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Topological characterization of 3D molecular structures is an emerging study area in theoretical and computational chemistry.
Tese structural descriptors are used in a variety of domains, including chemical graph theory, drug delivery, and nanomaterial
characterization. Quantitative structural descriptors can be used to characterize the chemical and physical properties of a given
compound. Topological indices of molecular graphs are numerical quantities that allow us to collect information about the
chemical structure and reveal its hidden qualities without performing experiments. Due to the low cost of implementation, zeolite
networks are considered popular chemical networks. Zeolites are widely used networks with applications in chemistry, medicine,
and commercial production owing to their excellent chemical features. Te sodalite network is composed of a very unique type of
zeolite framework called sodalite. It is a three-dimensional network of interconnected cages and tunnels that provide an ideal
environment for a wide range of chemical and physical processes. Tis paper deals with the sodalite material network’s degree-
based and reverse degree-based irregularity indices. Tese indices provide a quantitative measure of the irregular behaviour of the
sodalite material network. It can be used to identify areas of the network where irregular behaviour is occurring and to compare
diferent networks to determine which is more irregular. Additionally, these indices can be used to monitor changes in irregularity
over time, allowing us to measure the impact of any interventions that are implemented.

1. Introduction

Macromolecular strainers, also known as natural zeolites,
have been investigated and studied thoroughly [1–3]. Ze-
olite networks are currently identical attractive chemical
networks because of their low deployment costs. Presently,
there are about 248 categories of zeolites and they can be
recognized through their silicone aluminium (Si/Al) pro-
portion existing in the atomic construction of zeolites
which includes of building blocks of numerous compli-
cations showing channels and coops [4]. Te sodalite
network is one of the most extensively researched forms of

zeolite networks. It contributes signifcantly to the elimi-
nation of greenhouse gases. Zeolite’s unique molecular
comprehension distinguishes it as signifcant and relevant.
Natural zeolites are benefcial in bulk mineral applications
due to their lower cost [5]. Zeolites are classifed into
diferent groups based on their size and complexity. Te
most extensively researched compounds among the various
zeolite structures are synthetic compounds and minerals
with crystal structures resembling those of sodalite [5].
Various biochemical properties of sodalite and zeolite form
constructions in terms of molecular descriptors are in-
vestigated in [6–8].
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Te sodalites with the best thermodynamic stability are
recognized as one of the best structures among all zeolites.
Due to their crystallographic backgrounds, the sodalites are
also signifcant. Te fundamental topology of each cage of
sodalites is represented by the six- and four-membered
rings. Tese rings are also shared by two of the parallel
cages. In sodalite, cavities are created using a custom-made
mixture to trap molecules. Zeolites can be used to remove
water and greenhouse gases as well. Some other studies on
zeolites, sodalite, and their practical applications are dis-
cussed in [9].

Te QSPR and QSAR models are efective tools for
predicting the properties and activities of materials by
showing the underlying topological aspects of the molecular
structure. Tese practical structural information represen-
tations have applications in coding, database retrieval,
physicochemical property prediction, and material and
molecular biological activity prediction. One of the most
signifcant components of QSPR/QSAR modelling is the use
of topological indices, which are structural descriptors with
the potential to predict features. Because the activity of
molecules is dependent on their 3D structures and the
relative ease with which these indices can be used in
computing molecular properties when compared to nu-
merically intensive quantum chemical computations, to-
pological indices have emerged as important descriptors in
the feld of computational and theoretical chemistry [10–14].

A graph is called a regular graph if all of its vertices have
the same degree. If the topological index associated with
a graph is larger than or equal to zero, it is referred to as an
“irregularity index,” and if the graph is regular, the topological
index will be zero. Te main challenge in obtaining the ir-
regularity topological index is the computational complexity
associated with the calculation. Tis complexity arises from
the need to consider all possible paths in a graph in order to
determine its topological indices. Furthermore, the calcula-
tion of these indices is often computationally expensive due to
the large number of nodes and edges that need to be con-
sidered. Additionally, the complexity of calculating these
indices increases exponentially with the size of the graph.
Finally, the calculation of the irregularity topological indices
requires the use of sophisticated algorithms, which can be
difcult to implement. Te majority of irregularity indicators
are degree-based topological indices that are utilized in
quantitative activity relationship modelling [15]. In [16],
Gutman introduced some new topological indices. Zaman
and Ali [17] obtained the maximum connectivity index of
a Halin graph. Te Kirchhof index and Laplacian graph
vitality is presented by Zaman in [18–21]. Manzoor et al. in
[22] and Ullah et al. in [23] obtained the entropy measures of
molecular graphs using topological indices and also estab-
lished the entropy measure of phthalocyanine and porphyrin
dendrimers, respectively. Te hyper–Wiener index for fuzzy
graph and its application in the share market is accomplished
in [24]. Further development of the F-index for fuzzy graph
and its application in Indian railway crime are discussed in
[25]. In [26], Zaman et al. determined the structural analysis
and topological characterization of sudoku nanosheets. Ullah
et al. computed the network-based modelling of fuchsine acid

dye’s molecular topology in relation to various irregular
molecular descriptors in [27]. Te authors of [28] obtained
a fresh look at the modelling and topological characterization
of H-Naphtalenic nanosheets with applications. In [29],
Zaman et al. introduced the maximum H-index of bipartite
network with some parameters. In [30], Islam and Pal ob-
tained the second Zagreb index for fuzzy graphs and its
application in mathematical chemistry.Te frst Zagreb index
on a fuzzy graph and its application are discussed in [31].

2. Preliminaries

Topological indices, also known as molecular descriptors,
are mathematical formulas under molecular characteristics
that can be used in the analysis of physical and chemical
properties and are then used by medical researchers for drug
development as it is a low-cost and quick-processing
computational tool. Topological indices play a signifcant
role in mathematical chemistry, more specifcally in QSAR
and QSPR analysis. Tere are numerous types of topological
indices at present, including distance-based, degree-based,
and eccentricity-based topological indices, which are widely
used for chemical structure analysis.Te following notations
and defnitions are important for our study. Let H be a graph
with an edge set E and vertex set V. |E| denotes size of
a graph, and |V| represents the total number of nodes or
atoms. Te irregularity index is a more efcient technique to
express irregularity. Recently, a new approach of studying
irregularity indices has been developed [32, 33]. Te 1st

irregularity index was introduced by Bell in 1992 [34]. Most
of these indices used the concept of imbalance of an edge
defned as imballμѵ � │dμ − dѵ│.

Recently, the authors computed irregularity indices for
a family of nanotubes in [35]. Te irregularity indices of
some dendrimer structures are studied by Gao et al. in [36]
and molecular structures in [37]. Hussain et al. computed
these irregularity measures for some classes of benzenoid
systems in [38]. Motivated by these works, we have in-
vestigated the degree-based and reverse degree-based ir-
regularity indices for sodalite material networks.

Te Albertson index, AL, was defned by Alberston and
is defned as follows [39]:

AL(H) � 􏽘
μѵ∈E(H)

dμ − dѵ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (1)

In this index, the imbalance of edges is computed. Te
irregularity index IRL and IRLU are introduced by
Kovačević and Gasparov, given as follows [40]:

IRL(H) � 􏽘
μѵ∈E(H)

lndμ − lndѵ
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, and

IRLU(H) � 􏽘
μѵ∈E(H)

dμ − dѵ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

min dμ, dѵ􏼐 􏼑
.

(2)

Recently, Abdoo and Dimitrov introduced the new term
“total irregularity measure of a graph G,” which is given as
follows [41]:

2 Journal of Mathematics



IRRt(H) �
1
2

􏽘
μѵ∈E(H)

dμ − dѵ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (3)

Recently, Gutman and Das introduced the IRF irregu-
larity index of the graph, which is given as follows [42]:

IRF(H) � 􏽘
μѵ∈E(H)

dμ − dѵ􏼐 􏼑
2
. (4)

Te Randic index itself is directly related to an irregu-
larity measure, which is described as follows [15]:

IRA(H) � 􏽘
μѵ∈E(H)

d
− 1/2
μ − d

− 1/2
ѵ􏼐 􏼑

2
. (5)

Te detailed tracing of more irregularity indices of
a similar nature is accessible [43]. Tese indices are given by

IRDIF(H) � 􏽘
μѵ∈E(H)

dμ

dѵ
−

dѵ
dμ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

IRLF(H) � 􏽘
μѵ∈E(H)

dμ − dѵ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
����
dμdѵ

􏽱 ,

IRLA(H) � 2 􏽘
μѵ∈E(H)

dμ − dѵ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

dμ + dѵ􏼐 􏼑
,

IRD1(H) � 􏽘
μѵ∈E(H)

ln 1 + dμ − dѵ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛,

IRGA(H) � 􏽘
μѵ∈E(H)

ln
dμ + dѵ􏼐 􏼑

2
����
dμdѵ

􏽱 ,

IRB(H) � 􏽘
μѵ∈E(H)

��
dμ

􏽱
−

��

dѵ

􏽱

􏼒 􏼓
2
.

(6)

3. Structure of Sodalite Materials

Te chemical graph of zeolites is given in Figure 1. Com-
monly referred to as a “cage,” the building block (or “unit

cell”) of sodalite structures is a truncated octahedron with 24
vertices and 36 edges and 6 squares and 8 hexagons joined by
sharing a common edge as illustrated in Figure 2. Te
structurally interconnected arrangement of β − cages in the
ļ×m̧ mesh results in a single layer of sodalite materials, as
shown in Figure 3, and this layer can be easily extended to
many layers by arranging in ļ×m̧×ņ mesh, denoted by
SOD( ļ ,m̧,ņ), where p, q, r are parameters to show the copies
of structure vertically (length), inside the page (width), and
horizontally (height), respectively. It has two types of atoms
and three types of bonds. Te graph shown in Figure 3 is the
three-dimensional sodalite network SOD( ļ ,m̧,ņ). Tree
diferent edge types and two diferent vertex types are
present. Tere are 8( ļm̧+ ļ ņ+m̧ņ) vertices of degree 3 and
12ļm̧ņ− 4( ļm̧+ ļ ņ+m̧ņ) vertices are of degree 4. It has a total
of 12ļm̧ņ+4( ļm̧+ ļ ņ+m̧ņ) vertices and 24ļm̧ņ+

4( ļm̧+ ļ ņ+m̧ņ) edges.

4. Main Results

In this section, we have computed some degree-based ir-
regularity topological indices and reverse irregularity indices
for SOD( ļ ,m̧,ņ) and the graph is depicted in Figure 3. Te
computational results are as follows.

Theorem 1. Let the SOD( ļ , m̧, ņ) be the graph of sodalite
materials network, then its irregularity indices are as follows:

(1) IRDIF(SOD( ļ ,m̧,ņ)) � 14/3 ( ļ m̧+ ļ ņ+m̧ņ) − ( ļ+􏼈

m̧+ņ)}

(2) AL(SOD( ļ ,m̧,ņ)) � 8 ( ļm̧+ ļ ņ+m̧ņ) − ( ļ+m̧+ņ)􏼈 􏼉

(3) IRL(SOD( ļ ,m̧,ņ)) � 2.3014 ( ļ m̧+ ļ ņ+m̧ņ) − ( ļ+􏼈

m̧+ņ)}

(4) IRLU(SOD( ļ ,m̧,ņ)) � 8/3 ( ļ m̧+ ļ ņ+m̧ņ) − ( ļ+􏼈

m̧+ņ)}

(5) IRLF(SOD( ļ ,m̧,ņ)) � 4/
�
3

√
( ļ m̧+ ļ ņ+m̧ņ) − ( ļ+􏼈

m̧+ņ)}

(6) IRF(SOD( ļ ,m̧,ņ)) � 8 ( ļ m̧+ ļ ņ+m̧ņ) − ( ļ+m̧+ņ)􏼈 􏼉

(7) IRLA(SOD( ļ ,m̧,ņ)) � 16/7 ( ļ m̧+ ļ ņ+m̧ņ) − ( ļ+􏼈

m̧+ņ)}

(8) IRD1(SOD( ļ ,m̧,ņ)) � 5.5451 ( ļ m̧+ ļ ņ+m̧ņ) − ( ļ+􏼈

m̧+ņ)}

O2-

Si4+

[SiO4]4-

O2-

O2- O2-

Al3+

Al3+

[AlO4]5-

Si4+

Figure 1: Chemical graph of zeolites.

- Si
- Al

Figure 2: Unit cell of zeolite (β-cage).
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(9) IRA(SOD( ļ ,m̧,ņ)) � 0.478 ( ļ m̧+ ļ ņ+m̧ņ) − ( ļ+􏼈

m̧+ņ)}

(10) IRGA(SOD( ļ ,m̧,ņ)) � 0.0824 ( ļ m̧+ ļ ņ+m̧ņ) − ( ļ+􏼈

m̧+ņ)}

(11) IRB(SOD( ļ ,m̧,ņ)) � 0.5743 (pq + pr + qr) − (p+􏼈

q + r)}

(12) IRRt(SSOD( ļ ,m̧,ņ)) � 4 ( ļ m̧+ ļ ņ+m̧ņ) − ( ļ+􏼈

m̧+ņ)}

Proof. According to edge partition of SOD( ļ ,m̧,ņ) given in
Table 1 and above defnitions, we computed the irregularity
indices, and the computations are given by

(1) IRDIF(SOD( ļ ,m̧,ņ))) � 􏽐μѵ∈E(H)|dμ/dѵ − dѵ/dμ| �

|3/3 − 3/3| 8( ļm̧+ ļ ņ+m̧ņ) + 4( ļ+m̧+ņ)􏼈 􏼉 + |3/4 −

4/3| 8( ļm̧+ ļ ņ+m̧ņ) − 8( ļ+m̧+ņ)􏼈 􏼉 + |4/4 − 4/4| 24ļ􏼈

m̧ņ − 12( ļm̧+ ļ ņ+m̧ņ) + 4( ļ+m̧+ņ)} � 0 + 7/12× 8
( ļm̧+ ļ ņ+m̧ņ) − ( ļ+m̧+ņ)􏼈 􏼉 + 0 IRDIF(SOD ( ļ ,m̧,

ņ)) � 14/3 ( ļm̧+ ļ ņ+m̧ņ) − ( ļ+m̧+ņ)􏼈 􏼉

(2) AL(SOD( ļ ,m̧,ņ))) � 􏽐μѵ∈E(H)|dμ − dѵ| � |3 − 3| 8{
( ļm̧+ ļ ņ+m̧ņ) + 4( ļ+m̧+ņ)} + |3 − 4| 8( ļm̧+ ļ ņ+􏼈

m̧ņ) − 8( ļ+m̧+ņ)} + |4 − 4| 24ļm̧ņ− 12( ļm̧+ ļ ņ+􏼈

m̧ņ) + 4( ļ+m̧+ņ)}AL(SOD( ļ ,m̧,ņ))) � 8 ( ļm̧+􏼈

ļ ņ+m̧ņ) − ( ļ+m̧+ņ)}

(3) IRL(SOD( ļ ,m̧,ņ))) � 􏽐μѵ∈E(H)|lndμ − lndѵ| � |ln
3 − ln 3| 8( ļm̧+ ļ ņ+m̧ņ) + 4( ļ+m̧+ņ)􏼈 􏼉+ |ln 3− ln 4|

8( ļm̧+ ļ ņ+m̧ņ) − 8􏼈 ( ļ+m̧+ņ)} + |ln 4 − ln 4| 24ļm̧􏼈

ņ− 12( ļm̧+ ļ ņ+m̧ņ) + 4( ļ+m̧+ņ)} � 0.2876 × 8 ( ļ􏼈

m̧+ ļ ņ+m̧ņ)− ( ļ+m̧+ņ)}IRL(SOD( ļ ,m̧,ņ)) � 2.3014
( ļm̧+ ļ ņ+m̧ņ) − ( ļ+m̧+ņ)􏼈 􏼉

(4) IRLU(SOD( ļ ,m̧,ņ)) � 􏽐μѵ∈E(H)|dμ − dѵ|/min (dμ,

dѵ) � |3 − 3|/3 8( ļm̧+ ļ ņ+m̧ņ) + 4( ļ+m̧+ņ)􏼈 􏼉 + |3−

4|/3 8( ļm̧+ ļ ņ+m̧ņ) − 8( ļ+m̧+ņ)􏼈 􏼉 + |4 − 4|/4 24{

ļm̧ņ− 12 ( ļm̧+ ļ ņ+m̧ņ) + 4( ļ+m̧+ņ)} � 1/2 8(pq+􏼈

pr + qr) − 8(p + q + r)}IRLU(SOD( ļ ,m̧,ņ)) � 8/3
( ļm̧+ ļ ņ+m̧ņ) − ( ļ+m̧+ņ)􏼈 􏼉

(5) IRLF(SOD( ļ ,m̧,ņ)) � 􏽐μѵ∈E(H)|dμ − dѵ|/
����
dμdѵ

􏽱
�

|3 − 3|/
�
9

√
8( ļm̧+ ļ ņ+m̧ņ) + 4( ļ+m̧+ņ)􏼈 􏼉+ |3 − 3|/��

12
√

8( ļm̧+ ļ ņ+m̧ņ) − 8( ļ+m̧+ņ)􏼈 􏼉 + |4 − 4|/
��
16

√

24ļ􏼈 m̧ ņ− 12( ļm̧+ ļ ņ+m̧ņ) + 4( ļ+m̧+ņ)} � 8/2
�
3

√

( ļm̧+ ļ ņ+􏼈 m̧ņ) − ( ļ+m̧+ņ)}IRLF(SOD ( ļ ,m̧,ņ)) �

4/
�
3

√
( ļm̧+􏼈 ļ ņ+ m̧ņ) − ( ļ+m̧+ņ)}

(6) IRF(SOD( ļ ,m̧,ņ)) � 􏽐μѵ∈E(H)(dμ − dѵ)
2 � (3 − 3)2

8( ļm̧+ ļ ņ+m̧ņ) + 4( ļ+m̧+ņ)􏼈 􏼉 + (3 − 4)2 8( ļm̧+􏼈

ļ ņ+m̧ņ) − 8( ļ+m̧+ņ)} + (4 − 4)2 24ļm̧ņ−􏼈 12( ļm̧+

ļ ņ+m̧ņ) + 4( ļ+m̧+ņ)}IRF(SOD( ļ ,m̧,ņ)) � 8 ( ļm̧+􏼈

ļ ņ+m̧ņ) − ( ļ+m̧+ņ)}

(7) IRLA(SOD( ļ ,m̧,ņ)) � 2􏽐μѵ∈E(H)|dμ − dѵ|/(dμ+ dѵ)
� 2[|3 − 3|/(3 + 3) 8( ļm̧+ ļ ņ+m̧ņ) + 4􏼈 ( ļ+m̧+ņ)} +

|3 − 4|/(3 + 4) 8( ļm̧+ ļ ņ+m̧ņ)−􏼈 8( ļ+m̧+ņ)}+ |4−

4|/(4 + 4) 24ļm̧ņ −􏼈 12( ļm̧+ ļ ņ+m̧ņ) + 4( ļ+m̧+

ņ)}] � 2[8/7 ( ļm̧+􏼈 ļ ņ+m̧ņ) − ( ļ+m̧+ņ)}]IRLA
(SOD ( ļ ,m̧,ņ)) � 16/7 ( ļm̧+ ļ ņ+m̧ņ) − ( ļ+m̧+ņ)􏼈 􏼉

(8) IRD1(SOD( ļ ,m̧,ņ)) � 􏽐μѵ∈E(H)ln 1 + |dμ − dѵ|􏽮 􏽯 �

ln 1 + |3 − 3|{ } 8( ļm̧+ ļ ņ+m̧ņ)+􏼈 4( ļ+m̧+ņ)}+ ln
1 + |3 − 4|{ } 8( ļm̧+ ļ ņ+m̧ņ)−􏼈 8( ļ+m̧+ņ)}+ ln 1+{

|4 − 4|} 24ļm̧ņ− 12( ļm̧+ ļ ņ+m̧ņ) + 4􏼈 ( ļ+m̧+ņ)} �

ln 2 × 8 ( ļm̧+ ļ ņ+m̧ņ)−􏼈 ( ļ+m̧+ņ)}IRD1(SOD
( ļ ,m̧,ņ)) � 5.5451 ( ļm̧+ ļ ņ+m̧ņ) − ( ļ+m̧+ņ)􏼈 􏼉

(9) IRA(SOD( ļ ,m̧,ņ)) � 􏽐μѵ∈E(H)(d
− 1/2
μ − d− 1/2

ѵ )2 �

(3− 1/2 − 3− 1/2) 8( ļm̧+ ļ ņ+m̧ņ) + 4( ļ+m̧+ņ)􏼈 􏼉+

(3− 1/2 − 4− 1/2)2 8( ļm̧+ ļ ņ+m̧ņ) − 8( ļ+m̧+ņ)􏼈 􏼉 +

(4− 1/2 − 4− 1/2)2 24{

ļm̧ņ− 12( ļm̧+ ļ ņ+m̧ņ) + 4( ļ+m̧+ņ)} � (0.0773)2 8{
(pq + pr + qr) − 8(p+ q + r)} � 0.0478 ( ļm̧+ ļ ņ+􏼈

m̧ņ) − ( ļ+m̧+ņ)}

(10) IRGA(SOD( ļ ,m̧,ņ)) � 􏽐μѵ∈E(H)ln((dμ + dѵ)/2����
dμdѵ

􏽱
) � ln(3 + 3)/2

�
9

√
8( ļm̧+ ļ ņ+􏼈 m̧ņ) + 4( ļ+

m̧+ņ)} + ln(3 + 4)/2
��
12

√
8( ļm̧+􏼈 ļ ņ+m̧ņ) − 8 ( ļ+

m̧+ņ)} + ln(4 + 4)/2
��
16

√
24ļm̧ņ− 12( ļm̧+􏼈 ļ ņ+ m̧ņ)

+4( ļ+m̧+ņ)} � ln 7/4
�
3

√
× 8 ( ļm̧+ ļ ņ+􏼈 m̧ņ) − ( ļ+

m̧+ņ)} IRGA(SSOD( ļ ,m̧,ņ)) � 0.0824 ( ļm̧+􏼈 ļ ņ+

m̧ņ) − ( ļ+m̧+ņ)}

(11) IRB(SOD( ļ ,m̧,ņ)) � 􏽐μѵ∈E(H)(
��
dμ

􏽱
−

��
dѵ

􏽰
)2 �

(
�
3

√
−

�
3

√
)2 8( ļm̧+ ļ ņ+m̧ņ) + 4( ļ+m̧+ņ)􏼈 􏼉+ (

�
3

√
−�

4
√

)2 8( ļm̧+ ļ ņ+m̧ņ) − 8( ļ+m̧+ņ)􏼈 􏼉 + (
�
4

√
−

�
4

√
)2

24ļm̧ņ− 12( ļm̧+ ļ ņ+m̧ņ)+􏼈 4( ļ+m̧+ņ)} � 0.07179 ×

8 ( ļm̧+ ļ ņ+m̧ņ) − ( ļ+m̧+ņ)􏼈 􏼉 IRB(SOD ( ļ ,m̧,ņ)) �

0.5743 ( ļm̧+ ļ ņ+m̧ņ) − ( ļ+m̧􏼈 +ņ)}

(12) IRRt(SOD( ļ ,m̧,ņ)) � 1/2􏽐μѵ∈E(H)│dμ− dѵ│ � 1/2
[│3 − 3│ 8( ļm̧+ ļ ņ+m̧ņ) + 4􏼈 ( ļ+m̧+ņ)} + │3 − 4│
8( ļm̧+ ļ ņ+m̧ņ) − 8( ļ+m̧+ņ)􏼈 􏼉 + │4 − 4│ 24ļm̧ņ−􏼈

12( ļm̧+ ļ ņ+m̧ņ) + 4 ( ļ+m̧+ņ)}] � 1/2 × 8 ( ļm̧+􏼈

ļ ņ+ m̧ņ) − ( ļ+m̧+ņ)} IRRt(SOD( ļ ,m̧,ņ)) � 4 ( ļ􏼈

m̧+ ļ ņ+m̧ņ) − ( ļ+m̧+ņ)} □

Theorem  . Let the SOD( ļ , m̧, ņ) be the graph of sodalite
materials network, then its reverse irregularity indices are as
follows:

Figure 3: Sodalite materials network SOD(2, 2, 1).

4 Journal of Mathematics



(1) CIRDIF(SOD( ļ ,m̧,ņ)) � 12 ( ļ m̧+ ļ ņ+m̧ņ) − ( ļ+􏼈

m̧+ņ)}

(2) CAL(SOD( ļ ,m̧,ņ)) � 8 ( ļ m̧+ ļ ņ+m̧ņ) − ( ļ+m̧+ņ)􏼈 􏼉

(3) CIRL(SOD( ļ ,m̧,ņ)) � 5.545 ( ļ m̧+ ļ ņ+m̧ņ) − ( ļ+􏼈

m̧+ņ)}

(4) CIRLU(SOD( ļ ,m̧,ņ)) � 8 ( ļ m̧+ ļ ņ+m̧ņ) − ( ļ+􏼈

m̧+ņ)}

(5) CIRLF(SOD( ļ ,m̧,ņ)) � 8/
�
2

√
( ļm̧+ ļ ņ+m̧ņ) − ( ļ+􏼈

m̧+ņ)}

(6) CIRF(SOD( ļ ,m̧,ņ)) � 8 ( ļ m̧+ ļ ņ+m̧ņ) − ( ļ+m̧+ņ)􏼈 􏼉

(7) CIRLA(SOD( ļ ,m̧,ņ)) � 16/3 ( ļ m̧+ ļ ņ+m̧ņ) − ( ļ+􏼈

m̧+ņ)}

(8) CIRD1(SOD( ļ ,m̧,ņ)) � 5.5451 ( ļm̧+ ļ ņ+m̧ņ)−􏼈

( ļ+m̧+ņ)}

(9) CIRA(SOD( ļ ,m̧,ņ)) � 0.6862 ( ļ m̧+ ļ ņ+m̧ņ) − ( ļ+􏼈

m̧+ņ)}

(10) CIRGA(SOD( ļ ,m̧,ņ)) � 0.4711 ( ļ m̧+ ļ ņ+m̧ņ)−􏼈

( ļ+m̧+ņ)}

(11) CIRB(SOD( ļ ,m̧,ņ)) � 1.3725 ( ļ m̧+ ļ ņ+m̧ņ) − ( ļ+􏼈

m̧+ņ)}

(12) CIRRt(SOD( ļ ,m̧,ņ)) � 4 ( ļ m̧+ ļ ņ+m̧ņ) − ( ļ+􏼈 m̧+

ņ)}

Proof. According to edge partition of SOD( ļ ,m̧,ņ) given in
Table 1 and above defnitions, we computed the reverse
irregularity indices, and the computations are given by

(1) CIRDIF(SOD( ļ ,m̧,ņ)) � 􏽐μѵ∈E(H)|(cμ/cѵ) − cѵ/ cμ|

� |(2/2) − (2/2)| 8( ļm̧+ ļ ņ+m̧ņ) + 4􏼈 ( ļ+m̧+ņ)}+

|(2/1) − (1/2)| 8( ļm̧+ ļ ņ+m̧ņ) −􏼈 8( ļ+m̧+ņ)}+

|(1/1) − (1/1)| 24ļm̧ņ− 12( ļm̧+ ļ ņ+􏼈 m̧ņ) + 4( ļ+m̧
+ņ)} � 0 + 3/2 × 8 (pq + pr + qr) −􏼈 (p + q + r)} + 0
CIRDIF(SOD( ļ ,m̧,ņ)) � 12 ( ļm̧+􏼈 ļ ņ+m̧ņ) − ( ļ+
m̧+ņ)}

(2) CAL(SOD( ļ ,m̧,ņ)) � 􏽐μѵ∈E(H)|cμ − cѵ| � |2 − 2| 8{
( ļm̧+ ļ ņ+m̧ņ) + 4( ļ+m̧+ņ)} + |2 − 1| 8( ļm̧+􏼈 ļ ņ+

m̧ņ) − 8( ļ+m̧+ņ)} + |2 − 2| 24ļm̧ņ− 12( ļm̧+􏼈 ļ ņ+

m̧ņ) +4( ļ+m̧+ņ)}CAL(SOD( ļ ,m̧,ņ)) � 8 ( ļm̧+􏼈

ļ ņ+m̧ņ) − ( ļ+m̧+ņ)}

(3) CIRL(SOD( ļ ,m̧,ņ)) � 􏽐μѵ∈E(H)|lncμ − lncѵ| � |ln 2
− ln 2| 8{ ( ļm̧+ ļ ņ+m̧ņ) + 4( ļ+m̧+ņ)} + |ln 2− ln 1|

8( ļm̧+ ļ ņ􏼈 +m̧ņ) − 8( ļ+m̧+ņ)} + |ln 1 − ln 1| 24ļm̧􏼈

ņ− 12( ļm̧+ ļ ņ+m̧ņ) + 4( ļ+m̧+ņ)} � 0.6931× 8
( ļm̧+ ļ ņ+m̧ņ) − ( ļ+m̧+ņ)􏼈 􏼉CIRL(SOD( ļ ,m̧,ņ)) �

5.5451 ( ļm̧+ ļ ņ+m̧ņ) − ( ļ+m̧+ņ)􏼈 􏼉

(4) CIRLU(SOD( ļ ,m̧,ņ)) � 􏽐μѵ∈E(H)(|cμ − cѵ|/min
(cμ, cѵ)) � (|2 − 2|/2) 8( ļm̧+ ļ ņ+m̧ņ)+􏼈 4( ļ+m̧+

ņ)} + |2 − 1/1| 8( ļm̧+ ļ ņ+m̧ņ) − 8( ļ+m̧+􏼈 ņ)} + |1−

1|/1 24ļm̧ņ− 12( ļm̧+ ļ ņ+m̧ņ) + 4( ļ+m̧+ņ)􏼈 􏼉 � 8
( ļm̧+ ļ ņ+􏼈 m̧ņ) − ( ļ+m̧+ņ)} CIRLU(SOD ( ļ ,
m̧,ņ)) � 8 ( ļm̧+ ļ􏼈 ņ+m̧ņ)− ( ļ+m̧+ņ)}

(5) CIRLF(SOD( ļ ,m̧,ņ)) � 􏽐μѵ∈E(H)|cμ − cѵ|/
����
cμcѵ

􏽰
�

|2 − 2|/
�
4

√
8( ļm̧+ ļ ņ+m̧ņ) + 4( ļ+m̧+ņ)􏼈 􏼉 + |2 − 1|/�

2
√

8( ļm̧+ ļ ņ+m̧ņ) − 8( ļ+m̧+ņ)􏼈 􏼉 + |1 − 1|/
�
1

√
24{

ļm̧ņ− 12( ļm̧+ ļ ņ+m̧ņ) + 4( ļ+ m̧+ņ)} � 1/
�
2

√
× 8

( ļm̧+ ļ ņ+m̧ņ)−􏼈 ( ļ+m̧+ņ)}CIRLF(SOD ( ļ ,m̧,ņ)) �

8/
�
2

√
( ļm̧+ ļ ņ+m̧ņ) − ( ļ+m̧+ņ)􏼈 􏼉

(6) CIRF(SOD( ļ ,m̧,ņ)) � 􏽐μѵ∈E(H)(cμ − cѵ)
2 � (2−

2)2 8( ļm̧+ ļ ņ+m̧ņ) + 4( ļ+m̧+ņ)􏼈 􏼉 + (2 − 1)2 8{ ( ļm̧
+ ļ ņ+m̧ņ) − 8( ļ+m̧+ņ)} + (1 − 1)2 24ļm̧ņ− 12􏼈

( ļm̧+ ļ ņ+m̧ņ)+ 4( ļ+m̧+ņ)}CIRF(SOD ( ļ ,m̧,ņ)) �

8 ( ļm̧+ ļ ņ+m̧ņ) − ( ļ+m̧+ņ)􏼈 􏼉

(7) CIRLA(SOD( ļ ,m̧,ņ)) � 2􏽐μѵ∈E(H)|cμ − cѵ|/(cμ+

cѵ) � 2[(|2 − 2|/(2 + 2)) 8( ļm̧+ ļ ņ+m̧ņ) + 4( ļ+m̧+􏼈

ņ)} + (|2 − 2|/(2 + 1)) 8( ļm̧+ ļ ņ+m̧ņ) − 8( ļ+m̧+􏼈

ņ)} + (|1 − 1|/(1 + 1)) 24ļm̧ņ− 12( ļm̧+ ļ ņ+m̧ņ) + 4􏼈

( ļ+m̧+ņ)}] � 2[8/3 ( ļm̧+ ļ ņ+m̧ņ) − ( ļ+m̧􏼈 +ņ)}]

CIRLA(SOD( ļ ,m̧,ņ)) � 16/3 ( ļm̧+ ļ ņ+􏼈 m̧ņ) − ( ļ+
m̧+ņ)}

Table 1: Edge partition of sodalite materials network SOD( ļ ,m̧,ņ) on the degree of end vertices of each edge.

Types of edges (dμ, dѵ), μѵ ∈ SOD( ļ ,m̧,ņ) No.of edg es/frequency

E1(3, 3) (3, 3) 8( ļm̧+ ļ ņ+m̧ņ) + 4( ļ+m̧+ņ)

E2(3, 4) (3, 4) 8( ļm̧+ ļ ņ+m̧ņ) − 8( ļ+m̧+ņ)

E3(4, 4) (4, 4) 24ļm̧ņ− 12( ļm̧+ ļ ņ+m̧ņ) + 4( ļ+m̧+ņ)

Table 2: Numerical table of irregularity indices associated with the structure of SOD( ļ ,m̧,ņ) for diferent values of ļ ,m̧,ņ.

[ ļ ,m̧,ņ] [2, 2, 2] [3, 3, 3] [4, 4, 4] [5, 5, 5]

IRDIF(H) 28 84 168 280
AL (H) 48 144 288 480
IRL (H) 13.8084 41.4252 82.8504 138.084
IRLU(H) 16 48 96 160
IRLF (H) 13.8564 41.5692 83.1384 138.5640
IRF (H) 48 144 288 480
IRLA (H) 13.7142 41.1428 82.2857 137.1428
IRD1 (H) 33.2706 99.8118 199.6236 332.706
IRA (H) 0.2868 0.8604 1.7208 2.868
IRGA (H) 0.4944 1.4832 2.9664 4.944
IRB (H) 3.4458 10.3374 20.6748 34.458
IRRt(H) 24 72 144 240
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(8) CIRD1(SOD( ļ ,m̧,ņ)) � 􏽐μѵ∈E(H)ln 1+{ |cμ − cѵ|} �

ln 1 + |2 − 2|{ } 8( ļm̧+ ļ􏼈 ņ+m̧ņ) + 4( ļ+m̧+ņ)}+

ln 1 + |2 − 1|{ } 8( ļm̧+􏼈 ļ ņ+m̧ņ) − 8( ļ+m̧+ņ)}+ ln
1+{ |1 − 1|} 24ļm̧ņ− 12( ļm̧+􏼈 ļ ņ+m̧ņ) + 4 ( ļ+m̧

+ņ)} � ln 2 × 8 ( ļm̧+ ļ ņ+m̧ņ) − ( ļ+m̧+ņ)􏼈 􏼉 CIRD1
(SOD( ļ ,m̧,ņ)) � 5.5451 ( ļm̧+ ļ ņ+􏼈 m̧ņ) − ( ļ+
m̧+ņ)}

(9) CIRA(SOD( ļ ,m̧,ņ)) � 􏽐μѵ∈E(H)(c− 1/2
μ − c− 1/2

ѵ )2 �

(2− 1/2 − 2− 1/2) 8( ļm̧+ ļ ņ+m̧ņ) + 4( ļ+m̧+ņ)􏼈 􏼉 +

(2− 1/2 − 1− 1/2)2 8( ļm̧+ ļ ņ+m̧ņ) − 8( ļ+m̧+ņ)􏼈 􏼉 +

(1− 1/2 − 1− 1/2)2 24ļm̧ņ− 12( ļm̧+ ļ ņ􏼈 +m̧ņ) + 4
( ļ+m̧+ ņ)} � 0.857 8( ļm̧+􏼈 ļ ņ+m̧ņ) − 8 ( ļ+m̧+ņ)}

CIRA(SOD( ļ ,m̧,ņ)) � 0.6862 ( ļm̧+ ļ ņ+􏼈 m̧ņ)− ( ļ+
m̧+ņ)}

(10) CIRGA(SOD( ļ ,m̧,ņ)) � 􏽐μѵ∈E(H)ln(cμ + cѵ)/2����
cμcѵ

􏽰
� ln(2 + 2)/2

�
4

√
8( ļm̧+ ļ ņ+m̧ņ) + 4􏼈 ( ļ+ m̧+

ņ)} + ln(2 + 1)/2
�
2

√
8( ļm̧+ ļ ņ+m̧ņ)−􏼈 8( ļ+m̧+ņ)} +

ln(1 + 1)/2
�
1

√
24ļm̧ņ− 12􏼈 ( ļm̧+ ļ ņ+m̧ņ) + 4 ( ļ+

Table 3: Numerical table of reverse irregularity indices associated with the structure of SOD( ļ ,m̧,ņ) for diferent values of ļ ,m̧,ņ.

[ ļ , m̧, ņ] [2, 2, 2] [3, 3, 3] [4, 4, 4] [5, 5, 5]

CIRDIF (H) 72 216 432 720
CAL (H) 48 144 288 480
CIRL (H) 33.2706 99.8118 199.6236 332.706
CIRLU (H) 48 144 288 480
CIRLF (H) 33.9411 101.8233 203.6467 339.4112
CIRF (H) 48 144 288 480
CIRLA (H) 32 96 192 320
CIRD1 (H) 33.2706 99.8118 1996236 332.706
CIRA (H) 4.1172 12..3516 24.7032 41172
CIRGA (H) 2.8266 8.4798 16.9596 28.266
CIRB (H) 8.235 24.705 49.41 82.35
CIRRt(H) 24 72 144 240

500

400

300

200

100

IRRt (H)
IRB (H)

IRGA (H)
IRA (H)

IRD1 (H)
IRLA (H)

IRF (H)
IRLF (H)

IRLU (H)
IRL (H)

AL (H)
IRDIF (H)

0

ca
lc

ul
at

ed
 n

um
er

ic
al

 v
al

ue
s

5.0
4.5

4.0

3.5

3.0

2.5

2.0

(l,m,n)

IRDIF (H)
AL (H)
IRL (H)
IRLU (H)

IRLF (H)
IRF (H)
IRLA (H)
IRD1 (H)

IRA (H)
IRGA (H)
IRB (H)
IRRt (H)

Figure 4: 3D graphical representation of Table 2.
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m̧+ņ)} � ln 3/2
�
2

√
× 8 ( ļm̧+ ļ ņ+m̧ņ) − ( ļ+m̧+ņ)􏼈 􏼉

CIRGA(SOD( ļ ,m̧,ņ)) � 0.4711 ( ļm̧+􏼈 ļ ņ+m̧ņ)−

( ļ+m̧+ņ)}

(11) CIRB(SOD( ļ ,m̧,ņ)) � 􏽐μѵ∈E(H)(
��cμ

􏽰
−

��cѵ
√

)2 �

(
�
2

√
−

�
2

√
)2 8( ļm̧+ ļ ņ+􏼈 m̧ņ) + 4 ( ļ+m̧+ņ)}+

(
�
2

√
−

�
1

√
)2 8( ļm̧+ ļ ņ+􏼈 m̧ņ) − 8( ļ+ m̧+ņ)}+

(
�
1

√
−

�
1

√
)2 24ļm̧ņ−􏼈 12( ļm̧+ ļ ņ+m̧ņ) + 4 ( ļ+

m̧+ņ)} � 0.1715 × 8 ( ļm̧+ ļ ņ+m̧ņ) − ( ļ+m̧+ņ)􏼈 􏼉

CIRB(SOD( ļ ,m̧,ņ)) � 1.3725 ( ļm̧+􏼈 ļ ņ+m̧ņ)− ( ļ+
m̧+ņ)}

(12) CIRRt(SOD( ļ ,m̧,ņ)) � (1/2)􏽐μѵ∈E (H)|cμ−

cѵ| � (1/2)[|2− 2| 8( ļm̧+ ļ ņ+m̧􏼈 ņ) + 4( ļ+m̧+ ņ)} +

|2 − 1| 8( ļm̧+ ļ ņ+m̧ņ) − 8􏼈 ( ļ+m̧+ņ)} + |1 − 1| 24{

ļm̧ņ− 12( ļm̧+ ļ ņ+m̧ņ) + 4( ļ+m̧+ ņ)}] � 1/2 × 8
( ļm̧+ ļ ņ+m̧􏼈 ņ) − ( ļ+m̧+ņ)}CIRRt (SOD( ļ ,m̧,

ņ))) � 4 ( ļm̧+ ļ ņ+m̧ņ) − ( ļ+m̧+ņ)􏼈 􏼉 □

5. Numerical Results and Concluding Remarks

In this study, we examined the sodalitematerial network, which
is the most essential zeolite structure, and we showed the
fetched graph of this network by SOD( ļ ,m̧,ņ), defned in
Figure 3 with parameters ļ ,m̧,ņ≥ 1. We calculated irregularity
indices and reverse irregularity indices for the sodalite material
network SOD( ļ ,m̧,ņ).Te numerical values of irregularity and

reverse irregularity indices are shown in Tables 2 and 3, re-
spectively, and Figures 4 and 5 show graphical comparisons.
Te strategic considerations of degree-based irregularity in-
dices and reverse irregularity indices, in turn, refer as tools for
predicting several properties of molecular compounds without
laboratory experiments. Tese indices are useful in turning the
molecular structure into a real number and predicting themain
properties of chemical compounds. As a consequence, we
anticipate that our fndings could help forecast the varied
features of zeolite systems. We also used graphical represen-
tations of the topological indices to explain our computed
results. Tis research could serve as a model for future re-
searchers looking to create new zeolites. Furthermore, we
investigated the usefulness of these indices and discovered
a substantial association when the parameters ļ ,m̧,ņ increased
in nature. From the analysis, we have developed numerical
interpretations by comparing diferent values of ļ ,m̧,ņ. It is
found that the AL index and IRF index are suitable for po-
larization, heavy atom count, molar refraction, and molar
weight properties. It is natural and interesting to study the
entropy measures and distance-based topological indices for
sodalite materials. In the near future, frstly, we intend to fnd
the entropy measures and distance-based topological indices
for sodalite materials. Secondly, we aim to investigate the
Szeged and Mostar root-indices of sodalite materials.
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Figure 5: 3D graphical representation of Table 3.
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Randić, Zagreb and modifed Zagreb index: a linear algorithm
to check discriminative properties of indices in acyclic mo-
lecular graphs,” Croatica Chemica Acta, vol. 77, pp. 501–508,
2004.

[41] H. Abdo and D. Dimitrov, “Te total irregularity of graphs
under graph operations,”Miskolc Mathematical Notes, vol. 15,
no. 1, pp. 3–17, 2014.

[42] I. Gutman and K. C. Das, “Te frst Zagreb index 30 years
after, MATCH Commun,” Math. Comput. Chem, vol. 50,
pp. 83–92, 2004.

[43] I. Gutman, “Topological indices and irregularity measures,”
Jewish Bulletin, vol. 8, pp. 469–475, 2018.

Journal of Mathematics 9




