theoretical base
for this sampling method was enhanced and developed in
[24]. It could be applied to choose sample units more
economically for a test or study. It is frequently recom-
mended when ordering sample units is cheap and simple
and measuring sample units is very expensive or compli-
cated. It could be used in a variety of disciplines, including
agriculture, biology, ecology, engineering, medicine, and
social studies [25]. Te steps listed below could be used to
obtain a ranked set sample (RSS) with size n from the
provided population:

(1) Simple random samples (SRSs), each of the same size
n, are created by selecting n2 items from the provided
population.

(2) Te items are ranked, according to the variable of
interest, for each sample. Several techniques, in-
cluding expert opinion, readily available in-
formation, a person’s professional judgment, and
other information, may be used in ranking the items.

(3) A single item is measured in each of the ranked
samples.

(4) A sample is chosen for actual measurement as
follows:

(i )Te smallest item, say X11, is measured in the
frst sample, and the other items are not
measured.

(ii) Te second smallest item, say X22, is measured
in the second sample, and the other items are
not measured.

(iii) Tis approach is repeated until the greatest item
of the latest sample, say Xnn, is measured.

(5) Te procedure described above is referred to as a one
cycle RSS with size n, and the data obtained are
shown by XRSS � X11, X22, . . . , Xnn􏼈 􏼉. It is observed
that X11, X22, . . . , Xnn are independent RVs with
nonidentical distributions (IRVNIDs).

(6) Te preceding steps of K cycles are repeated to
obtain an RSS of sizeKn extracted fromKn2 items.
Te resulting data are denoted as

X(K)RSS � X1,11, X1,22, . . . , X1,nn, . . . . . . . . . . . . , XK,11, XK,22, . . . , XK,nn􏽮 􏽯. (1)

Te ordered RSS (ORSS) was devised in [26], in which
the authors demonstrated how much more efective ORSS is
than SRS. It can be achieved by ordering the RSS,
X11, X22, . . . , Xnn􏼈 􏼉, in ascending order of magnitude. Tis
proposal was based on the idea of order statistics from
IRVNID.

Several researchers have investigated the estimation and
prediction problems on the basis of the SRS and ORSS of
various distributions. Te distribution-free prediction in-
tervals for record values and future order statistics were
constructed in [27]. In [28, 29], it was investigated how to
predict unobserved data under a type-II censoring scheme
(CS) and how to estimate the parameters of Rayleigh and
Pareto distributions using Bayesian methods. Based on type-
I CS, the step-stress ALT data were used in [30, 31] to es-
timate the parameters of Rayleigh and exponential distri-
butions. Te Bayesian method was explained in [32] to
estimate the parameters taken into consideration using
progressive-stress ALT (PRSALT) data that are exponen-
tially distributed.

Due to the importance of predictions, ALTs, and RSSs in
many areas as mentioned above, many experimenters and

engineers would like to obtain the failure times of some
items in a short time. Additionally, they may need to predict
future failure times for some items that cannot be obtained
in the normal state of the experiment. Tese requirements
and their importance motivate us to consider this article in
which we apply the PRSALT, with a nonlinear increasing
function of time, to items whose lifetimes under normal
condition stress are supposed to follow the Rayleigh dis-
tribution (RD). ORSSs are obtained using the idea of order
statistics from IRVNID under PRSALTs.

Under type-II censoring, numerous point predictors
including the Bayes point predictor (BPPRR) (using squared
error (SER), linear-exponential (LEX), and general entropy
(GEN) loss functions), conditional median predictor
(CMPR), and best unbiased predictor (BUPR) for future
order statistics are discussed. Furthermore, conditional
prediction intervals (CPIs) for future order statistics are also
studied.

Te remaining sections are arranged as follows: Section 2
discusses the ORSS under the PRSALT.Temodel and type-
II censoring are explained in Section 3. Section 4 discusses
some point predictors and CPIs of future order statistics. In
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Section 5, representative examples are provided. In Sections
6 and 7, respectively, simulation studies and conclusions are
presented.

2. Description of the Model under PRSALT

Te RD was originally proposed in [33] in the feld of
acoustics; since its inception, several researchers have ap-
plied the distribution in numerous branches of technology
and science. It is extensively applied in communication
engineering and oceanography to model wave heights.
Furthermore, it has a wide range of applications in lifetime
data analysis, particularly in survival analysis and reliability
theory. Te fact that the RD’s failure rate is a linearly in-
creasing function of time at a constant rate makes it a good
model for the lifespan of parts and objects that deteriorate
quickly over time. As a result, compared to the exponential
distribution, the RD’s reliability function deteriorates over
time at a signifcantly faster rate.

Assume that an item’s lifetime under normal use is
represented by the RV X, which is subject to RD with a scale
parameter of α> 0. Ten, the cumulative distribution
function (CDF), F(x), of X is represented by

F(x) � 1 − exp −
x

α
􏼒 􏼓

2
􏼢 􏼣, x> 0. (2)

2.1. Progressive-Stress Model Based on the Rayleigh
Distribution. Previous studies of the PRSALT have in-
dicated that the imposed stress is expressed as an increasing
linear function of time, see [5, 6, 9]. While in some papers
such as [7, 11, 34], the authors suggested PRSALTs taking
into account that the imposed stress is represented as
a nonlinear increasing function of time. Te PRSALT is
performed under the following fundamental assumptions.

2.1.1. Assumptions

(1) Te lifetime of an item under design stress is gov-
erned by RD with CDF (2).

(2) Te imposed stress ζ(x) is a nonlinear increasing
function of time x with the form, see Figure 1,

ζ(x) �
��
d

√
x

c
, c, d> 0. (3)

(3) Te relation between the scale parameter α in CDF
(2) and the imposed stress ζ is controlled by the
inverse power law with two positive parameters θ
and λ, i.e.,

α(x) � α(ζ(x)) �
1

�
λ

√
[ζ(x)]

θ. (4)

(4) Te testing process starts by dividing the N testable
items into B (> rbin1) groups, each of which has n

items and is administered under PRSALT. Tus,

ζp(x) �
���
dp

􏽱
x

c
, p � 1, . . . ,B, d1 <d2 < . . . < dB.

(5)

(5) For p � 1, . . . ,B, the n failure times in group p,
indicated by Xp,1, Xp,2, . . ., Xp,n (with realizations
xp,1, xp,2, . . ., xp,n), are statistically independent RVs.

(6) Te items’ failure mechanisms remain unchanged
under any level of stress.

(7) Cumulative exposuremodel [1] links the distribution
under accelerated stress to that under normal stress.

Based on CDF (2) and according to Assumptions 2, 3,
and 7, the cumulative exposure model, Ω(x), can be
expressed as

Ω(x) � 􏽚
x

0

dv

α(ζ(v))
. (6)

Te CDF under PRSALT, G(x), takes the form

G(x) � F(ζ(x)), (7)

where the function F(.) is the assumed CDF with α � 1.
Cumulative exposure model (6), according to As-

sumptions 3 and 4, becomes

Ωp(x) �

�
λ

√
d
θ/2
p x

cθ+1

cθ + 1
, p � 1, . . . ,B. (8)

Using CDFs (2) and (7), the CDF Gp(x) for an item
presented in group p under PRSALT takes the form

Gp(x) � 1 − exp −
x

ϑp

􏼠 􏼡

β
⎡⎣ ⎤⎦, x> 0, β> 2, ϑp > 0􏼐 􏼑. (9)

One can notice that CDF (9) concerns a Weibull dis-
tribution with

c= 0.5
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Figure 1: Te relation between the stress and time.
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β � 2(cθ + 1)

ϑp �
β2

4λdθ
p

⎛⎝ ⎞⎠

1/β

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (10)

Te corresponding probability density function (PDF),
gp(x), and the hazard rate function (HRF), Υp(x), of (9) are
given, respectively, by

gp(x) �
β
ϑβp

x
β− 1 exp −

x

ϑp

􏼠 􏼡

β
⎡⎣ ⎤⎦, x> 0, (11)

Υp(x) �
β
ϑβp

x
β− 1

, x> 0. (12)

PDF (11) and HRF (12) are plotted in Figure 2 for
θ � 1.5, λ � 2.0, and diferent values of c and d. It can be
noticed that PDF (11) is always unimodal, while HRF (12) is
always increasing since β> 2.

2.2. Ranked Set Sampling with Accelerated Life Tests under
Progressive Stress. Te next algorithm can be applied to
obtain an RSS with size N under PRSALTwithB (>1) levels
of stress:

(1) Fixed values for N, n, andB are assigned, such that
N � B × n.

(2) Bn2 items are chosen from the provided pop-
ulation, and they are divided intoBn SRSs, all of the
same size n.

(3) j � 1 is set.
(4) Te N items to be examined are divided intoB (>1)

groups, as is previously indicated in Section 1. Each
group is an SRS consisting of n items and is per-
formed under PRSALT with stress levels
ζp(x), p � 1, . . . ,B.

(5) Te SRSs in all groups are ordered without practical
measurement.

(6) In the p-th ordered SRS, p � 1, . . . ,B, a single item
is measured.

(7) In group p, the j-th smallest item, say
Xp,jj, p � 1, . . . ,B, is measured.

(8) j � j + 1 is set. If j � n + 1, then the previous steps
are halted, and it is suggested that we proceed to
Step 10. If not, the smallest item in group p, say
Xp,j+1j+1, p � 1, . . . ,B, is measured.

(9) Steps 4–8 are iterated.
(10) An RSS of size N is now generated under PRSALT

as follows:

X1,11 <􏽮􏽮 X1,12 < . . . < X1,1n􏽯 . . . XB,11 <􏽮 XB,12 < . . . < XB,1n􏽯􏽯

X1,21 <􏽮􏽮 X1,22 < . . . < X1,2n􏽯 . . . XB,21 <􏽮 XB,22 < . . . < XB,2n􏽯􏽯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

X1,n1 <􏽮􏽮 X1,n2 < . . . < X1,nn􏽯 . . . XB,n1 <􏽮 XB,n2 < . . . < XB,nn􏽯􏽯

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

⏟
Judgment Rank

⇒

X1,11􏽮 , . . . , XB,11,

X1,22, . . . , XB,22,

⋮ ⋮ ⋮

X1,nn, . . . , XB,nn􏽯.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⏟
RSS

(13)

(11) Te method described in the previous steps is called
a one-cycle RSS of size N under PRSALT, and the
outcomes are shown by

XRSS �

X1,11􏽮 , X2,11 . . . , XB,11,

X1,22, X2,22, . . . , XB,22,

⋮ ⋮ ⋮ ⋮

X1,nn, X2,nn, . . . , XB,nn􏽯.

(14)

For instance, X3,55 denotes the ffth smallest item in
the ffth sample presented in the third group. Ad-
ditionally, the elements of the RSS are IRVNID.

(12) Steps 2–9 of K cycles are iterated to obtain an RSS
of size KN. Te obtained data are shown by

X(K)RSS �

X1,1,11, X1,2,11, . . . , X1,B,11􏽮 􏽯􏽮 , X1,1,22, X1,2,22, . . . , X1,B,22􏽮 􏽯, . . . , X1,1,nn, X1,2,nn, . . . , X1,B,nn􏽮 􏽯􏽮 ,

⋮ ⋮ ⋮

XK,1,11, XK,2,11, . . . , XK,B,11􏽮 􏽯, XK,1,22, XK,2,22, . . . , XK,B,22􏽮 􏽯, . . . , XK,1,nn, XK,2,nn, . . . , XK,B,nn􏽮 􏽯􏽯.

(15)
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We presume that XRSS is a one-cycle RSS from a given
population under PRSALT with CDF (9) and PDF (11). Te
CDF and PDF of Xp,rr, p � 1, . . . ,B, denoted by Gp,r:n and
gp,r:n, are then the CDF and PDF of the r-th order statistic of
group p, respectively. Tey can be written as [35, 36]

Gp,r:n(x) � 􏽘
n

i�r

n

i
􏼠 􏼡 Gp(x)􏽨 􏽩

i
1 − Gp(x)􏽨 􏽩

n− i
, (16)

gp,r:n(x) � r
n

r
􏼠 􏼡 Gp(x)􏽨 􏽩

r− 1
1 − Gp(x)􏽨 􏽩

n− r
gp(x), (17)

where Gp(x) and gp(x) are given by (9) and (11),
respectively.

It is possible to rewrite CDF (16) and PDF (17) as

Gp,r:n(x) � 1 − 􏽘

r

i�1
w
∗
i,r(n) 1 − Gp(x)􏽨 􏽩

n+i− r
, (18)

gp,r:n(x) � 􏽘

r−1

i�0
wi,r(n) 1 − Gp(x)􏽨 􏽩

n+i− r
gp(x), (19)

where

wi,r(n) � (−1)
i
r

r − 1

i

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

n

r

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

w
∗
i,r(n) �

wi−1,r(n)

n + i − r

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (20)

3. The Model with Type-II Censoring

Type-II CS can be imposed to the ordered one cycle RSS
under PRSALT as follows: having determined the RSS for
group p, Xp,11, Xp,22, . . . , Xp,nn􏽮 􏽯, p � 1, . . . ,B, we order
and determine the frst m statistics in it, say
Zp,1 ≤Zp,2 ≤ . . . ≤Zp,m􏽮 􏽯. Te data collected from this
procedure are known as one-cycle type-II censored ORSS
and are represented by ZORSS � Z1,1 ≤Z1,2 ≤ . . . ≤Z1,m􏽮 􏽯,􏽮

. . . , ZB,1 ≤􏽮 ZB,2 ≤ . . . ≤ZB,m}}. Based on the idea of order
statistics from IRVNID which was proposed in [37], it is
possible to write the likelihood function for one-cycle ORSS
with type-II CS as

θ= 1.5, λ= 2.0, d= 2.0
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Figure 2: (a, b) Te PDFs (HRFs) of the RD under PRSALT for θ � 1.5, λ � 2.0, and diferent values of c and d.
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L(θ, λ;Z � z)∝􏽙

B

p�1
􏽘
S[j]

􏽙

m

r�1
gp,jp,r

zp,r􏼐 􏼑 􏽙

n

r�m+1
1 − Gp,jp,r

zp,m􏼐 􏼑􏼔 􏼕⎤⎦,⎡⎢⎢⎢⎣

(21)

where ΣS[j] denote the total of all n! permutations
(jp,1, . . . , jp,n) of (1, . . . , n), and z � (z1, . . . , zB),
zp � (zp,1, . . . , zp,m), p � 1, . . . ,B.

Likelihood function (21) can be rewritten as follows:

L(θ, λ; z)∝􏽙
B

p�1
PerUp, (22)

where PerUp � 􏽐S[j] 􏽑
n
r�1 ar,jp,r

denotes the permanent of
a square real matrix Up � (aj,r) of size n × n.

Up �

gp,1 zp,1􏼐 􏼑 gp,2 zp,1􏼐 􏼑 . . . gp,n zp,1􏼐 􏼑

⋮ ⋮ ⋱ ⋮

gp,1 zp,m􏼐 􏼑 gp,2 zp,m􏼐 􏼑 . . . gp,n zp,m􏼐 􏼑

1 − Gp,1 zp,m􏼐 􏼑 1 − Gp,2 zp,m􏼐 􏼑 . . . 1 − Gp,n zp,m􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

}(n−m)rows

. (23)

Substitute CDF (18) and PDF (19) into (21), the likeli-
hood function can be expressed as follows:

L(θ, λ; z)∝􏽙
B

p�1
􏽘
S[p]

􏽙

m

r�1
􏽘

jp,r−1

i�0
wi,jp,r

(n) 1 − Gp zp,r􏼐 􏼑􏽨 􏽩
n+i− jp,r

gp zp,r􏼐 􏼑⎛⎝ × 􏽙
n

r�m+1
􏽘

jp,r

i�1
w
∗
i,jp,r

(n) 1 − Gp zp,m􏼐 􏼑􏽨 􏽩
n+i− jp,r ⎞⎠⎤⎥⎥⎥⎦.⎡⎢⎢⎢⎣ (24)

Considering equations (9) and (11) and the next re-
lations, we obtain

􏽙
m

r�1
􏽘

jp,r−1

i�0
Ωi jp,r􏼐 􏼑 � 􏽘

jp,1−1

δp,1�0
􏽘

jp,2−1

δp,2�0
. . . 􏽘

jp,m−1

δp,m�0
􏽙

m

r�1
Ωδp,r

jp,r􏼐 􏼑,

􏽙

n

r�m+1
􏽘

jp,r

i�1
Ω∗i jp,r􏼐 􏼑 � 􏽘

jp,m+1

μp,m+1�1
􏽘

jp,m+2

μp,m+2�1
. . . 􏽘

jp,n

μp,n�1
􏽙

n

r�m+1
Ω∗μp,r

jp,r􏼐 􏼑,

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(25)

and it is possible to express the likelihood function as
follows:

L(θ, λ; z)∝􏽙
B

p�1
􏽘
S[p]

􏽘

m,n

δp,μp

Dδp,μp
jp􏼐 􏼑 􏽙

m

r�1
βϑ−β

p z
β−1
p,r

⎤⎦exp − ϑ−β
p Ψδp,μp

zp􏼐 􏼑􏼔 􏼕⎡⎣ ⎞⎠⎛⎝ ⎤⎥⎥⎦,
⎡⎢⎢⎢⎢⎢⎣ (26)

where jp � (jp,1, . . . , jp,m, jp,m+1, . . . , jp,n), δp � (δp,1, . . . ,

δp,m), μp � (μp,m+1, . . . , μp,n), and p � 1, . . . ,B, and
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􏽘

m,n

δp,μp

� 􏽘

jp,1−1

δp,1�0
􏽘

jp,2−1

δp,2�0
. . . 􏽘

jp,m−1

δp,m�0
. 􏽘

jp,m+1

μp,m+1�1
􏽘

jp,m+2

μp,m+2�1
. . . 􏽘

jp,n

μp,n�1
, (27)

Dδp,μp
jp􏼐 􏼑 � 􏽙

m

r�1
wδp,r,jp,r

(n)⎤⎦ 􏽙

n

r�m+1
w
∗
μp,r,jp,r

(n)⎤⎦,⎡⎣⎡⎣ (28)

Ψδp,μp
zp􏼐 􏼑 � 􏽘

m

r�1
n + δp,r − jp,r + 1􏼐 􏼑t

β
p,r

⎡⎣ ⎤⎦ + 􏽘
n

r�m+1
n + μp,r − jp,r􏼐 􏼑t

β
p,m

⎡⎣ ⎤⎦. (29)

Te likelihood function can be modifed using the re-
lationships provided in (25) as follows:

L(θ, λ; z)∝ 􏽘
B,m,n

S∗,δ∗,μ∗
􏽙

B

p�1
Dδp,μp

jp􏼐 􏼑⎤⎥⎥⎦ 􏽙

B

p�1
􏽙

m

r�1
βϑ−β

p z
β−1
p,r

⎤⎦exp − 􏽘
B

p�1
ϑ−β

p Ψδp,μp
zp􏼐 􏼑⎡⎢⎢⎣ ⎤⎥⎥⎦⎞⎠,⎡⎢⎢⎣⎡⎢⎢⎣⎛⎝ (30)

where β and ϑp are as given in (10), S∗ � (S[1], . . . , S[B]),
δ∗ � (δ1, . . . , δB), δp � (δp,1, . . . , δp,m), μ∗ � (μ1, . . . , μB),
μp � (μp,m+1, . . . , μp,n), and p � 1, . . . ,B, and

􏽘

B,m,n

S∗ ,δ∗,μ∗
� 􏽙

B

p�1
􏽘
S[p]

􏽘

m,n

δp,μp

� 􏽘
S[1]

􏽘

m,n

δ1 ,μ1

. . . 􏽘
S[B]

􏽘

m,n

δB ,μB

, (31)

where 􏽐
m,n
δp,μp

is as defned in (27).
ForK-cycle ORSS, the likelihood function under type-II

CS can be expressed as

L(θ, λ; z)∝􏽙
K

q�1
􏽘

B,m,n

S∗q ,δ∗q ,μ∗q

􏽙

B

p�1
Dδq,p,μq,p

jq,p􏼐 􏼑⎤⎥⎥⎦ 􏽙

B

p�1
􏽙

m

r�1
βϑ−β

p z
β−1
q,p,r

⎤⎦⎡⎢⎢⎣ × exp − 􏽘
B

p�1
ϑ−β

p Ψδq,p,μq,p
zq,p􏼐 􏼑⎡⎢⎢⎣ ⎤⎥⎥⎦⎞⎠⎤⎥⎥⎦.⎡⎢⎢⎣⎛⎝⎡⎢⎢⎢⎢⎢⎢⎣ (32)

Te likelihood function can be rewritten using the re-
lations provided in (25) as

L(θ, λ; z)∝ 􏽘
B,m,n

S∗∗ ,δ∗∗ ,μ∗∗
􏽙

K

q�1
􏽙

B

p�1
Dδq,p,μq,p

jq,p􏼐 􏼑⎤⎥⎥⎦ 􏽙

K

q�1
􏽙

B

p�1
􏽙

m

r�1
βϑ−β

p , z
β−1
q,p,r

⎤⎦ × exp − 􏽘
K

q�1
􏽘

B

p�1
ϑ−β

p Ψδq,p,μq,p
zq,p􏼐 􏼑⎡⎢⎢⎣ ⎤⎥⎥⎦⎞⎠,⎡⎢⎢⎣⎡⎢⎢⎣⎛⎝ (33)

where β and ϑp are as given in (10),

􏽘

B,m,n

S∗∗ ,δ∗∗ ,μ∗∗
� 􏽙

K

q�1
􏽘

B,m,n

S∗q ,δ∗q ,μ∗q

� 􏽘
B,m,n

S∗1 ,δ∗1 ,μ∗1

. . . 􏽘
B,m,n

S∗K,δ∗K ,μ∗
K

,

􏽘

B,m,n

S∗q ,δ∗q ,μ∗q

� 􏽘
S[q,1]

􏽘

m,n

δq,1 ,μq,1

. . . 􏽘
S[q,B]

􏽘

m,n

δq,B ,μq,B

,

􏽘

m,n

δq,p,μq,p

� 􏽘

jq,p,1−1

δq,p,1�0
􏽘

jq,p,2−1

δq,p,2�0
. . . 􏽘

jq,p,m−1

δq,p,m�0
. 􏽘

jq,p,m+1

μq,p,m+1�1
􏽘

jq,p,m+2

μq,p,m+2�1
. . . 􏽘

jq,p,n

μq,p,n�1
,

(34)
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and jq,p � (jq,p,1, . . . , jq,p,m, jq,p,m+1, . . . , jq,p,n), q � 1, . . . ,

K, p � 1, . . . ,B, S∗∗ � (S∗1 , . . . , S∗K), S∗q � (S[q, 1],

. . . , S[q,B]), δ∗∗ � (δ∗1 , . . . , δ∗K), δ∗q � (δq,1, . . . , δq,B),
δq,p � (δq,p,1, . . . , δq,p,m), μ∗∗ � (μ∗1 , . . . , μ∗K), μ∗q � (μq,1,

. . . , μq,B), and μq,p � (μq,p,m+1, . . . , μq,p,n).

3.1. Formulating the Prior and Posterior Density Functions.
It is appropriate to select θ and λ to be dependent since they are
merged, as shown in (10). We presume that θ and λ are
distributed according to the Lomax distribution.Te following
is a possible representation of the joint prior density of θ and λ:

π(θ, λ) � π1(λ) π2(θ|λ), (35)

where

π1(λ) � e1e2 1 + e2λ( 􏼁
− e1+1( ), λ> 0, e1, e2( 􏼁> 0, (36)

π2(θ|λ) � e3λ(1 + θλ)
− e3+1( ), θ> 0, e3 > 0. (37)

Using (36) and (37), joint prior density (35) takes the
following form:

π(θ, λ) � e1e2e3λ 1 + e2λ( 􏼁
− e1+1( )(1 + θλ)

− e3+1( ), θ, λ> 0, e1, e2, e3( 􏼁> 0. (38)

Te hyperparameter values (e1, e2, e3) can be specifed in
such a way that the prior means become the approximate
expected value of the corresponding parameters.

Using (33) and (38), it is possible to write the joint
posterior density function of θ and λ as follows:

π∗(θ, λ|z) � I
− 1λ 1 + e2λ( 􏼁

− e1+1( )(1 + θλ)
− e3+1( ) 􏽘

B,m,n

S∗∗ ,δ∗∗ ,μ∗∗
􏽙

K

q�1
􏽙

B

p�1
Dδq,p,μq,p

jq,p􏼐 􏼑⎡⎢⎢⎣ ⎤⎥⎥⎦⎛⎝

× 􏽙

K

q�1
􏽙

B

p�1
􏽙

m

r�1

2λd
θ
pz

2cθ+1
q,p,r

cθ + 1
⎡⎢⎢⎣ ⎤⎥⎥⎦exp − 􏽘

K

q�1
􏽘

B

p�1

λd
θ
p

(cθ + 1)
2Ψδq,p,μq,p

zq,p􏼐 􏼑⎡⎢⎢⎣ ⎤⎥⎥⎦⎞⎠,

(39)

where

I � 􏽘
B,m,n

S∗∗ ,δ∗∗ ,μ∗∗
􏽙

K

q�1
􏽙

B

p�1
Dδq,p,μq,p

jq,p􏼐 􏼑⎤⎥⎥⎦ 􏽚
∞

0
􏽚
∞

0
λ 1 + e2λ( 􏼁

− e1+1( )(1 + θλ)
− e3+1( )⎡⎢⎢⎣⎛⎝

× 􏽙
K

q�1
􏽙

B

p�1
􏽙

m

r�1

2λd
θ
pz

2cθ+1
q,p,r

cθ + 1
⎤⎥⎥⎦exp − 􏽘

K

q�1
􏽘

B

p�1

λd
θ
p

(cθ + 1)
2Ψδq,p,μq,p

zq,p􏼐 􏼑⎡⎢⎢⎣ ⎤⎥⎥⎦dθdλ⎞⎠.⎡⎢⎢⎣

(40)

3.2. Loss Functions. Both Bayes analysis and statistical de-
cision inference rely heavily on the loss function. Its choice
must be taken into account for calculating the Bayes esti-
mators for θ and λ and any function of them. Due to its equal
weighting of overestimation and underestimation, the SER
loss function is one of the most widely used symmetric loss
functions for evaluating estimator performance in practice.
Te following is a formulation of the SER loss function:

L(􏽢ϱ, ϱ)∝ (􏽢ϱ − ϱ)2, (41)

where 􏽢ϱ indicates the estimator of ϱ.
Considering the SER loss function, the Bayes estimate

(BE) of ϱ is provided by

􏽢ϱ � E[ϱ|z]. (42)

In some circumstances, overestimating or under-
estimating might have diferent efects. Engineering, me-
dicinal, and biomedical sciences frequently encounter such
circumstances. Overestimation is typically more harmful
than underestimation. For instance, when we estimate the
average dependable working life of components, an asym-
metric loss function may be more suitable in this case. Tere
are many asymmetric loss functions proposed for use, in-
cluding the LEX and GEN loss functions.

Te following formula for the LEX loss function was
provided in [38]:

L(ϖ)∝ e
ξϖ

− ξϖ − 1, ξ ≠ 0, (43)

where ϖ � 􏽥ϱ − ϱ and 􏽥ϱ is the LEX estimator of ϱ.
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Considering the LEX loss function, the BE of c is pro-
vided by

􏽥ϱ �
−1
ξ
ln E e

− ξϱ
|z􏼐 􏼑􏽨 􏽩. (44)

Te following formula for the GEN loss function was
provided in [39]:

L(€ϱ, ϱ)∝
€ϱ
ϱ

􏼠 􏼡

ξ

− ξln
€ϱ
ϱ

􏼢 􏼣 − 1, ξ ≠ 0. (45)

Considering the GEN loss function, the BE of ϱ is
provided by

€ϱ � E ϱ− ξ
|z􏼐 􏼑􏽨 􏽩

− 1/ξ
. (46)

Te methods for obtaining point predictors and pre-
diction intervals for future order statistics are covered in the
section that follows.

4. One-Sample Prediction Procedure

Te following is how a one-sample prediction scheme is
carried out: Suppose that, for q � 1, . . . ,K and
p � 1, . . . ,B, Zq,p,1 ≤Zq,p,2 ≤ . . . ≤Zq,p,m is an informative
type-II q-cycle ORSS of size m taken from a sample of size n.
Suppose that Zq,p,m+1 ≤Zq,p,m+2 ≤ . . . ≤Zq,p,n be the un-
observed future order statistics from the same sample, which
is yet to observe. Let Tq,p,s � Zq,p,m+s, s � 1, . . . , n − m.
Predicting the remaining order statistics
Tq,p,s, s � 1, . . . , n − m, q � 1, . . . ,K, p � 1, . . . ,B is our
current goal.

Te conditional PDF of Tq,p,s, with realization tq,p,s, can
take the following form [35, 36, 40]:

hq,p tq,p,s|θ, λ􏼐 􏼑 �
1

(s − 1)! n
∗

− s( 􏼁!
􏽘

D n∗[ ]

􏽙

s−1

r�1
G
∗
p,jq,p,r

tq,p,s􏼐 􏼑g
∗
p,jq,p,s

tq,p,s􏼐 􏼑 􏽙

n∗

r�s+1
1 − G
∗
p,jq,p,r

tq,p,s􏼐 􏼑􏼔 􏼕⎞⎠,⎛⎝ (47)

where Tq,p,s >Zq,p,m and n∗ � n − m, and

g
∗
p,l tq,p,s􏼐 􏼑 � l

n
∗

l

⎛⎝ ⎞⎠ Rp zq,p,m􏼐 􏼑 − Rp tq,p,s􏼐 􏼑􏽨 􏽩
l− 1

Rp tq,p,s􏼐 􏼑􏽨 􏽩
n∗− l

Rp zq,p,m􏼐 􏼑􏽨 􏽩
− n∗

gp tq,p,s􏼐 􏼑

� l
n
∗

l

⎛⎝ ⎞⎠ 􏽘

l−1

k1�0
(−1)

k1

l − 1

k1

⎛⎝ ⎞⎠ Rp zq,p,m􏼐 􏼑􏽨 􏽩
− ε− 1

Rp tq,p,s􏼐 􏼑􏽨 􏽩
ε
gp tq,p,s􏼐 􏼑

� l
n
∗

l

⎛⎝ ⎞⎠ 􏽘

l−1

k1�0
(−1)

k1

l − 1

k1

⎛⎝ ⎞⎠
2λd

θ
pt

2cθ+1
q,p,s

cθ + 1
exp −

λd
θ
p(ε + 1)

(cθ + 1)
2 t

2(cθ+1)
q,p,s − z

2(cθ+1)
q,p,m􏼐 􏼑⎡⎢⎢⎣ ⎤⎥⎥⎦,

(48)

G
∗
p,l tq,p,s􏼐 􏼑 � l

n
∗

l
􏼠 􏼡 􏽘

l−1

k1�0
(−1)

k1
l − 1
k1

􏼠 􏼡
1

ε + 1
1 − exp −

λd
θ
p(ε + 1)

(cθ + 1)
2 t

2(cθ+1)
q,p,s − z

2(cθ+1)
q,p,m􏼐 􏼑⎡⎢⎢⎣ ⎤⎥⎥⎦⎛⎝ ⎞⎠, (49)

where ε � n∗ − l + k1.

4.1. Bayesian Prediction by a Point. In the following manner,
based on diferent loss functions, the BPPRs of the s-th order
statistic, Tq,p,s, in the future sample, will be obtained.

Te predictive PDF of
Tq,p,s, s � 1, . . . , n∗, q � 1, . . . ,K, p � 1, . . . ,B can be for-
mulated as follows:

h
∗
q,p tq,p,s|z􏼐 􏼑 � 􏽚

∞

0
􏽚
∞

0
hq,p tq,p,s|θ, λ􏼐 􏼑π∗(θ, λ|z)dθdλ.

(50)

Considering the SER, LEX, and GEN loss functions, the
BPPRs of Tq,p,s, s � 1, . . . , n∗, q � 1, . . . ,K, p � 1, . . . ,B are
given, respectively, by

T
SER
q,p,s � 􏽚

∞

zq,p,m

tq,p,sh
∗
q,p tq,p,s|z􏼐 􏼑dtq,p,s,

T
LEX
q,p,s �

−1
υ
log 􏽚

∞

zq,p,m

e
− υtq,p,s h

∗
q,p tq,p,s|z􏼐 􏼑dtq,p,s􏼢 􏼣,

T
GEN
q,p,s � 􏽚

∞

zq,p,m

t
−υ
q,p,sh
∗
q,p tq,p,s|z􏼐 􏼑dtq,p,s􏼢 􏼣

− 1/υ

.

(51)

Journal of Mathematics 9



4.2. Best Unbiased Predictors, ConditionalMedian Predictors,
and Conditional Prediction Intervals. A median unbiased
predictor is defned according to the concept of median
unbiasedness. Several characteristics of the median unbiased
predictor, in the context of traditional type-II CS, were
investigated by Takada [41]. Te CMPR was introduced in

[42] as a specifc kind of median unbiased predictor. If the
statistic TC

q,p,s is the median of the conditional distribution of
Tq,p,s, it is named the CMPR of Tq,p,s.

Te conditional CDF of
Tq,p,s, s � 1, . . . , n∗, q � 1, . . . ,K, p � 1, . . . ,B that corre-
sponds to PDF (47) takes the following form:

Hq,p tq,p,s|θ, λ􏼐 􏼑 � 􏽘
n∗

k�s

1
k! n
∗

− k( 􏼁!
􏽘

D n∗[ ]

􏽙

k

r�1
G
∗
p,jq,p,r

tq,p,s􏼐 􏼑 􏽙

n∗

r�k+1
1 − G
∗
p,jq,p,r

tq,p,s􏼐 􏼑􏼔 􏼕⎞⎠,⎛⎝ (52)

where g∗p,jq,p,r
(tq,p,s) and G∗p,jq,p,r

(tq,p,s) are given, respectively,
by (48) and (49).

Replacing (θ, λ) by their BEs (􏽢θ, 􏽢λ), the CMPR TC
q,p,s of

Tq,p,s can be achieved by solving the next equation with
respect to tq,p,s:

􏽘

n∗

k�s

1
k! n
∗

− k( 􏼁!
􏽘

D n∗[ ]

􏽙

k

r�1
G
∗
p,jq,p,r

tq,p,s􏼐 􏼑 􏽙

n∗

r�k+1
1 − G
∗
p,jq,p,r

tq,p,s􏼐 􏼑􏼔 􏼕⎞⎠ � 0.5.⎛⎝ (53)

Te following two equations should be simultaneously
solved to calculate the bounds of 100τ%CPI (TLB

q,p,s, TUB
q,p,s) of

Tq,p,s:

􏽘
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k�s

1
k! n
∗

− k( 􏼁!
􏽘
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􏽙
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LB
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1 − τ
2

,

􏽘
n∗

k�s

1
k! n
∗

− k( 􏼁!
􏽘

D n∗[ ]

􏽙
k

r�1
G
∗
p,jq,p,r

t
UB
q,p,s􏼐 􏼑 􏽙

n∗

r�k+1
1 − G
∗
p,jq,p,r

t
UB
q,p,s􏼐 􏼑􏼔 􏼕⎛⎝ ⎞⎠ �

1 + τ
2

.

(54)

Here, g∗p,jq,p,r
(tq,p,s) and G∗p,jq,p,r

(tq,p,s) are given, respectively,
by (48) and (49).

Te predictor TB
q,p,s is called BUPR of Tq,p,s if the pre-

dictor error (TB
q,p,s − Tq,p,s) has amean of zero and a variance

that is smaller than or equal to that of any other unbiased
predictors of Tq,p,s.

Te following integral gives the BUPR TB
q,p,s of Tq,p,s:

T
B
q,p,s � 􏽚

∞

zq,p,m

tq,p,shq,p tq,p,s|θ, λ􏼐 􏼑dtq,p,s, (55)

where hq,p(tq,p,s|θ, λ) is given by (47).
If the parameters (θ, λ) are unknown, then they can be

replaced by their BEs (􏽢θ, 􏽢λ). Further explanation about
BUPR, CMPR, and CPI can be found in [20, 22] and [43].

5. Illustrative Examples

Simulated data as well as real data sets are used in this section
to demonstrate the point predictor methods described in this
article.

5.1. Simulated Data Set. Te hyperparameter values
(e1 � 1.5, e2 � 1.2, and e3 � 3.8) are selected to produce the
population parameter values (θ � 0.21 and λ � 1.67). Under
PRSALTwith two groups, we generate fve SRSs, each of size
10, and divide each SRS into two groups, each of size 5, see
the third column of Table 1. In each SRS, the frst and second
groups are generated using CDF (9) with c � 0.5, d1 � 2, and
d2 � 4. We apply the technique of RSS to these SRSs to
obtain a one-cycle RSS and then arrange it to obtain the
ORSS. Tis is shown in the last two columns of Table 1. We
apply the type-II censoring procedure to the values of the
ORSS, listed in the last two columns of Table 1, by selecting
the frst m values of them.

Based on the ORSS under PRSALT listed in Table 1, the
BPPRs, CMPRs, BUPRs, and 95% CPIs for Tq,p,s, s � 1,

. . . , n∗, q � 1, p � 1, 2 are computed and presented in Table 2.

5.2. Application to Real Data. Our goal now is to demon-
strate the point predictor methods discussed in this article
using a real data set examined in [44]. Te data represent the
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failure times (in hours) of electrolytic capacitors with a size
of 32 volts and 22microfarads put under two groups of
PRSALT. Tere are 30 units in each testing group. Te
failure times (in hours) are as follows:

First group (c � 1.0, d1 � 5.0417): 7.21, 10.24, 10.26,
10.37, 10.51, 10.56, 11.25, 11.28, 11.29, 11.35, 12.23,
12.25, 12.36, 12.57, 13.03, 13.04, 13.05, 13.27, 13.46,
13.49, 14.23, 14.45, 15.00, 15.43, 15.47, 16.55, 17.07,
17.21, 17.23, 18.49.
Second group (c � 1.0, d2 � 5.833): 7.36, 7.55, 7.57,
8.00, 8.23, 8.46, 9.02, 9.03, 9.04, 9.22, 9.32, 9.34, 9.49,
10.28, 10.53, 11.33, 11.34, 11.54, 12.16, 12.53, 12.55,
13.20, 14.06, 14.21, 14.21, 14.21, 16.24, 16.41,
17.53, 21.26.

Before moving on, the statistical test of Kolmogor-
ov–Smirnov (K–S) and its accompanying p value are used
for each group to determine whether Weibull distribution
with CDF (9) is valid for ftting the aforementioned data. It
can be shown from the aforementioned data and CDF (9)
that the estimates (􏽢θ � 1.12251 and 􏽢λ � 0.0000107) maxi-
mize the likelihood function of θ and λ. Te K–S test statistic
and the p value are given, respectively, by

First group: K–S statistic� 0.18113, and p

value� 0.27858

Second group: K–S statistic� 0.21773 and p

value� 0.11632

As can be seen, the Weibull distribution with CDF (9)
matches the provided real data set well because all of the p

values are higher than 0.050.Tis is further demonstrated by
depicting the empirical CDF of the provided real data
set along with CDF (4) for each group, as shown in Figure 3.
We select the hyperparameter values (e1 � 350, e2 � 270,
and e3 � 82700) to produce the population parameter values
(􏽢θ � 1.12251 and 􏽢λ � 0.0000107) using (21) and (22).

Under PRSALTwith two groups, we choose fve SRSs of
size 10 each and divide each SRS into two groups of size 5
each, see the third column of Table 3. In each SRS, the frst
and second groups are drawn, respectively, from the above
data under the frst and second levels of stress.Te technique
of RSS is applied to these SRSs to obtain a one-cycle RSS and
then order it to obtain the ORSS presented in the last two
columns of Table 3. Te type-II censoring procedure is
applied to the values of the ORSS, listed in the last two
columns of Table 3, by selecting the frst m values of them.

Table 1: One-cycle SRSs, RSSs, and ORSSs.

SN p SRSs RSS ORSS
p � 1 p � 2 p � 1 p � 2

1 1 0.21815 0.63088 0.73351 1.19821 1.26813 0.21815 0.47232 0.21815 0.472322 0.47232 0.98982 1.08843 1.13972 1.37275

2 1 0.36888 0.42803 0.45835 0.82731 0.94087 0.42803 0.82936 0.38844 0.787842 0.30826 0.82936 0.93731 0.94969 1.26175

3 1 0.27344 0.29444 0.38844 0.71519 1.02443 0.38844 0.93447 0.42803 0.829362 0.36015 0.71651 0.93447 1.21126 1.21455

4 1 0.26581 0.37042 0.60568 0.86605 1.15941 0.86605 0.78784 0.86605 0.934472 0.08036 0.64262 0.68475 0.78784 1.20562

5 1 0.18663 0.51645 0.52308 0.69537 1.17450 1.17450 1.55844 1.17450 1.558442 0.19259 0.24219 0.70441 1.07971 1.55844
SN: sample number.

Table 2: Based on the data given in Table 1 BPPRs, CMPRs, BUPRs, and 95% CPIs for Tq,p,s, s � 1, . . . , n∗, q � 1, p � 1, 2.

n m p Tq,p,s

SE
LEX GE

BUPR CMPR CPIξ � −0.5 ξ � 0.5 ξ � −0.5 ξ � 0.8
BPPR BPPR BPPR BPPR BPPR

5

2

1
T1,1,1 0.64955 0.65928 0.64050 0.63636 0.60526 0.63209 0.60669 (0.40050, 1.01021)
T1,1,2 0.98051 0.99959 0.96289 0.96275 0.91841 0.94805 0.93201 (0.57430, 1.41472)
T1,1,3 1.44297 1.48920 1.40278 1.41507 1.34626 1.39137 1.35427 (0.85757, 2.13209)

2
T1,2,1 0.92879 0.93277 0.92508 0.92500 0.91603 0.91593 0.89308 (0.79259, 1.16415)
T1,2,2 1.15535 1.16676 1.14492 1.14663 1.12569 1.12584 1.10623 (0.87512, 1.48812)
T1,2,3 1.52872 1.56421 1.49826 1.50912 1.46241 1.47624 1.43773 (1.05310, 2.11455)

3
1 T1,1,1 0.69406 0.70439 0.68445 0.68091 0.64992 0.68295 0.65035 (0.43954, 1.11073)

T1,1,2 1.14105 1.17187 1.11325 1.11679 1.05663 1.11699 1.07978 (0.63119, 1.81188)

2 T1,2,1 0.98490 0.98962 0.98049 0.98064 0.97051 0.97628 0.94738 (0.83451, 1.27612)
T1,2,2 1.31479 1.33567 1.29612 1.30097 1.26795 1.29195 1.25172 (0.93584, 1.87304)

4 1 T1,1,1 1.17813 1.1967 1.16166 1.16477 1.13378 1.1684 1.10774 (0.87620, 1.78799)
2 T1,2,1 1.21192 1.22752 1.19808 1.20101 1.1757 1.20189 1.14481 (0.94308, 1.76818)
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Table 3: One-cycle real SRSs, RSSs, and ORSSs.

SN p SRSs RSS ORSS
p � 1 p � 2 p � 1 p � 2

1 1 11.29 12.57 13.03 13.49 17.23 11.29 9.32 10.37 8.232 9.32 11.34 14.21 16.24 21.26

2 1 11.25 14.23 15 17.07 17.21 14.23 8.23 11.29 9.322 7.55 8.23 9.03 9.49 14.21

3 1 10.56 13.04 13.05 13.46 14.45 13.05 10.53 13.05 10.532 9.04 9.34 10.53 11.54 14.21

4 1 7.21 10.24 10.26 10.37 13.27 10.37 16.41 14.23 12.532 7.57 10.28 11.33 16.41 17.53

5 1 11.28 12.23 12.25 12.36 16.55 16.55 12.53 16.55 16.412 7.36 9.02 9.22 12.16 12.53

Table 4: Based on the data given in Table 3 BPPRs, CMPRs, BUPRs, and 95% CPIs for Tq,p,s, s � 1, . . . , n∗, q � 1, p � 1, 2.

n m p Tq,p,s

SER
LEX GEN

BUPR CMPR CPIξ � −0.5 ξ � 0.5 ξ � −0.5 ξ � 0.8
BPPR BPPR BPPR BPPR BPPR

5

2

1
T1,1,1 13.1865 14.1484 12.7596 13.1458 13.0476 12.3492 12.1972 (11.3333, 14.1979)
T1,1,2 15.6487 17.5133 14.802 15.5776 15.4166 13.2094 13.1281 (11.8172, 15.0661)
T1,1,3 18.7506 21.6111 17.3185 18.5638 18.5635 14.9561 14.8243 (12.8370, 17.8024)

2
T1,2,1 11.7342 12.9795 11.1513 11.6724 11.5222 10.4052 10.2705 (9.36721, 12.1893)
T1,2,2 14.5198 16.5926 13.5295 14.4338 14.2282 11.8825 11.8207 (10.1202, 14.0072)
T1,2,3 17.8064 20.8585 16.2416 17.6389 17.5063 14.7631 14.6474 (12.0003, 18.162)

3
1 T1,1,1 14.6695 15.245 14.3389 14.6422 14.5746 13.7987 13.6567 (13.0766, 15.2919)

T1,1,2 17.5558 19.2984 16.6092 17.4859 17.3223 15.3374 15.1741 (13.5977, 17.9807)

2 T1,2,1 12.7421 13.6072 12.2319 12.6934 12.5734 11.681 11.5134 (10.5766, 13.7035)
T1,2,2 16.1307 18.1305 14.9589 16.0404 15.817 13.6973 13.5589 (11.4237, 16.744)

4 1 T1,1,1 16.5513 17.7936 15.9271 16.5021 16.382 15.4482 15.1992 (14.2696, 17.9503)
2 T1,2,1 15.1851 16.6127 14.4419 15.1217 14.9662 13.9897 13.7301 (12.5813, 16.7807)
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Figure 3: Empirical CDFs versus CDFs of Weibull CDF (4) for the given data.
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Based on the ORSS under PRSALT listed in Table 3, the
BPPRs, CMPRs, BUPRs, and 95% CPIs for
Tq,p,s, s � 1, . . . , n∗, q � 1, p � 1, 2 are computed and pre-
sented in Table 4.

 . Simulation Study

AMonte Carlo simulation study is executed in this section to
determine BPPRs, CMPRs, BUPRs, and CPIs for the s-th
order statistic in group p,
Tq,p,s, s � 1, . . . , n∗, q � 1, . . . ,K, p � 1, . . . ,B. Te next
steps can be followed to perform a Monte Carlo simulation:

(1) Using (36) and (37), we choose the hyperparameter
values (e1 � 1.5, e2 � 1.2, and e3 � 3.8) to produce
the population parameter values (θ � 0.21 and
λ � 1.67). Te hyperparameter values were de-
termined to meet the unbiasedness requirements
[3, 45] as follows:

E[􏽢λ] �
1

e2 e1 − 1( 􏼁
� λ,

E[􏽢θ] �
1

λ e3 − 1( 􏼁
� θ,

(56)

where E denotes the expectation.
(2) Assume B � 2 (two groups), we generate fve SRSs

of size 10 each and divide each SRS into two groups
of size 5 each. In each SRS, the two groups are
generated using CDF (9) with c � 0.5, d1 � 2, and
d2 � 4, respectively.

(3) As described in Subsection 2.2, we apply the RSS
method to the SRSs generated in Step 2 to get a one-
cycle RSS, which is then ordered to get the ORSS.

(4) We apply the type-II censoring procedure to the
ORSS values that are acquired in Step 3 by selecting
the frst m(� 2, 3, 4) values of them.

Table 6: BPPRs using GEN loss functions for Tq,p,s, s � 1, . . . , n∗, q � 1, . . . ,K, p � 1, . . . ,B (one-cycle).

K n m p Tq,p,s

GEN
ξ � −0.5 ξ � 0.8

ABPPR BIAS MSPER ABPPR BIAS MSPER

1 5

2

1
T1,1,1 0.58531 0.00465 0.00364 0.58032 −0.00033 0.00362
T1,1,2 0.8736 0.01762 0.01696 0.85367 −0.00231 0.01668
T1,1,3 1.40487 0.03694 0.05573 1.35922 −0.00871 0.05443

2
T1,2,1 0.54003 0.00005 0.00386 0.5473 0.00732 0.00768
T1,2,2 0.82045 0.0229 0.02069 0.79632 −0.00123 0.015
T1,2,3 1.31894 0.04385 0.04939 1.27552 0.00042 0.05836

3
1 T1,1,1 0.78996 0.00243 0.00802 0.78305 −0.00448 0.00804

T1,1,2 1.28118 0.01069 0.05675 1.24578 −0.0247 0.05729

2 T1,2,1 0.74256 0.00332 0.00684 0.73605 −0.00319 0.00685
T1,2,2 1.20523 0.01674 0.04937 1.16892 −0.01957 0.04941

4 1 T1,1,1 1.14235 −0.00162 0.046 1.11775 −0.02623 0.04676
2 T1,2,1 1.07419 0.00148 0.03963 1.05042 −0.02229 0.04015

Table 7: CMPRs, BUPRs, and 95% CPIs for Tq,p,s, s � 1, . . . , n∗, q � 1, . . . ,K, p � 1, . . . ,B (one-cycle).

K n m p Tq,p,s

BUPR CMPR CPI
ABUPR BIAS MSPER ACMPR BIAS MSPER PI AIL CPR

1 5

2

1
T1,1,1 0.58066 0.000 0.00361 0.56436 −0.0163 0.00389 (0.51627, 0.73323) 0.21695 0.672
T1,1,2 0.85599 0.000 0.01665 0.84527 −0.01072 0.01677 (0.63901, 1.13427) 0.49525 0.81
T1,1,3 1.36793 0.000 0.05429 1.34648 −0.02145 0.05476 (0.97648, 1.88095) 0.90447 0.752

2
T1,2,1 0.53999 0.000 0.00317 0.52478 −0.0152 0.00341 (0.47925, 0.68301) 0.20376 0.651
T1,2,2 0.79755 0.000 0.0144 0.78759 −0.00996 0.0145 (0.5949, 1.05713) 0.46223 0.816
T1,2,3 1.2751 0.000 0.0471 1.25506 −0.02004 0.04751 (0.90998, 1.72642) 0.81645 0.783

3
1 T1,1,1 0.78752 0.000 0.00801 0.76331 −0.02422 0.00861 (0.69035, 1.01551) 0.32516 0.802

T1,1,2 1.27048 0.000 0.05662 1.24438 −0.0261 0.05731 (0.88693, 1.80228) 0.91535 0.876

2 T1,2,1 0.73924 0.000 0.00683 0.71674 −0.0225 0.00734 (0.64907, 0.951) 0.30193 0.774
T1,2,2 1.18849 0.000 0.04897 1.16404 −0.02445 0.04959 (0.83149, 1.68434) 0.85285 0.877

4 1 T1,1,1 1.14398 0.000 0.04599 1.09181 −0.05217 0.04874 (0.89436, 1.675) 0.78064 0.948
2 T1,2,1 1.07271 0.000 0.03961 1.02398 −0.04873 0.04202 (0.84063, 1.56759) 0.72696 0.935
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(5) We iterate Steps 2–4 K times to obtain K-cycle
type-II censored ORSSs.

(6) Te BPPRs, CMPRs, BUPRs, and 95% CPIs for
Tq,p,s, s � 1, . . . , n∗, q � 1, . . . ,K, p � 1, . . . ,B are
computed, as indicated earlier in Section 4.

(7) If 􏽢Tq,p,s is a prediction of Tq,p,s, then the mean
squared prediction errors (MSPERs) and biases of
􏽢Tq,p,s are given by

MSPER 􏽢Tq,p,s􏼐 􏼑 � E 􏽢Tq,p,s − Tq,p,s􏼐 􏼑
2
,

BIAS 􏽢Tq,p,s􏼐 􏼑 � E 􏽢Tq,p,s − Tq,p,s􏼐 􏼑.
(57)

(8) We iterate the above steps 1000 times.
(9) Te coverage probabilities (CPRs) of the CPIs are

computed according to the following relation:

CPR �
Number of CPIs that includeTq,p,s

1000
. (58)

(10) We compute the average of BPPRs (ABPPR),
CMPRs (ACMPR), and BUPRs (ABUPR).

Tables 5–10 present the obtained numerical results.

6.1. Simulation Results. Te results presented in Tables 5–10
indicate the following:

(1) Trough MSPERs, BUPRs are the most accurate
point predictors.

(2) Trough bias and MSPERs, the BPPRs based on LEX
(at ξ � 0.5) and GEN (at ξ � −0.5) loss functions
perform better than the BPPRs based on SER loss
functions.

(3) TeMSPERs and bias of BPPR, BUPR, and CMPR of
Tq,p,s increase as the index s increases for
q � 1, . . . ,K, p � 1, . . . ,B.

(4) By increasing the stress level, the MSPERs (bias) of
BPPR, BUPR, and CMPR of Tq,p,s decrease
(increases).

(5) Te CPRs of the CPIs are right near the 95% actual
confdence levels by increasing m.

(6) By increasing the stress level, the AILs decrease since
by increasing the stress level, the failure times
decrease.

(7) Te AILs of CPI of Tq,p,s increase as the index s

increases for q � 1, . . . ,K, p � 1, . . . ,B.

Except for a few unusual cases, the results above are
accurate, and this could be because of data fuctuations.

Table 8: BPPRs using SER and LEX loss functions for Tq,p,s, s � 1, . . . , n∗, q � 1, . . . ,K, p � 1, . . . ,B (two-cycle).

K n m p Tq,p,s

Exact
value

SER
LEX

ξ � −0.5 ξ � 0.5
ABPPR BIAS MSPER ABPPR BIAS MSPER ABPPR BIAS MSPER

1 5

2

1
T1,1,1 0.69438 0.58506 0.00328 0.00353 0.58615 0.00437 0.00354 0.58402 0.00224 0.00352
T1,1,2 0.88627 0.86742 0.01317 0.01658 0.87328 0.01903 0.01678 0.86179 0.00754 0.01647
T1,1,3 1.18939 1.39627 0.03011 0.05564 1.4186 0.05243 0.05752 1.37576 0.0096 0.05482

2
T1,2,1 0.65358 0.5447 0.00261 0.00323 0.54142 −0.00066 0.00544 0.54992 0.00783 0.00556
T1,2,2 0.82822 0.81225 0.0154 0.01493 0.81795 0.02111 0.01515 0.80681 0.00996 0.01479
T1,2,3 1.12003 1.31911 0.03713 0.04995 1.34182 0.05983 0.05225 1.29829 0.01631 0.04879

3
1 T1,1,1 0.88627 0.79665 0.00267 0.00796 0.79893 0.00494 0.00797 0.7945 0.00051 0.00795

T1,1,2 1.18939 1.29083 0.01329 0.05736 1.30881 0.03127 0.05817 1.27415 −0.00339 0.0572

2 T1,2,1 0.83017 0.74382 0.00334 0.007 0.7457 0.00522 0.00703 0.74218 0.00169 0.007
T1,2,2 1.11609 1.21342 0.0182 0.05068 1.23093 0.03571 0.05164 1.19726 0.00204 0.05035

4 1 T1,1,1 1.18939 1.15677 0.0046 0.04579 1.16982 0.01764 0.04609 1.14498 −0.00719 0.04583
2 T1,2,1 1.11609 1.07954 0.00668 0.04145 1.09196 0.0191 0.04178 1.06833 −0.00453 0.04144

2 5

2

1
T2,1,1 0.68266 0.58088 0.00331 0.00362 0.58199 0.00442 0.00363 0.57981 0.00225 0.00361
T2,1,2 0.88878 0.86386 0.01319 0.01676 0.86978 0.01911 0.01696 0.85818 0.00751 0.01665
T2,1,3 1.18128 1.39424 0.0301 0.05583 1.41664 0.05249 0.05773 1.37367 0.00953 0.05501

2
T2,2,1 0.64523 0.54401 0.00276 0.00329 0.54141 0.00016 0.00443 0.54828 0.00702 0.00452
T2,2,2 0.83682 0.81613 0.01538 0.01487 0.82182 0.02107 0.01509 0.81069 0.00995 0.01473
T2,2,3 1.11542 1.31996 0.03715 0.05001 1.34268 0.05987 0.05231 1.29913 0.01632 0.04885

3
1 T2,1,1 0.88878 0.78993 0.00268 0.00811 0.79224 0.00499 0.00813 0.78773 0.00048 0.0081

T2,1,2 1.18128 1.28221 0.01328 0.05772 1.30028 0.03135 0.05854 1.26544 −0.00349 0.05757

2 T2,2,1 0.83786 0.74267 0.00336 0.00707 0.74474 0.00542 0.00709 0.74075 0.00143 0.00706
T2,2,2 1.11542 1.21218 0.01821 0.05081 1.22972 0.03576 0.05178 1.19598 0.00202 0.05049

4 1 T2,1,1 1.18128 1.1492 0.0046 0.04641 1.16242 0.01782 0.04672 1.13726 −0.00734 0.04645
2 T2,2,1 1.11542 1.08764 0.00668 0.04086 1.0999 0.01894 0.04118 1.07658 −0.00439 0.04084
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7. Conclusion

Te ORSS method has received increasing attention in re-
cent years due to its efectiveness in estimation. Tis fact has
been demonstrated in this article since it has been observed
that the estimates calculated under ORSSs are more efective
than those calculated under SRSs. Based on type-II cen-
soring, the ORSS method under PRSALTs has been applied
to items to be tested. Te lifetime of an item under normal
use was supposed to follow RD with a scale parameter
satisfying the inverse power law such that the imposed stress
is expressed by a nonlinear increasing function of time. A
one-sample prediction procedure for the unobserved failure
times under type-II censoring has been investigated. Some
point predictors such as the BPPR, CMPR, and BUPR as well
as CPI for future order statistics have been discussed. Te
performance and efectiveness of the prediction methods
described in the article have been demonstrated through
Monte Carlo simulations as well as real data. Te numerical
results have shown that the prediction methods have perfect
performance.
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robustness,” Revista Matemática Complutense, vol. 20, no. 1,
pp. 7–107, 2007.

[38] H. R. Varian, “A Bayesian approach to real estate assessment,”
in Studies in Bayesian Econometrics and Statistics in Honor of
L. J. Savage, S. E. Feinderg and A. Zellner, Eds., pp. 195–208,
North-Holland, Amsterdam, Netherlands, 1975.

[39] R. Calabria and G. Pulcini, “An engineering approach to Bayes
estimation for the Weibull distribution,” Microelectronics
Reliability, vol. 34, no. 5, pp. 789–802, 1994.

[40] R. J. Vaughan and W. N. Venables, “Permanent expressions
for order statistic densities,” Journal of the Royal Statistical
Society: Series B, vol. 34, no. 2, pp. 308–310, 1972.

[41] Y. Takada, “Median unbiasedness in an invariant prediction
problem,” Statistics & Probability Letters, vol. 12, no. 4,
pp. 281–283, 1991.

[42] M. Raqab and H. N. Nagaraja, “On some predictors of future
order statistics,” Metron, vol. 53, no. 1-2, pp. 185–204, 1995.

[43] A. Asgharzadeh and R. Valiollahi, “Prediction of times to
failure of censored units in hybrid censored samples from
exponential distribution,” Journal of Statistical Research of
Iran, vol. 9, no. 1, pp. 11–30, 2012.

[44] W. Ronghua and F. Heliang, “Statistical inference of Weibull
distribution for tampered failure rate model in progressive
stress accelerated life testing,” Journal of Systems Science and
Complexity, vol. 14, no. 2, pp. 237–243, 2004.

[45] A. H. Abdel-Hamid, “Bayes estimation in step partially
accelerated life tests for a mixture of two exponential dis-
tributions with type-I censoring,” Journal of the Egyptian
Mathematical Society, vol. 16, pp. 75–98, 2008.

Journal of Mathematics 19




