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We consider any prime number p. Let k, s be two positive integers. We are interested in the arithmetic progressions (sequences)
with the common difference s and length k, where the sequence entries are from the set of quadratic residue modulo p or the set of
quadratic nonresidue modulo p. The numbers of such sequences are denoted as N, (k, s) and Né (k, s), respectively. In this paper,
we apply analytic number theory methods, in particular, properties of Legendre’s symbol modulo p and character sums, to study
the numbers N » (k,s) and NIQ (k, s). Exact formulas are given for certain values of k and s under some restrictions. In addition,

estimation formulas in other cases are given.

1. Introduction

Let p be an odd prime. For any integer a with (a, p) =1,
namely, a coprime p, if there exists an integer b such that
b? = a (mod p), then a is called a quadratic residue modulo p.
Otherwise, a is called a quadratic nonresidue modulo p. We
only concern those quadratic residues or nonresidues in the
finite field F, = {0, 1,..., p — 1}. Thus, throughout the paper,
when we talk about a sequence of quadratic residues mod p, it
means that the entries are the least positive quadratic residues
mod p. It is the same for sequences of quadratic nonresidue
mod p. In the study of quadratic residue modulo p, Legendre
first introduced the Legendre symbol, a character function
whose values determine the status of an integer being
a quadratic residue modulo p or not. For any integer x, the
definition of the Legendre symbol (x/p) is given as follows:

1, if xis a quadratic residue modulo p,

(-

0, ifplx

if x is a quadratic non-residue modulo p,

(1)

The following properties of the Legendre symbol are well

known:
-1
| = (_1)(1’* 1)/2’
%)

2 2
Z) = (-1 P —1/8’
(7)-c

and for any two different odd prime numbers p and g,

<%> . <§> = (-1) P~ D@ Y (the quadratic reciprocity law).
(3

Quadratic residues play important roles in solving many
classical number theory problems. The study of quadratic
residues brings not only profound theoretical significance
but also a wide range of applications. This paper focuses on
the distribution properties of arithmetic progression of
quadratic residues and quadratic nonresidues. Many
scholars have conducted in-depth research on similar
problems and obtained many important results, some of
which are useful for our project. For example, in 1956,
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Carlitz [1] estimated the number N (p,s) of s consecutive
quadratic residues or s consecutive quadratic nonresidues in
the finite field [ :

N(ps)=£+0(sp), (0<1). @

Based on the improved Vinogradov estimation, Burgess
[2] proved in 1957 that, if § and ¢ are arbitrarily fixed positive
numbers, for sufficiently large odd prime numbers p and any
integer N, if H > p'/4*°, then

N+H Vl)
n:;ﬂ <p

This indicates that the maximum number of consecutive
quadratic residues or consecutive quadratic nonresidue
modulo of a sufficiently large prime p is O (p'/4*%). This
result was further improved and can be referenced in lit-
erature [3-6]. In 1992, Peralta [7] improved the error term
E(p,s) in (4) and proved that

E(p,s)= £(s+1)(3++/p). (6)

In 2020, Carella [8] used the method of exponential sums
to improve the above results. Let p be a sufficiently large
prime number and s be any positive integer satistying
s =O(log p), and the number N (p, s) satisfies:

(i) N(p,s) = p/2°(1-1/p)°* (1 + O(1/p))
(ii) N(p,s) = p/2° + O(s?)

In 2020, Wang and Lv [9] studied the number of integers
1<a<p—1 such that g, a +a, a —a are all quadratic res-
idues and quadratic non-residues modulo p, wherea € F,
satisfying aa = 1. In 2022, the first author of this paper and
Li [10] studied distribution properties of triples of consec-
utive quadratic residues (named 3-CQR) and consecutive
quadratic nonresidue (3-CQN) modulo p and provided
exact formulas for the numbers S, (p) and S, (p) of 3-CQRs
and 3-CQNs. Other interesting properties of quadratic
residues can be referred to [11].

We start with the following definitions.

<eH. (5)

Definition 1. Let p be an odd prime number and k and s be
two positive integers.
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(1) We define Np(k, s) to be the number of arithmetic
sequences of quadratic residues with the common
difference s and length k

(2) Correspondingly, Né(k,s) denotes the number of
arithmetic sequences, where the entries are all qua-
dratic nonresidues, with the common difference s
and length k

In this paper, we use analytic methods, combined with
the properties of complete residue system modulo p, to
study N » (k,s) and N}; (k, s), defined as above. We give exact
formulas for N »(k,s) and NIQ (k, s) under some restrictions,
when k, s are small. Estimation formulas in other cases are
given as well.

The structure of the paper is as follows. In Section 2, we
give some preliminary results stated as lemmas which are
useful for developing the results in the later sections. In
Section 3, we give the exact formulas on N P(k, s) and
NI;(k, s) in the case p =3 (mod4) for certain k =3 and
s €{3,4}. In Section 4, we discuss the upper and lower
bounds of N, (k,s) and N;(k, s) in the case p =3 (mod4)
and when k € {4,5} and s<2. Conclusions and future di-
rections are given in Section 5.

2. Preliminary Lemmas

In order to prove the main results, we first develop two
preliminary lemmas.

Lemma 2. Let p be an odd prime number, and for any integer
k with (k, p) =1, then

p-1
Z(a(a; k)) . )

a=0

Proof. From the properties of complete residue system

modulo p, we have
p-1
Z(l‘l’ka):(). (8)
p

a=0

Applying the properties of Legendre’s symbol modulo p,
we have

P‘1<a_2>(1 + ka) ~ P‘l(l + ka)
a=1 p p a=1 p

(9)

(52
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Lemma 3. Let p be an odd prime number, and for any integer
k with (k, p) = 1, then

p-1 2
Z(“ ;k) - (%) (10
a=1

SH)-S0-G)
S0

Next, we list several results from [10, 12-15], which are
useful the proofs of later theorems. O

Lemma 4 [10]. Let p be an odd prime number with
p =3 (mod4). Then, the number of 3 consecutive quadratic
residues is the same as the number of 3 consecutive quadratic
nonresidues:

%(p—3), ifp = 3 (mod 8),

N,(3,1)=N,;(3,1) =
%(p—7), ifp =7 (mod 8).

(12)

Lemma 5 [12]. Assume b € Z and b*>#1 (mod p), then

p-1 212 2
e R
a=1

Lemma 6 [13, 14]. Let k be a positive integer and
h(x) = (x—a,)--- (x —ay), wherea, ...,ay are integers not
pairwise congruent to each other modulo p, and for every
a € Fp, then

-1
D 14
x=0

Lemma 7 [15]. Let N, M be any integers with0< M < p — 1,

and we have
(h(x)) <2k+/plog p. (15)
x=N P

Proof. From the properties of complete residue system
modulo p, we have

(11)

5e9) ()
a=0 p '

3. Formulas for N (k,s) and N (k,s) When
k= =3ands € {3 4}

In this section, we discuss the enumeration of the arithmetic
progressions of quadratic residues (or nonresidues) of length 3
with the common distances 3 or 4. Using the properties of
Legendre’s symbol modulo p, the properties of the complete
residue system and reduced residue system, and the preliminary
lemmas from Section 2, we give the exact formulas for N,
(3,3), N (3,3), N, (3,4), and N (3,4) for certain prlme
numbers p-

Theorem 8. Let p be an odd prime number with p=3
(mod4) and p>3, s € {3,4}, and then

_ ! _ ) 1/8(p-7), if p=7 (mod8);
1) NP (3,3) = NIZ(’?” 3) = {1/8(§—IS)+ 1/2(5/p), iﬁa (mod 8).
(2) N, (3,4) = N} (3,4)
(1
g(p—3), if p =11 (mod 24),
1 .
3 (p-7), if p = 23 (mod 24),

1 1/5\ 1(7\ . _
8(P—11)—2(p)—2<p), if p=19 (mod24),
1 1(5\ 1(7\ .. _
;g(P—15)—E<;)—E(;), if p =7 (mod 24).

(16)

Proof

(1) From the definition of N » (3,3) and the properties of
Legendre’s symbol modulo p, we have
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)

As a passes through a reduced residue system
mod p, 3a passes through a reduced residue system
mod p as well. By replacing a by 3a, we have

SEC NN

Note that (3/p)=-1 if p=7(modl2). From
Lemma 4, we have

sl G) 4 G)-)2)
soi(50(2)-()-(2)

é(p—7), if p =7 (mod8),

(19)

1 1(5\ .. _
§(‘D_15)+§(;)’ if p=3 (mod38).
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If p =11 (mod12), (3/p) = 1. Then,

e io()A-C)-6)(2)
o)) (2)

%(p—7), if p=7 (mod38),

(20)

1 15\ . _
g (p— 15) +E(;), lfp =3 (m0d8)

1 . _
Combining (19) and (20), we have 8 (p=7) if p=7 (mod8),

. (p-7), if p=7 (mod8), N,(3,3) =
8 l( _15)+l > if p=3 (mod8)
8 P 2\p/)’ pP= .

N,(3.3) =
(22)

1 15\ .
g (p - 15) +E<;), lfp =3 (mod 8)

1) (2) From the definition of N, (3,4) and the properties of

Legendre’s symbol modulo p, we have

Similarly,

(23)




HCGN)
ASEEN2)
ASLNOEN2)

(24)

Noting that if p =7 (mod 12), then (3/p) = -1. From
Lemma 4, we have

oosnn ()0
A)-6)
)

1 1(5 1(7 e
5(‘0—11)_5(;)_5(;)’ if p =3 (mod8),

1 1(5 1(7
s(p_15)_2<p)—2<p>, if p=7 (mod8),

(25)

and if p =11 (mod 12), then (3/p) =1. We have (5/p)—
(71p) — (15/p) + (21/p) = 0, and then,

1 2 1 2 3
NP(3’4):NP(3’1)+Z 1+ »)) 1 3+ ’ —25

%(p—3), if p =3 (mod8),
SN, (1) =
%(;;-7), if p =7 (mod8).
(26)

SS(CG

Journal of Mathematics

Combining (25) and (26), we obtain the desired formula
for N, (3,4). Furthermore, by similar calculations, we can
show that N, (3,4) = N, (3,4). O

4. Formulas for N » (k,s) and Np' (k,s) When
ke{4,5}and s<2

In this section, we focus on the cases when k € {4,5} and
s<2. For convenience, we introduce some new notations.

Definition 9. For any integer a and prime number p, let

Kla+i a+j> <a+l)
Al j,...,0) = , (@7
(7 : ;)( p )( p p

where i, j,[ are integers.

Note that
A(i) =0,
fa\fa+j—i
A(i,j)=z<—>( ):—1, where(j—1i,p) = 1.
a=0 p p

(28)

Now, we give upper and lower bounds for N, (k, s) and
N[; (k,s) when k € {4,5} and s<2. We start with k = 4.

Theorem 10. Let p be a prime with p = 3 (mod4). Then,
N,(41)=N,(4,2) = N,(4,1) = N;(4,2),
-7- 1 - 1
PT-6VPloBP (4o P77 H6VPlSE

16 16 0
(29)

whereA, = 1/8(1 + (2/p)) (1 + (3/p)).

Proof

(1) Note that N p (4,1) is identical with the following
sum:

De2)
e
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Let Ay = 1/8(1+ (2/p)) (1 + (3/p)). We can write

Np(4,1) =1—16 (p+A(-1)+A(0)+A(1)+A(2)+ A(-1,0) + A(-1,1)
FA-1L,2) +A0,1) +A0,2) + A(1,2) + A(=1,0,1) (1)

+A(0,1,2)+ A(-1,0,2) + A(-1,1,2) + A(-1,0,1,2)) — A,.

Next, we calculate several summands of N » (4,1) as
follows:

- SEEE)-EEEE)

=A(-1,0,1) =0,
o302 EIEC)
2B 2O

=-A(-1,1,2).

The above implies

) -2 G)E)0F) "
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Inserting these formulas into the previous formula
for Np (4,1), we obtain

1 1
Ny 1) = (p=6+A(-1,0,1,2)) - Ay = 7 (p= 7~ A(-2,1,2)) - A, (34)

By Lemma 7, |A(-2, 1,2)| <6+/plog p, which gives
an upper bound and a lower bound for N, (4,1):

p-7-6+plogp

" p—7+6\/]_)logp_A (35)

—ApSN,(4 1)< T o
(2) Similarly, N P(4’ 2) is identical with the following
sum:

—
ox|"‘
S o
LMy
A/
—
+
/N
Q
a~ B
)
N———
N———
/N
—
+
A/
o

)0(52)0(5)
(O GI-C-(5) -

S0 EN0(5)
SN C))
SEOENCCOCEN 0

When p = 3 (mod 4), we have N, (4,1) = N, (4,1), and
thus,

(T ) (R ()
S8 (N ) (R0 (NEE )|

(38)
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Therefore,

N,(4,2) = N,(4,2)

) R ) ) () R
e Q)

N,(51)=N,(52) = N;(5,1) = N;(5,2),
It proves Theorem 10.
The following example verified the results given in p-14-32,/plogp

Theorem 10. | D AOSNP(S, 2)
Example 1 <p—14+ @(3+24logp)_A
- 32 0
:7)A _1)031,2 :_]-)A _2,1,2 :O,N 4,1 :0,
p=7A( ) (-2,1,2) = 0,N,, (4, 1) )

p=1LA(L0L2)=-5A(212) =4 N,(41) =0, where Ay = 1/8(1+ (2/p)) (1 + (3/p)).

p=19,A(-1,0,1,2) =3,A(-2,1,2) = -4,N, (4,1) = 1,

p=23,A(-1,0,1,2) =7,A(-2,1,2) = -8,N, (4,1) = 1, Proof

p=3LA(-1,0,1,2) = -9,A(-2,1,2) =8, N, (4, 1) = L. (1) If k=5 and s = 1, from the definition of N, (5,1)

(40) and the properties of Legendre’s symbol modulo p,

o ) we have
In cases k=5 and s=1 or 2, a similar result is

presented below.

Theorem 11. Let p be a prime with p = 3 (mod4). Then,

(42)
(TN CEEN-GN0)) (57)
=— 1+ 1+ 1+( = 1+ 1+ - A,
3205 p p p p p
Let Ay =1/8(1+ (2/p)) (1 + (3/p)), and we have
Np(S,l)=3i2(p+A(—2)+A(—1)+A(0)+A(1)+A(2)+A(—2,—1)
+A(-2,00+A(-2,1)+A(-2,2)+A(-1,0)+ A(-1,1)+ A(-1,2) + A(0,1)
+A(0,2)+A(1,2) + A(-2,-1,0)+ A(-1,0,1) + A(0,1,2) + A(-2,0,2) (43)

+A(=2,-1L,1)+A(-2,0,1)+ A(-1,0,2) + A(-1,1,2) + A(-2,-1,2)
+A(-2,1,2) +A(-2,-1,0,1) + A(-2,-1,0,2) + A(-2,-1,1,2)

+A(-2,0,1,2)+ A(-1,0,1,2) + A(-2,-1,0,1,2)) - A,.
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From the properties of A(i, j,...,l), we have

P laNfa+1\[a+2 g1
A(0,1,2) = — =
( : Z(:)(P)( p )( p ) a_O( p )

=A(-1,0,1) =0,

Plla-2\[(a-1\[a Plla—1\[a\[a+1
A(-2,-1,0) = — | = —
-3 ()5 G) - 205G

=A(-1,0,1) =0, (44)

Pla-2\(a\[a+2 a\[ad’ -4
A(-2,0,2) = — = —

023 ()65 26)(5)

SR H0E)-

a=0 p p a=0 P p
A2 -1 l)zp_l(a—Z)(a—l><a+l>

- A p p

I—a-2\(-a-1\[-a+1

_Zo< )( p )( P )

Plla—1\[a+1\[a+2

= - =-A(-1,1,2).

25 e

Then, A(-2,-1,1) + A(-1,1,2) = 0.

B la—1\/a\[a+2 R aNfa+1\/a-2
A(-1,0,2) = — - -
=3 ()E) -G )

(45)
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Then, A(-1,0,2) + A(-2,0,1) = 0.

A(-2,-1,2) =

(7))
- ;(—ap—Z)(—ap— l)(—ap+2) o
<3P e

Then, A(-2,-1,2) + A(-2,1,2) = 0.

Plra-1
A(-1,0,1,2) =
( ) u=0< p )(
)

) ::0(—011)— 2)(% (_azj 1)(_ap+ 2)
SCPICGIC)weeon
s =51
SEEEE)
S
SO

pl,
A(=2,0,1,2) = Z(“ 2)(g)(u + 1)(a N 2)
a=0 p P P p
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(5) ()
JGE)

LGN

We can immediately deduce that

1
N, (5,1) =2 (p =10+ A(=2,-1,1,2) + 24(-1,0,1,2) + 24(-2,0,1,2)) - 4,
(48)

1 2
) (p — 14+ A(-2,-1,1,2) —2A(-2,1,2) - 2(;)A(—1, 1,2)) - A,

From Lemma 7, |A(-2,-1,1,2)|<8+/plogp, |A
(-2,1,2)|<6+/plog p,and |A(~1,1,2)| <6+/plog p.

From Lemma 5, we have
ply 2 2
A(-2,-1,1,2) = Z(“ 1)(“ 4)33@. (49) Then,
a=0 p p
p- 14_§§@logp—A0SNP(5, 1)SP_ 14 + \/1_)3(23 +2410gp) A, (50)

(2) Similarly, we can give the estimate for N »(5,2)

s 20 (N0 CD-EN052) 0-C5)
“2))(“@)(”(“”))(H(“Z‘))é(“(i))(“(i))-(m

s 2[5

=0

IS}
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We replace a by 2a, and then,

SN
) ) )|
SHEN-REN

Since p = 3 (mod4), N, (5,1) = N}Q(S, 1), which implies

) 0)
0570 (- 57) o
JG)- (-GN GI)

(53)
SS(-CEDCANCGIEC)59)
=—Y(1- 1- 1-(=))(1- 1-
= p p p p p
We can immediately obtain that
, 1 2 3 1 2 6
s =nen = ()0 ()) 50 G0 G)
(54)
1(3 2 2
a0 (G)(G))-) - meen
- NP 1A a+(i-1) =
Proposition 12. Let p be a prime with p = 3 (mod 4). Then, N, (k1) =— H 1+ ,
N, (k1) = N, (k,2), when 2<k<p-1. 2" i p 55
55

Proof. From the definition of N , (k, 1) and N , (k, 2), we can ] Pkl K a+2(j-1)
obtain ? ? N,(k2) = 5k 1_[ 1+ :
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Furthermore,

N, (k. 1)

-]
|

1
N,(k2) =~

a=1 j=1

For convenience, we assume

1 a+(i-1)
Ny =— 1+ ——2)),
3 S0 5)

(57)

1 o £ -1

o, 210 (757)-

2 a=p-k+1 i=1 P
Combining the above, the proposition is proved. O

5. Conclusions

Counting the number of special sequences made of qua-
dratic residues or nonresidues has been of common interests
of many researchers for many years. Among those sequences
of interests are those made of consecutive quadratic residues
or nonresidues, which belong to the family of arithmetic
sequences with common difference 1. In this paper, we apply
analytic number theory methods, in particular, properties of
Legendre’s symbol and character sum modulo of a prime
number p, to enumerate arithmetic sequences of quadratic
residues (or nonresidues) with common difference s > 1 and
of length k. The corresponding numbers are denoted as
N, (k,s) and NI; (k, s).

The main results of this paper are stated in Theorems 8, 10,
and 11. Theorem 8 gives exact formulas for N, (3,3), N (3,3),
N, (3,4), and N (3,4). Theorems 10 and 11 claim that

_1P_1k a+(1—1)))
_zka—lg( ( P

'k a+2(j-1)
2 H(H( p

Journal of Mathematics

15 ﬁ(l +(a+(i— 1)))
2k a=p-k+1 i=1 p

k a+2(j—l)>>
1+ —— ).
u—p—2k+zg< < p

From the above identities, we have

N, (k1) =N, (k2) =Ny, - Ny + Ny - Ny, (58)

(56)

From the properties of character sums, we have

(59)

N, (k1) = N, (k,2) = N,(k, 1) = N, (k,2) fork = 4,5,

(60)

and provide an upper bound and a lower bound for each of
N, (4,2) and N, (5,2).

Further work includes the study of N, (k,s) and N (k,s)
for larger values of k and s.
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