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Tis paper investigates the estimation of an unknown shape parameter of the generalized Rayleigh distribution using Bayesian and
expected Bayesian estimation techniques based on type-II censoring data. Subsequently, these estimators are obtained using four
diferent loss functions: the linear exponential loss function, the weighted linear exponential loss function, the compound linear
exponential loss function, and the weighted compound linear exponential loss function. Te weighted compound linear ex-
ponential loss function is a novel suggested loss function generated by combining weights with the compound linear exponential
loss function. We use the gamma distribution as a prior distribution. In addition, the expected Bayesian estimator is obtained
through three diferent prior distributions of the hyperparameters. Moreover, depending on the four distinct forms of loss
functions, Bayesian and expected Bayesian estimation techniques are performed using Monte Carlo simulations to verify the
efectiveness of the suggested loss function and to compare Bayesian and expected Bayesian estimationmethods. Furthermore, the
simulation results indicate that, depending on the minimummean squared error, the Bayesian and expected Bayesian estimations
corresponding to the weighted compound linear exponential loss function suggested in this paper have signifcantly better
performance compared to other loss functions, and the expected Bayesian estimator also performs better than the Bayesian
estimator. Finally, the proposed techniques are demonstrated using a set of real data from the medical feld to clarify the
applicability of the suggested estimators to real phenomena and to show that the discussed weighted compound linear exponential
loss function is efcient and can be applied in a real-life scenario.

1. Introduction

Te expected Bayesian (E-Bayesian) estimation is a novel
technique for estimating unknown parameters. It presents
an expectancy of the Bayesian estimator based on the
hyperparameters’ distributions as prior distributions and
was frst proposed by Han [1]. Many researchers have used
the E-Bayesian method with diferent lifetime distributions.
For example, Reyad and Othman [2] estimated the pa-
rameters of a two-component mixture of the inverse Lomax
distribution by E-Bayesian and Bayesian estimation,
depending on the squared error loss function (SELF), the
linear exponential loss function (LINEXLF), and the entropy
loss function (ELF) under type-I censoring data. Okasha [3]

proposed the E-Bayesian approach to estimate the parameter
of the exponential distribution and the reliability function
based on higher-recorded statistical data. Using E-Bayesian
estimation, Liu and Yin [4] evaluated the reliability function
for the geometric distribution based on the scaled SELF.
Okasha [5] also determined the Lomax distribution’s pa-
rameters and the reliability function while considering the
balanced SELF with type-II censored data.

In the study of progressive type-II censored samples,
Okasha et al. [6] focused on the Bayesian and E-Bayesian
estimation of the Weibull distribution’s scale parameter,
reliability, and hazard rate functions. Algarni and Almarashi
[7] used a similar methodology to estimate the parameters of
bathtub-shaped lifespan distributions and determine the
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reliability functions that depended on type-II censoring
samples. Athirakrishnan and Abdul-Sathar [8] introduced
E-Bayesian estimation techniques for evaluating the scale
parameters for the inverse Rayleigh distribution depending
on SELF and precautionary loss functions. Heidari et al. [9]
presented Bayesian and E-Bayesian approaches to conclude
the Rayleigh distribution’s parameter, considering SELF,
depending on type-II censored samples.

Recently, Athirakrishnan and Abdul-Sathar [10] esti-
mated the scale parameter of the Chen distribution using E-
Bayesian and Bayesian methods under Type II censoring
samples. Based on diferent loss functions (LFs) such as
SELF, ELF, and LINEXLF, Wang et al. [11] used E-Bayesian
and Bayesian estimation for a simple step-stress model
under progressively Type-II censoring. Iqbal and Yousuf
Shad [12] used the E-Bayesian technique to estimate the
parameters of the inverse gamma distribution. Basheer et al.
[13] presented hierarchical and E-Bayesian estimations for
the inverse Weibull model and concluded that the E-
Bayesian was better than the other compared methods.
Nassar et al. [14] used the E-Bayesian and Bayesian esti-
mation approaches to estimate the generalized inverted
exponential distribution parameters under type-II censored
data. Mohie El-din et al. [15] estimated the parameters of the
Gompertz distribution under diferent types of LFs using E-
Bayesian estimation. Algarni et al. [16] estimated the scale
parameter of the Chen distribution via an E-Bayesian ap-
proach based on a type-I censoring scheme. Prabhu [17]
used E-Bayesian techniques to assess the shape parameter of
the Lomax distribution under diferent types of LFs. Liu and
Zhang [18] estimated the parameter of the Lomax distri-
bution using E-Bayesian estimation under generalized Type-
I hybrid censoring and agreed that E-Bayesian estimation is
the best and most efective method.

In past years, Hosseini et al. [19] estimated the scale
parameter of a two-parameter exponential distribution us-
ing Bayesian and Bayesian shrinkage estimations under the
SELF and Al-Bayyati LFs based on right-censored data.
Amirzadi et al. [20] used maximum likelihood and Bayesian
estimations to evaluate the shape parameter of the inverse
generalized Weibull distribution and reliability function
based on several LFs such as the general entropy, squared log
error, weight squared error, and a new loss function (LF).
Moreover, Hosseini et al. [21] used a novel lifetime distri-
bution called the Exponential-Weibull logarithmic trans-
formation, and they estimated its parameter through
maximum likelihood, Bayesian, and Bayesian shrinkage
estimations that depended on the right censored scheme.

More recently, a three-parameter bounded beta distri-
bution was a new model introduced by Althubyani et al. [22]
and MLE and Bayesian estimation under LINEXLF and
squared error were used to estimate the distribution’s un-
known parameters. Atchadé et al. [23] estimated the un-
known parameters of the new power Topp–Leone generated
distribution using MLE. Rasekhi et al. [24] presented
a simple method that performs better than MLE, using the
approximation of the likelihood equations, to estimate the
scale and location parameters of a generalized Guderman-
nian distribution. Alghamdi et al. [25] presented a new

distribution called the half-logistic modifed Kies expo-
nential distribution and estimated its parameters using eight
distinct estimation methods to determine the most accurate
methodology by comparing the results. Almuqrin et al. [26]
presented the extended reduced Kies distribution and es-
timated its parameters employing eight diferent schemes.

Te generalized Rayleigh (GR) distribution is a contin-
uous distribution presented by Surles and Padgett [27, 28].
Several authors have used various estimation techniques to
estimate the parameters and the reliability functions of the
GR distribution, as detailed in [29–34].

Te GR’s probability density function (pdf) has the
following form:

f(x; ϑ, ]) � 2ϑ]2xe
− (]x)2 1 − e

− (]x)2
 

ϑ− 1
, x> 0 ; ϑ, ]> 0.

(1)

Te cumulative distribution function (CDF), survival
function (SF), and hazard (failure) rate function (HARF) are
obtained as follows:

F(x; ϑ, ]) � 1 − e
− (]x)2

 
ϑ
, x> 0 ; ϑ, ]> 0,

R(x) � 1 − 1 − e
− (]x)2

 
ϑ
,

h(x; ϑ, ]) �
2ϑ]2xe

− (]x)2 1 − e
− (]x)2

 
ϑ− 1

1 − 1 − e
− (]x)2

 
ϑ , x> 0 ; ϑ, ]> 0,

(2)

where ϑ, ], and x are the shape parameter, the scale pa-
rameter, and the random variable, respectively.

Te GR distribution is a signifcant continuous life
distribution widely used to analyze skewed data, conduct
survival analysis, and construct lifetime models in various
felds, including medical, industrial, and life sciences. In this
paper, we used actual data on bladder cancer to determine
a suitable statistical model for this data. It is signifcant to
analyze all distributions that are suitable for use as lifetime
distributions. After applying a precise identity to this dis-
tribution, we found that the GR distribution fts these data
well, as medical studies often exhibit a right-skewed dis-
tribution. Positively skewed distributions, such as the GR
distribution, play a crucial role in decision-making when
using Bayesian estimators, especially in medicine and public
health. For treatment diagnosis, doctors can use Bayesian
estimation to study the results of patients with specifed
diseases by considering prior information.

Figure 1 illustrates various representative plots of f(x),
F(x), R(x) � 1 − F(x), and h(x) for the GR distribution
with ]� 1.Te shape of both curves for the GR functions, the
failure rate (FR) function, and the survival function (SF)
depends on the value of the shape parameter ϑ. Te FR
increases and concaves up when ϑ> 1, while when ϑ≤ 1, the
FR reduces to a straight line. Due to the fexibility of the FR,
the GR distribution has been suggested in statistical
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literature for analyzing real-world applications in medical
reliability inference. On the other hand, the SF decreases and
concaves up when ϑ< 1, and when ϑ≥ 1, the SF declines and
concaves down.

We estimate the shape parameter and set the scale to one
because the shape parameter of the asymmetric probability
distribution is often more difcult to assess and more ac-
curate than the location and scale parameters. Tis paper
suggests an intuitive but innovative estimation method for
this parameter. Due to the changing value of the shape
parameter, the GR distribution enables the modeling of
various physical and medical applications, as shown in
Figure 1.

Te purpose of this research paper is to estimate an
unknown shape parameter of the GR distribution under
type-II censoring data through Bayesian and E-Bayesian
estimation, depending on a category of informative prior

(IP) based on the hypotheses of four LFs, presented
throughout the paper.We aim to determine which one of the
LFs is the best in terms of the estimation approach. We used
an innovative novel LF called the weighted compound linear
exponential loss function, which produced impressive re-
sults in the estimation compared to other LF techniques.
Tis research is unique because no attempts have been made
to evaluate all these E-Bayesian and Bayesian estimation
techniques for the shape parameter of the GR distribution
using type-II censoring data.

Te remainder of this paper is organized as follows.
Section 2 presents the GR’s derivation using various LFs.
Section 3 discusses the Bayesian estimation for GR’s un-
known shape parameter. Te E-Bayesian method has been
used in Section 4 to estimate the unknown parameter. In
Section 5, the Monte Carlo simulation is described, and the
results of the simulations are discussed. In Section 6, we used
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Figure 1: Plots of pdf, CDF, SF, and HARF for GR distribution for diferent values of ϑ for given ] � 1.
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real data on bladder cancer to demonstrate the proposed
inference. Finally, in Section 7, the study’s conclusions are
presented.

2. Loss Function (LF)

Te LF is essential to Bayesian analysis and decision theory
because of its crucial use in describing underestimation and
overestimation in analysis. Square and LINEX are the two
most used LFs. Te LINEXLF gives diferent weights to
underestimation and overestimation, and it is a symmetrical
generalization of the square loss function. In contrast, the
square loss function treats underestimation and over-
estimation equally. Te LINEXLF is more practical and
advantageous in real-world applications than the square loss.
For instance, overestimating the reliability function or av-
erage failure time in reliability and survival analysis is
typically more serious than underestimating the reliability
function or mean failure time. In comparison, under-
estimating the failure rate has more negative consequences
than overestimating. Moreover, numerous other authors
have discovered that the frequently used square loss function
may not be appropriate in real applications. Tese authors
include Zellner [35], Huang and Chang [36], and Matin and
Khatun [37]. As a result, in this paper, we used four types of
LINEXLF and got the minimum MSE under the suggested
WCLINEXLF according to E-Bayesian and Bayesian
estimations.

Tis section spotlights four main categories of LF:
LINEXLF, CLINEXLF, WLINXLF, and WCLINEXLF.

2.1. Linear Exponential Loss Function (LINEXLF). Te
LINEXLF for the parameter ψ is evaluated by the following
[38, 39]:

L(ϑ, ϑ)∝ [exp(ψ(ϑ − ϑ)) − ψ(ϑ − ϑ) − 1];ψ ≠ 0, (3)

where ϑ is an estimator for ϑ. Te Bayesian estimator,
depending on LINEXLF, is defned as follows:

ϑBL �
− 1
ψ

ln Eϑ(exp(− ψϑ) | x)( , (4)

where Eϑ is the expectation of posterior and Eϑ(exp(− ψϑ)) is
fnite and exists.

2.2. Weighted Linear Exponential Loss Function
(WLINEXLF). Al-Duais [40, 41] and Al-Duais and Hmood
[42] presented this loss function.

Lw(ϑ − ϑ) � w(ϑ)[exp(ψ(ϑ − ϑ)) − ψ(ϑ − ϑ) − 1],

w(ϑ) � exp(− wϑ),
(5)

where w(ϑ) is denoted as the proposed weighted function.

Te value of ϑ is the Bayesian estimator of ϑ under
WLINEXLF, which minimizes equation (5) and is defned as
follows:

ϑWBL �
1
ψ
ln

Eϑ(exp(− wϑ) | x)

Eϑ(exp(− ϑ(w + ψ)) | x)
 , (6)

where Eϑ(exp(− wϑ)) and Eϑ(exp(− ϑ(w + ψ))) are fnite
and exist.

2.3. Composite Linear Exponential Loss Function
(CLINEXLF). Te CLINEXLF is formed as follows [43, 44]:

L(ϑ, ϑ) � Lψ(ϑ, ϑ) + L− ψ(ϑ, ϑ)

� [exp(− ψ(ϑ − ϑ)) + exp(ψ(ϑ − ϑ)) − 2] ; ψ > 0.

(7)

TeBayesian estimator of ϑ, depending on CLINEXLF, is
obtained as follows:

ϑCBL �
1
2ψ

ln
Eϑ(exp(ψϑ) | x)

Eϑ(exp(− ψϑ) | x)
 . (8)

2.4. Weighted Composite Linear Exponential Loss Function
(WCLINEXLF). Al-Bossly [45] suggested WCLINEXLF,
which is based on the weighting for CLINEXLF.Te form of
WCLINEXLF is given by the following equation:

Lw(ϑ, ϑ) � w(ϑ)L(ϑ, ϑ) � w(ϑ)Lψ(ϑ, ϑ) � w(ϑ)L− ψ(ϑ, ϑ)

� [w(ϑ) exp(− ψ(ϑ, ϑ)) + w(ϑ) exp(ψ(ϑ, ϑ))

− 2] ; ψ > 0,

(9)

where w(ϑ) � exp(− wϑ) is denoted as the proposed
weighted function.

Te Bayesian estimator of ϑ under WCLINEXLF is
obtained as follows:

ϑWCBL �
1
2ψ

ln
Eϑ(exp(− ϑ(w − ψ)) | x)

Eϑ(exp(− ϑ(w + ψ)) | x)
 . (10)

Note: when w � 0 in equation (10), the CLINEXLF will
be the special case of WCLINEXLF. It implies that the
WCLINEXLF will represent the general form of the
CLINEXLF.

3. Bayesian Estimation

In this section, we obtained the Bayesian estimation for the
shape parameter ϑ by considering diferent types of LFs,
including LINEXLF, WLINEXLF, CLINEXLF, and WCLI-
NEXLF. Te likelihood function under the type-II censoring
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sample of size s obtained from n items of a life test from the
GR is expressed as follows:

L(ϑ, ] | x) �
n!

(n − s)!
× 

s

i�1
2ϑ]2xi exp − ]xi( 

2
  1 − exp − ]xi( 

2
  

ϑ− 1
× 1 − 1 − exp − ]xs( 

2
  

ϑ
 

n− s

�
n!

(n − s)!
2sϑs]2s



s

i�1
xi

exp − ]xi( 
2

 

1 − exp − ]xi( 
2

 
⎛⎝ ⎞⎠exp(− ϑε + ξ),

(11)

where ε � − 
s
i�1ln(1 − exp(− (]xi)

2)) − 
∞
k�1ln (1 − exp

(− (]xs)
2))k

;

ξ � 
∞

k�1
ln

n − s

k
 . (12)

More illustrations for equation (11) were placed in
Appendix A.

Te gamma distribution (φ,ϕ) used as a prior distri-
bution of ϑ and its pdf is given by

u(ϑ |φ, ϕ) �
ϕφ

Γ(φ)
ϑφ− 1 exp(− ϕϑ);φ,ϕ> 0. (13)

By substituting the likelihood function mentioned in
equation (11) and the prior distribution for ϑ mentioned in
equation (13), the posterior distribution for ϑ is given by

π(ϑ | x) �
L(ϑ, ] | x)u(ϑ)


∞
0 L(ϑ, ] | x)u(ϑ)dϑ

�
ϑφ+s− 1 exp(− ϑ(ε + ϕ))(ϕ + ε)φ+s

Γ(φ + s)
; ϑ> 0.

(14)

3.1. Bayesian Estimation for ϑ Depending on LINEXLF.
Te Bayesian estimator of ϑ based on LINEXLF, which is
symbolized by ϑBL, can be expressed as follows:

ϑBL �
φ + s

ψ
ln 1 +

ψ
ϕ + ε

 . (15)

We have included additional illustrations for equation
(15) in Appendix B.

3.2. Bayesian Estimation for ϑ Depending on CLINEXLF.
Te Bayesian estimator of ϑ based on CLINEXLF, which is
symbolized by ϑCBL, can be shown as follows:

ϑCBL �
− (φ + s)

2ψ
ln

1 − ψ/ε + ϕ
1 + ψ/ε + ϕ

 . (16)

More illustrations for equation (16) were placed in
Appendix C.

3.3. Bayesian Estimation for ϑ Depending on WLINEXLF.
Te Bayesian estimator of ϑ based on WLINEXLF, which is
symbolized by ϑWBL, can be obtained as follows:

ϑWBL �
− (φ + s)

ψ
ln

1 + w/ε + ϕ
1 + w + ψ/ε + ϕ

 . (17)

We have included additional illustrations for equation
(17) in Appendix D.

3.4. Bayesian Estimation for ϑ Depending on WCLINEXLF.
TeBayesian estimator of ϑ based onWCLINEXLF, which is
symbolized by ϑWCBL, can be given as follows:

ϑWCBL �
− (φ + s)

2ψ
ln

1 + w − ψ/ε + ϕ
1 + w + ψ/ε + ϕ

 . (18)

More illustrations for equation (18) were placed in
Appendix E.

4. E-Bayesian Estimation

Troughout this section, we evaluated the E-Bayesian esti-
mation for the shape parameter ϑ by considering diferent
types of LFs, including LINEXLF, WLINEXLF, CLINEXLF,
and WCLINEXLF. As stated by [46], the prior parameters φ
and ϕ should be chosen to ensure that the former u(ϑ |φ, ϕ)

in equation (13) decreases as a function of ϑ. Te derivative
of u(ϑ |φ, ϕ) according to ϑ is expressed as follows:

zu(ϑ |φ, ϕ)

zϑ
�
ϑφ− 2 exp(− ϑϕ)(ϕ)

φ

Γ(φ)
[(φ − 1) − ϕϑ]; ϕ> 0,0<φ< 1.

(19)

Terefore, for ϕ> 0,φ> 0, and ϑ> 0 in equation (13), it
follows ϕ> 0 and 0<φ< 1 due to zu(ϑ |φ, ϕ)/zϑ< 0, and the
prior u(ϑ | φ,ϕ) decreases as a function of ϑ. Let the
hyperparameters φ and ϕ be independent random variables
with pdfs π1(φ) and π2(ϕ). Te joint bivariate probability
density function of φ and ϕ is given by

π(φ,ϕ) � π1(φ)π2(ϕ). (20)
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Tus, the expectation of Bayesian estimation of φ is
obtained as follows:

ϑEB � E(ϑ | x) �  
∀Ω

ϑB(φ, ϕ)π(φ, ϕ)dφ dϕ. (21)

SuchΩ refers to the set of all values of φ and ϕ. ϑB(φ, ϕ) is
the Bayesian estimation for ϑ by equations (15)–(18).
Terefore, ϕ should be smaller than an upper bound G,
where G> 0 is a constant. Accordingly, hyperparameters φ
and ϕ should be selected with the restriction of 0<φ< 1 and
0< ϕ<G. Te E-Bayesian estimation for ϑ is determined
using three distributions for hyperparameters φ and ϕ. Tese
distributions are used to study the impact of the various
prior distributions on the E-Bayesian estimation for ϑ. Te
distributions for φ and ϕ are written as follows:

π1(φ, ϕ) �
2(G − ϕ)

G
2 ; 0<φ< 1,0<ϕ<G, (22)

π2(φ,ϕ) �
1
G

; 0<φ< 1,0< ϕ<G, (23)

π3(φ, ϕ) �
2ϕ
G
2; 0<φ< 1,0<ϕ<G. (24)

4.1. E-Bayesian Estimation for ϑ under LINEXLF. Te E-
Bayesian estimator for ϑ based on LINEXLF with π1(φ, ϕ)

can be obtained by solving equations (15), (21), and (22) as
follows:

ϑEBL1 �  
∀Ω

ϑBL π1(φ, ϕ)dφ dϕ

� 

1

0



G

0

2(G − ϕ)

G
2 

φ + s

ψ
ln 1 +

ψ
ϕ + ε

 dϕ dφ

�
2

ψG
2 

G

0

(G − ϕ) ln 1 +
ψ

ϕ + ε
  

1

0

(φ + s)dφ dϕ

�
2s + 1
ψG

2 G 

G

0

ln 1 +
ψ

ϕ + ε
 dϕ − 

G

0

ϕ ln 1 +
ψ

ϕ + ε
 dϕ⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

�
2s + 1
ψG

2 GI7 − I8 ,

(25)

such that

I7 � 

G

0

ln 1 +
ψ

ϕ + ε
 dϕ

� (G + ε + ψ)ln(G + ε + ψ) − (ε + ψ)ln(ε + ψ) − (G + ε)ln(G + ε) +(ε) ln(ε) .

(26)

Also, we have

I8 � 

G

0

ϕ ln 1 +
ψ

ϕ + ε
 dϕ

�
1
2

  ε2 − G
2

 ln(G + ε) − ε2 + G
2

+ ψ2
+ 2ψε ln(ε + ψ + G) + ε2 + ψ2

+ 2ψε ln(ψ + ε) − ε2  ln(ε) + Gψ  .

(27)

6 Journal of Mathematics



Terefore, the E-Bayesian estimation for ϑ is given by

ϑEBL1 �
2s + 1
ψG

2 GI7 − I8 . (28)

Furthermore, we drive the E-Bayesian estimation for ϑ
according to LINEXLF under π2(φ, ϕ) and π3(φ, ϕ) by
solving equations (15), (23), and (24). It can be written as
follows:

ϑEBL2 �  
∀Ω

ϑBLπ2(φ,ϕ)dφ dϕ

� 

1

0



G

0

1
G

 
φ + s

ψ
ln 1 +

ψ
ϕ + ε

 dϕ dφ

�
2s + 1
2ψG



G

0

ln 1 +
ψ

ϕ + ε
 dϕ⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

�
2s + 1
2ψG

I7 

�
2s + 1
2ψG

[(G + ε + ψ)ln(G + ε + ψ) − (ε + ψ)ln(ε + ψ) − (G + ε)ln(G + ε) +(ε) ln(ε)].

(29)

Also, we have

ϑEBL3 �  
∀Ω

ϑBLπ3(φ, ϕ)dφ dϕ

� 

1

0



G

0

2ϕ
G
2 

φ + s

ψ
ln 1 +

ψ
ϕ + ε

 dϕdφ

�
2s + 1
ψG

2 

G

0

ϕ ln 1 +
ψ

ϕ + ε
 dϕ⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

�
2s + 1
ψG

2 I8 

�
2s + 1
ψG

2
1
2

  ε2 − G
2

 ln(G + ε) − ε2 + G
2

+ ψ2
+ 2ψε ln(ε + ψ + G) + ε2 + ψ2

+ 2ψε ln(ψ + ε) − ε2  ln(ε) + Gψ  .

(30)

4.2. E-Bayesian Estimation for ϑ under WLINEXLF. Te
E-Bayesian estimator for ϑ based on WLINEXLF with
π1(φ, ϕ) can be obtained by solving equations (17), (21), and
(22) as follows:
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ϑEWBL1 �  
∀Ω

ϑWBLπ1(φ,ϕ)dφ dϕ

� 

1

0



G

0

2(G − ϕ)

G
2 

− (φ + s)

ψ
  ln

1 + w/ε + ϕ
1 + w + ψ/ε + ϕ

 dϕdφ

�
− 2
ψG

2 

G

0

(G − ϕ) ln
1 + w/ε + ϕ

1 + w + ψ/ε + ϕ
  

1

0

(φ + s)dφ dϕ

�
− (2s + 1)

ψG
2 G 

G

0

ln
1 + w/ε + ϕ

1 + w + ψ/ε + ϕ
 dϕ − 

G

0

ϕ ln
1 + w/ε + ϕ

1 + w + ψ/ε + ϕ
 dϕ⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

�
− (2s + 1)

ψG
2 GI9 − I10 ,

(31)

such that

I9 � 

G

0

ln
1 + w/ε + ϕ

1 + w + ψ/ε + ϕ
 dϕ

� (G + ε + w)ln(G + ε + w) − (G + ε + ψ + w)ln(G + ε + ψ + w) − (w + ε)ln(w + ε) +(ε + w + ψ)ln(ε + w + ψ) .

(32)

Also, we have

I10 � 

G

0

ϕ ln
1 + w/ε + ϕ

1 + w + ψ/ε + ϕ
 dϕ

� 

G

0

ϕ ln(ε + ϕ + w)dϕ − 

G

0

ϕ ln(ε + ϕ + w + ψ)dϕ

� A1 − A2,

(33)

where A1 is expressed as follows:

A1 � 

G

0

ϕ ln(ε + ϕ + w)dϕ

� G
2

− (− ε − w)
2

 
ln(G + w + ε)

2
  +(− ε − w)

2 ln(w + ε)
2

  −
G
2

+ 2G(ε + w) 

4
− (G − w − ε)

⎧⎨

⎩

⎫⎬

⎭.

(34)

Also, A2 is expressed as follows:
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A2 � 

G

0

ϕ ln(ε + ϕ + w + ψ)dϕ

� G
2

+(w + ε + ψ)
2

 
ln(G + w + ε + ψ)

2
  +(w + ε + ψ)

2 ln(w + ε + ψ)

2
  −

G
2

+ 2G(ε + w + ψ 

4
+ G(w + ε + ψ)

⎧⎨

⎩

⎫⎬

⎭.

(35)

Tus, the E-Bayesian estimation for ϑ is given by

ϑEWBL1 �
− (2s + 1)

ψG
2 GI9 − I10 . (36)

Furthermore, we drive the E-Bayesian estimation for ϑ
according to WLINEXLF under π2(φ, ϕ) and π3(φ, ϕ) by
solving equations (17), (23), and (24). It can be written as
follows:

ϑEWBL2 �  
∀Ω

ϑWBLπ2(φ,ϕ)dφ dϕ

� 

1

0



G

0

1
G

 
− (φ + s)

ψ
  ln

1 + w/ε + ϕ
1 + w + ψ/ε + ϕ

 dϕdφ

�
− (2s + 1)

2ψG


G

0

ln
1 + w/ε + ϕ

1 + w + ψ/ε + ϕ
 dϕ⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

�
− (2s + 1)

2ψG
I9 

�
2s + 1
2ψG

(G + ε + w)ln(G + ε + w) − (G + ε + ψ + w)ln(G + ε + ψ + w) − (w + ε)ln(w + ε)

+(ε + w + ψ)ln(ε + w + ψ).

(37)

Also, we have
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ϑEWBL3 �  
∀Ω

ϑWBLπ3(φ,ϕ)dφ dϕ

� 

1

0



G

0

2ϕ
G
2 

− (φ + s)

ψ
  ln

1 + w/ε + ϕ
1 + w + ψ/ε + ϕ

 dϕdφ

�
− (2s + 1)

ψG
2 

G

0

ϕ ln
1 + w/ε + ϕ

1 + w + ψ/ε + ϕ
 dϕ⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

�
− (2s + 1)

ψG
2 I10 .

(38)

4.3. E-Bayesian Estimation for ϑ under CLINEXLF. Te E-
Bayesian estimator for ϑ based on CLINEXLF with π1(φ, ϕ)

is obtained by solving equations (16), (21), and (22) as
follows:

ϑECBL1 �  
∀Ω

ϑCBL π1(φ,ϕ)dφ dϕ

� 

1

0



G

0

2(G − ϕ)

G
2 

− (φ + s)

2ψ
ln

1 − ψ/ε + ϕ
1 + ψ/ε + ϕ

 dϕdφ

�
− (2s + 1)

ψG
2 G 

G

0

ln
1 − ψ/ε + ϕ
1 + ψ/ε + ϕ

 dϕ − 

G

0

ϕ ln
1 − ψ/ε + ϕ
1 + ψ/ε + ϕ

 dϕ⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

�
− (2s + 1)

ψG
2 GI11 − I12 ,

(39)

such that

I11 � 

G

0

ln
1 − ψ/ε + ϕ
1 + ψ/ε + ϕ

 dϕ

� (G + ε − ψ)ln(G + ε − ψ) − (G + ε + ψ)ln(G + ε + ψ) .

(40)

Also, we have

I12 � 

G

0

ϕ ln
1 − ψ/ε + ϕ
1 + ψ/ε + ϕ

 dϕ

� 

G

0

ϕ ln(ε + ϕ − ψ)dϕ − 

G

0

ϕ ln(ε + ϕ + ψ)dϕ

� A3 − A4,

(41)

where A3 is expressed as follows:

A3 � 

G

0

ϕ ln(ε + ϕ − ψ)dϕ

� G
2

 
ln(G − ψ + ε)

2
  +

(ψ − ε)2

2
 [ln(G − ψ + ε) − ln(ε − ψ)] −

G
2

+ 2G(ε − ψ) 

4
− G(ψ − ε)

⎧⎨

⎩

⎫⎬

⎭.

(42)

Also, A4 is expressed as follows:
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A4 � 

G

0

ϕ ln(ε + ϕ + ψ)dϕ

� G
2

 
ln(G + ε + ψ)

2
  −

(ε + ψ)
2

2
[ln(G + ε + ψ) − ln(ε + ψ)] −

G
2

+ 2G(ε + ψ 

4
+ G(ε + ψ)

2⎧⎨

⎩

⎫⎬

⎭.

(43)

Terefore, the E-Bayesian estimation for ϑ is given by

ϑECBL1 �
− (2s + 1)

ψG
2 GI11 − I12 . (44)

Furthermore, we drive the E-Bayesian estimation for ϑ
according to CLINEXLF under π2(φ,ϕ) and π3(φ, ϕ) by
solving equations (16), (23), and (24). It can be written as
follows:

ϑECBL2 �  
∀Ω

ϑCBLπ2(φ,ϕ)dφ dϕ

� 

1

0



G

0

1
G

 
− (φ + s)

2ψ
ln

1 − ψ/ε + ϕ
1 + ψ/ε + ϕ

 dϕ dφ

�
− (2s + 1)

4ψG


G

0

ln
1 − ψ/ε + ϕ
1 + ψ/ε + ϕ

 dϕ⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

�
− (2s + 1)

4ψG
I11 

�
− (2s + 1)

4ψG
(G + ε − ψ)ln(G + ε − ψ)

− (G + ε + ψ)ln(G + ε + ψ).

(45)

Also, we have

ϑECBL3 �  
∀Ω

ϑCBLπ3(φ,ϕ)dφ dϕ

� 

1

0



G

0

2ϕ
G
2 

− (φ + s)

2ψ
ln

1 − ψ/ε + ϕ
1 + ψ/ε + ϕ

 dϕ dφ

�
− (2s + 1)

2ψG
2 

G

0

ϕ ln
1 − ψ/ε + ϕ
1 + ψ/ε + ϕ

 dϕ⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

�
− (2s + 1)

2ψG
2 I12 .

(46)

4.4. E-Bayesian Estimation for ϑ underWCLINEXLF. Te E-
Bayesian estimator for ϑ based on WCLINEXLF with
π1(φ,ϕ) is obtained by solving equations (18), (21), and (22)
as follows:

ϑEWCBL1 � 
∀Ω

ϑWCBL π1(φ,ϕ)dφ dϕ

� 

1

0



G

0

2(G − ϕ)

G
2 

− (φ + s)

2ψ
ln

(1 + w − ψ/ε + ϕ)

1 + w + ψ/ε + ϕ
 ϕdφ

�
− (2s + 1)

ψG
2 G 

G

0

ln
(1 + w − ψ/ε + ϕ)

1 + w + ψ/ε + ϕ
 dϕ − 

G

0

ϕ ln
(1 + w − ψ/ε + ϕ)

1 + w + ψ/ε + ϕ
 dϕ⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

�
− (2s + 1)

2ψG
2 GI13 − I14 ;

(47)

Such that
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I13 � 

G

0

ln
(1 + w − ψ/ε + ϕ)

1 + w + ψ/ε + ϕ
 dϕ

� (G)[ln(ϕ + ε + w − ψ) − ln(ϕ + ε + w + ψ)] − (w + ε + ψ)[ln(G + ε + w + ψ) − ln(w + ε + ψ)]

+(w + ε − ψ)[ln(G + ε + w − ψ) − ln(w + ε − ψ)].

(48)

Also, we have

I14 � 

G

0

ϕ ln
(1 + w − ψ/ε + ϕ)

1 + w + ψ/ε + ϕ
 dϕ

� 

G

0

ϕ ln(ε + ϕ + w − ψ)dϕ − 

G

0

ϕ ln(ε + ϕ + w + ψ)dϕ

� A5 − A6,

(49)

where A5 is expressed as follows:

A5 � 

G

0

ϕ ln(ε + ϕ + w − ψ)dϕ

� G
2

 
ln(G − ψ + ε + w)

2
  −

(ε + w − ψ)
2

2
 [ln(G − ψ + ε + w) − ln(ε − ψ + w)]

−
G
2

− 2G(ε − ψ + w) 

4
+ G(w − ψ + ε)

⎫⎬

⎭.

(50)

Also, A6 is expressed as follows:

A6 � 

G

0

ϕ ln(ε + ϕ + w + ψ)dϕ

� G
2

 
ln(G + ε + w + ψ)

2
  −

(w + ε + ψ)
2

2
[ln(w + G + ε + ψ) − ln(w + ε + ψ)]

−
G
2

− 2G(ε + w + ψ 

4
+ G(ε + ψ + w)

2⎫⎬

⎭.

(51)

Tus, the E-Bayesian estimation for ϑ is given by

ϑEWCBL1 �
− (2s + 1)

2ψG
2 GI13 − I14 . (52)

Furthermore, we drive the E-Bayesian estimation for ϑ
according to WCLINEXLF under π2(φ, ϕ) and π3(φ, ϕ) by
solving equations (18), (23), and (24). It can be written as
follows:

12 Journal of Mathematics



ϑEWCBL2 �  
∀Ω

ϑWCBLπ2(φ, ϕ)dφ dϕ

� 

1

0



G

0

1
G

 
− (φ + s)

2ψ
ln

(1 + w − ψ/ε + ϕ)

1 + w + ψ/ε + ϕ
 dϕ dφ

�
(2s + 1)

4ψG


G

0

ln
(1 + w − ψ/ε + ϕ)

1 + w + ψ/ε + ϕ
 dϕ⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

�
(2s + 1)

4ψG
I13 

�
(2s + 1)

4ψG
(G)[ln(ϕ + ε + w − ψ) − ln(ϕ + ε + w + ψ)] − (w + ε + ψ)[ln(G + ε + w + ψ)

− ln(w + ε + ψ)] +(w + ε − ψ)[ln(G + ε + w − ψ) − ln(w + ε − ψ)].

(53)

Also, we have

ϑEWCBL3 �  
∀Ω

ϑWCBLπ3(φ, ϕ)dφdϕ

� 

1

0



G

0

2ϕ
G
2 

− (φ + s)

2ψ
ln

(1 + w − ψ/ε + ϕ)

1 + w + ψ/ε + ϕ
 dϕ dφ

�
− (2s + 1)

2ψG


G

0

ϕ ln
(1 + w − ψ/ε + ϕ)

1 + w + ψ/ε + ϕ
 dϕ⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

�
− (2s + 1)

2ψG
I14 .

(54)

Te hyperparameters are selected in Bayesian and E-
Bayesian models based on prior knowledge (informative
prior) of the data and are randomly sampled from pre-
defned distributions over the hyperparameter space. Te
model is evaluated for each sample, and a random search is
conducted to identify the best combination of hyper-
parameters. Te methodological approach was extensively
used in the studies cited in the references [10, 18].

5. Simulation Study

Te behavior of Bayesian and E-Bayesian estimators for the
GR distribution’s shape parameter has been evaluated and
examined using a Monte Carlo simulation study. Te fol-
lowing procedures in simulation analysis have been carried
out through R software:

(1) By considering diferent censoring schemes, simu-
lations are run at n � 30,50, . . . , 110, s � 75%,

50%, 100%, ] � 2, w � 0.5,ψ � 2, − 1,1, and G � 2.

(2) Determined values of φ and ϕ are 0.3 and 0.7,
respectively.

(3) Generate the value of ϑ from the pdf of the gamma
distribution given in equation (13).

(4) For n, we generate censoring samples type-II from
GR (ϑ, ]) with a known value ] by applying the
following scheme:

(a) Generate u from a uniform distribution on the
interval (0, 1).

(b) Apply the inverse transform sampling method as
follows:

Xi � F
− 1

ui(  �
1
]

− ln 1 − ui( 

1
ϑ⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦

1/2

; i � 1, . . . , n.

(55)

(5) Te estimates ϑBL, ϑEBL1,
ϑEBL2, and ϑEBL3 of ϑ under

LINEXLF are evaluated from equations (15), (28),
(29), and (30), respectively.

(6) Te estimates ϑWBL, ϑEWBL1,
ϑEWBL2, and ϑEWBL3 of ϑ

under WLINEXLF are evaluated from equations
(17), (36), (37), and (38), respectively.

(7) Te estimates ϑCBL, ϑECBL1,
ϑECBL2, and ϑECBL3 of ϑ

under CLINEXLF are evaluated from equations (16),
(44), (45), and (46), respectively.

(8) Te estimates ϑWCBL, ϑEWCBL1,
ϑEWCBL2, and ϑEWCBL3

of ϑ under WCLINEXLF are evaluated from equa-
tions (18), (52), (53), and (54), respectively.

(9) We repeat the above steps 10000 times. Te mean
square errors (MSE) for each estimate ϑ are then
calculated as follows:

MSE(ϑ) �
1

10000


10000

i�1
ϑ − ϑi 

2
, (56)

where ϑi is denoted as the estimate at ith run and
ϑ � 1.5386.
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Table 1: Te values of MSEs for the Bayesian estimation for ϑ.

n s
ϑBL

ϑWBL
ϑCBL

ϑWCBL

ψ � − 1 ψ � 1 ψ � 2 ψ � − 1 ψ � 1 ψ � 2 ψ � − 1 ψ � 1 ψ � 2 ψ � − 1 ψ � 1 ψ � 2

30
15 0.2548 0.1999 0.1948 0.1521 0.1412 0.1311 0.1958 0.1812 0.1615 0.1594 0.1301 0.1310
22 0.1506 0.1397 0.1226 0.1198 0.1078 0.1008 0.1676 0.1201 0.1151 0.1205 0.0909 0.0926
30 0.1321 0.1231 0.1105 0.1056 0.1048 0.0995 0.1451 0.1069 0.1014 0.0958 0.0901 0.0909

50
25 0.2465 0.1936 0.1232 0.1432 0.1210 0.1080 0.1319 0.1216 0.1015 0.1315 0.1005 0.0981
37 0.2387 0.1910 0.0943 0.1352 0.0911 0.0945 0.1248 0.0956 0.0921 0.1009 0.0907 0.0899
50 0.1337 0.0974 0.0899 0.1099 0.0905 0.0934 0.0961 0.0901 0.0897 0.0900 0.0844 0.0891

70
35 0.1329 0.0886 0.0853 0.1054 0.0968 0.0812 0.1145 0.1009 0.1000 0.1054 0.0789 0.0798
52 0.1222 0.0831 0.0821 0.0956 0.0875 0.0745 0.0991 0.0985 0.0914 0.0800 0.0701 0.0645
70 0.1189 0.0787 0.0709 0.0850 0.0795 0.0694 0.0876 0.0856 0.0807 0.0641 0.0681 0.0542

90
45 0.1129 0.0840 0.0811 0.0954 0.0940 0.0756 0.0992 0.0977 0.0968 0.0861 0.0709 0.0683
67 0.1107 0.0760 0.0713 0.0845 0.0845 0.0698 0.0934 0.0864 0.0795 0.0753 0.0614 0.0415
90 0.1102 0.0752 0.0721 0.0802 0.0756 0.0584 0.0719 0.0798 0.0741 0.0617 0.0518 0.0318

110
55 0.1122 0.0725 0.0526 0.0891 0.0712 0.0642 0.0807 0.0894 0.0801 0.0689 0.0689 0.0546
82 0.0986 0.0719 0.0523 0.0650 0.0618 0.0601 0.0656 0.0764 0.0684 0.0602 0.0502 0.0489
110 0.0973 0.0689 0.0501 0.0512 0.0602 0.0542 0.0541 0.0645 0.0548 0.0482 0.0458 0.0405

Table 2: Te values of MSEs for the E-Bayesian estimation for ϑ under π1(φ, ϕ).

n s
ϑEBL1

ϑEWBL1
ϑECBL1

ϑEWCBL1

ψ � − 1 ψ � 1 ψ � 2 ψ � − 1 ψ � 1 ψ � 2 ψ � − 1 ψ � 1 ψ � 2 ψ � − 1 ψ � 1 ψ � 2

30
15 0.2335 0.1798 0.1745 0.1475 0.1384 0.1247 0.1841 0.1774 0.1602 0.1387 0.1284 0.1282
22 0.1417 0.1302 0.1212 0.1149 0.1067 0.0994 0.1607 0.1182 0.1083 0.0964 0.0867 0.0921
30 0.1241 0.1207 0.1049 0.1014 0.1011 0.0968 0.1389 0.1043 0.1008 0.0900 0.0853 0.0884

50
25 0.2265 0.1856 0.1194 0.1404 0.1302 0.1052 0.1012 0.1184 0.0997 0.0907 0.0985 0.0962
37 0.2199 0.1605 0.0913 0.1338 0.0907 0.0931 0.0918 0.0949 0.0916 0.0852 0.0902 0.0846
50 0.1298 0.0897 0.0801 0.1064 0.0894 0.0914 0.0913 0.0872 0.0877 0.0794 0.0819 0.0817

70
35 0.1289 0.0804 0.0814 0.1013 0.0876 0.0796 0.0875 0.0982 0.0973 0.0813 0.0774 0.0712
52 0.1147 0.0789 0.0807 0.0939 0.0842 0.0731 0.0743 0.0968 0.0819 0.0700 0.0697 0.0619
70 0.1101 0.0702 0.0700 0.0816 0.0784 0.0682 0.0712 0.0813 0.0784 0.0678 0.0675 0.0532

90
45 0.1065 0.0826 0.0799 0.0923 0.0936 0.0731 0.0861 0.0961 0.0947 0.0808 0.0681 0.0674
67 0.1009 0.0715 0.0709 0.0814 0.0829 0.0662 0.0756 0.0838 0.0768 0.0617 0.0609 0.0407
90 0.1000 0.0689 0.0701 0.0795 0.0748 0.0541 0.0630 0.0764 0.0712 0.0548 0.0507 0.0312

110
55 0.1081 0.0712 0.0520 0.0776 0.0708 0.0642 0.0701 0.0872 0.0768 0.0601 0.0672 0.0537
82 0.0809 0.0701 0.0517 0.0615 0.0611 0.0590 0.0654 0.0745 0.0613 0.0512 0.0498 0.0472
110 0.0801 0.0654 0.0495 0.0499 0.0587 0.0512 0.0531 0.0598 0.0519 0.0404 0.0441 0.0394

Table 3: Te values of MSEs for the E-Bayesian estimation for ϑ under π2(φ, ϕ).

n s
ϑEBL2

ϑEWBL2
ϑECBL2

ϑEWCBL2

ψ � − 1 ψ � 1 ψ � 2 ψ � − 1 ψ � 1 ψ � 2 ψ � − 1 ψ � 1 ψ � 2 ψ � − 1 ψ � 1 ψ � 2

30
15 0.1987 0.1618 0.1652 0.1468 0.1287 0.1199 0.1706 0.1624 0.1581 0.1254 0.1141 0.1102
22 0.1394 0.1294 0.1120 0.1108 0.1001 0.0896 0.1581 0.1152 0.0917 0.0879 0.0807 0.0894
30 0.1237 0.1123 0.1027 0.0982 0.0983 0.0843 0.1295 0.1007 0.0908 0.0851 0.0812 0.0798

50
25 0.1962 0.1590 0.1175 0.1312 0.1217 0.0982 0.1189 0.1037 0.0971 0.0900 0.0917 0.0892
37 0.1948 0.1548 0.0874 0.1296 0.0864 0.0927 0.0821 0.0931 0.0892 0.0819 0.0852 0.0806
50 0.1245 0.0867 0.0768 0.0967 0.0827 0.0909 0.0813 0.0827 0.0818 0.0709 0.0749 0.0737

70
35 0.1271 0.0794 0.0717 0.0984 0.0782 0.0783 0.0854 0.0974 0.0945 0.0713 0.0701 0.0698
52 0.1132 0.0751 0.0709 0.0924 0.0747 0.0704 0.0819 0.0824 0.0807 0.0700 0.0681 0.0609
70 0.1079 0.0689 0.0668 0.0802 0.0720 0.0672 0.0817 0.0807 0.0719 0.0670 0.0657 0.0523

90
45 0.0984 0.0818 0.0710 0.0876 0.0794 0.0713 0.0807 0.0902 0.0913 0.0647 0.0618 0.0647
67 0.0972 0.0704 0.0672 0.0784 0.0738 0.0608 0.0749 0.0817 0.0747 0.0554 0.0587 0.0398
90 0.0819 0.0637 0.0658 0.0682 0.0704 0.0527 0.0662 0.0752 0.0681 0.0432 0.0492 0.0261

110
55 0.0967 0.0694 0.0449 0.0612 0.0692 0.0613 0.0686 0.0794 0.0702 0.0608 0.0512 0.0514
82 0.0771 0.0642 0.0408 0.0598 0.0607 0.0571 0.0649 0.0672 0.0611 0.0400 0.0381 0.0370
110 0.0719 0.0607 0.0397 0.0417 0.0543 0.0484 0.0528 0.0517 0.0412 0.0357 0.0321 0.0301
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Te simulation results are shown in Tables 1–4. We
conclude the following from the results:

(1) According to the lowest MSE, the E-Bayesian esti-
mation for ϑ surpasses the Bayesian estimation in
all cases

(2) Te Bayesian estimation for ϑ under the WCLI-
NEXLF surpasses the Bayesian estimations under
LINEXLF, CLINEXLF, and WLINEXLF because of
the smallest value of MSE

(3) Te E-Bayesian estimation for ϑ under WCLINEXLF
with π1(φ, ϕ) and π2(φ,ϕ) has the least MSE re-
garding all other estimations

(4) Te E-Bayesian estimation for ϑ under WLINEXLF
with π3(φ, ϕ) has the least MSE regarding all other
estimations

(5) Te Bayesian and E-Bayesian estimationmethods for
ϑ under the suggested WCLINEXLF outperform the
Bayesian and E-Bayesian estimation methods under
CLINEXLF because of the minimum MSE

(6) Te values of MSE under Bayesian and E-Bayesian
estimation techniques are decreasing when the
sample size n and s are increasing

Terefore, we suggest using the E-Bayesian approach for
estimating the parameter ϑ. In addition, applying the type-II
censoring data for the life test owes to its better performance
than other estimates.

6. Applications on Real Data

A real data set is applied to illustrate Bayesian and E-
Bayesian estimation. Te data set, frst published by
Wang and Lee [47], includes the remission times (months)
for a random sample of 137 patients with bladder cancer,
which are displayed in Table 5.

According to the type-II censoring scheme, we assume
137 independent patients (n) are placed on a life test with the
corresponding remission times (months)
x1, x2, . . . , x137 � 0.08, 0.2, . . . , 79.05, which are displayed in
Table 5. It is supposed that these variables are identical and
independent with pdf in equation (1). We determine s � 25
on the condition that s< n. Te experiment was terminated
after the 25th independent patient was observed, by the time
that x25 � 2.64. Tis decision was made based on a pre-
determined number of failures that had occurred in the
experiment up to that point. In addition, the remission time
of the surviving units (n − s) is removed from the test.

Regarding these data, we calculated the Kolmogor-
ov–Smirnov (KS) distance (D) between the empirical
distribution function and its ftted function to be 0.1910,
and the p value is 0.6385. Te Bayesian estimation for ϑ
and the standard error (St. E) under type II censored data
for bladder cancer data according to LINEXLF, CLI-
NEXLF, WLINEXLF, and WCLINEXLF are shown in
Table 6. Te E-Bayesian estimation for ϑ under π1(φ, ϕ)

and St. E under type II censored data for bladder cancer
data according to LINEXLF, CLINEXLF, WLINEXLF, and
WCLINEXLF are shown in Table 7. Te E-Bayesian es-
timation for ϑ under π2(φ, ϕ) and St. E under type II
censored data for bladder cancer data according to
LINEXLF, CLINEXLF, WLINEXLF, andWCLINEXLF are
shown in Table 8. Te E-Bayesian estimation for ϑ based
on π3(φ,ϕ) and St. E under type II censored data for
bladder cancer data according to LINEXLF, CLINEXLF,
WLINEXLF, and WCLINEXLF are shown in Table 9. Te
results are shown in Tables 6–9. Terefore, we can obtain
the following results (see Figure 2):

(1) Due to the lowest value of St. E, the E-Bayesian
estimation for ϑ transcends the Bayesian estimations
in all cases.

Table 4: Te values of MSEs for the E-Bayesian estimation for ϑ under π3(φ, ϕ).

n s
ϑEBL3

ϑEWBL3
ϑECBL3

ϑEWCBL3

ψ � − 1 ψ � 1 ψ � 2 ψ � − 1 ψ � 1 ψ � 2 ψ � − 1 ψ � 1 ψ � 2 ψ � − 1 ψ � 1 ψ � 2

30
15 0.1712 0.1547 0.1427 0.1378 0.1124 0.1098 0.1549 0.1524 0.1491 0.1103 0.1042 0.0954
22 0.1254 0.1192 0.1091 0.1012 0.0981 0.0749 0.1205 0.1018 0.0815 0.0804 0.0794 0.0701
30 0.1148 0.1101 0.0941 0.0817 0.0972 0.0715 0.0984 0.0976 0.0801 0.0775 0.0712 0.0684

50
25 0.1514 0.1437 0.1012 0.1197 0.1182 0.0908 0.1119 0.1012 0.0894 0.0813 0.0783 0.0714
37 0.1502 0.1409 0.0718 0.1104 0.0798 0.0819 0.0987 0.0871 0.0862 0.0750 0.0764 0.0672
50 0.1497 0.0841 0.0684 0.0916 0.0746 0.0807 0.0956 0.0814 0.0806 0.0714 0.0708 0.0636

70
35 0.1113 0.0774 0.0682 0.0892 0.0713 0.0719 0.0850 0.0891 0.0873 0.0744 0.0684 0.0674
52 0.1097 0.0711 0.0674 0.0871 0.0681 0.0684 0.0800 0.0805 0.0749 0.0612 0.0652 0.0583
70 0.1007 0.0640 0.0619 0.0794 0.0679 0.0653 0.0715 0.0976 0.0707 0.0607 0.0638 0.0492

90
45 0.0974 0.0782 0.0657 0.0796 0.0681 0.0819 0.0735 0.0814 0.0864 0.0594 0.0586 0.0537
67 0.0962 0.0614 0.0613 0.0763 0.0674 0.0557 0.0702 0.0807 0.0684 0.0430 0.0542 0.0308
90 0.0767 0.0607 0.0594 0.0614 0.0612 0.0512 0.0617 0.0734 0.0664 0.0308 0.0461 0.0167

110
55 0.0910 0.0581 0.0412 0.0597 0.0594 0.0584 0.0718 0.0772 0.0608 0.0412 0.0475 0.0468
82 0.0641 0.0574 0.0381 0.0519 0.0526 0.0536 0.0640 0.0651 0.0587 0.0364 0.0356 0.0248
110 0.0634 0.0551 0.0372 0.0408 0.0508 0.0474 0.0516 0.0503 0.0319 0.0315 0.0274 0.0201
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(2) Te Bayesian estimation for ϑ under WCLINEXLF
surpasses the Bayesian estimations under LINEXLF,
CLINEXLF, and WLINEXLF because of the smallest
value of St. E.

(3) Te E-Bayesian estimation for ϑ under WCLINEXLF
with π1(φ, ϕ), π2(φ,ϕ), and π3(φ,ϕ) has the least St.
E regarding all other estimators.

(4) Te Bayesian and E-Bayesian estimation of ϑ under
the suggested WCLINEXLF transcends the Bayesian
and E-Bayesian estimation under CLINEXLF be-
cause of the minimum St. E.

Terefore, we suggest using the E-Bayesian approach
under the suggestedWCLINEXLF to estimate the parameter
ϑ depending on the type-II censoring scheme due to its
better performance than other estimators.

Te histogram plot, MCMC convergence, and approx-
imate marginal posterior density of ϑ are represented in
Figures 3–6.

Figure 2 illustrates the plots between the empirical and
its ftted function under the CDF curve, the histogram, the P-
P plot, and the Q-Q plot for GR, resulting in the GR ftting
the bladder cancer data set.

Table 5: Remission times (months) for a random sample of 137 patients with bladder cancer.

8.65 2.23 32.15 4.87 5.71 7.59 3.02 4.51 1.05 9.47
6.54 4.23 3.48 2.46 22.69 3.82 26.31 4.65 5.41 4.34
79.05 2.02 4.26 11.25 10.34 10.66 12.03 2.64 14.76 1.19
8.66 14.83 5.62 18.1 25.74 17.36 1.35 9.02 6.94 7.26
4.7 3.7 3.64 3.57 11.64 6.25 25.82 3.88 3.02 19.36
20.28 46.12 5.17 0.2 36.66 10.06 4.98 5.06 16.62 12.07
6.97 0.08 1.4 2.75 7.32 1.26 6.76 8.6 7.62 3.52
9.74 0.4 5.41 2.54 2.69 8.26 0.5 5.32 5.09 2.09
7.93 12.02 13.8 5.85 7.09 5.32 4.33 2.83 8.37 14.77
8.53 11.98 1.76 4.4 34.26 2.07 17.12 12.63 7.66 4.18
13.29 23.63 3.25 7.63 2.87 3.31 2.26 2.69 11.79 5.34
24.8 10.86 17.14 15.96 7.28 4.33 7.39 13.11 10.75 6.93
2.62 0.9 21.73 0.87 0.51 3.36 43.01 0.81 3.36 1.46
4.5 19.13 14.24 7.87 5.49 2.02 9.22

Table 6: Te Bayesian estimation of ϑ and St. E under type II censored data for bladder cancer data.

s � 25, ] � 0.7565, w � 0.5,ψ � − 1, and G � 2
ϑBL St. E ϑWBL St. E ϑCBL St. E ϑWCBL St. E

3.6573 0.3645 3.4853 0.3467 3.1721 0.3301 2.9681 0.2970

Table 7: Te E-Bayesian estimation for ϑ under π1(φ,ϕ) and St. E under type II censored data for bladder cancer data.

s � 25, ] � 0.7565, w � 0.5,ψ � − 1, and G � 2
ϑEBL1 St. E ϑEWBL1 St. E ϑECBL1 St. E ϑEWCBL1 St. E

2.8721 0.2776 2.4687 0.2504 1.9896 0.2276 1.7592 0.1843

Table 8: Te E-Bayesian estimation for ϑ under π2(φ,ϕ) and St. E under type II censored data for bladder cancer data.

s � 25, ] � 0.7565, w � 0.5,ψ � − 1, and G � 2
ϑEBL2 St. E ϑEWBL2 St. E ϑECBL2 St. E ϑEWCBL2 St. E

1.5367 0.1690 1.3964 0.1320 1.1943 0.1112 1.0872 0.1080

Table 9: Te E-Bayesian estimation for ϑ under π3(φ,ϕ) and St. E under type II censored data for bladder cancer data.

s � 25, ] � 0.7565, w � 0.5,ψ � − 1, and G � 2
ϑEBL3 St. E ϑEWBL3 St. E ϑECBL3 St. E ϑEWCBL3 St. E

0.9589 0.0756 0.7963 0.0479 0.6279 0.0195 0.5196 0.0002

16 Journal of Mathematics



F 
(x

)

1.00

.80

.60

.40

.20

.00

X
.00 20.00 40.00 60.00 80.00

GR

Emprical

(a)

f (
x)

.00 20.00 40.00
X

60.00 80.00

60

50

40

30

20

10

0

(b)

R 
(x

)

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

X

(c)

X

1.00

0.75

0.50

0.25h 
(x

)

0.00

-0.25

-0.5 0.0 0.5 1.0 1.5

(d)

Figure 2: Te plot of the maximum distance between two CDF curves, histogram, P-P plot, and Q-Q plot of GR for bladder cancer data.
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Figure 3: Te MCMC plots of the Bayesian estimation for ϑ according to LINEXLF, CLINEXLF, WLINEXLF, and WCLINEXLF, re-
spectively, under type II censored data of GR for bladder cancer data.
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Figure 5: Te MCMC plots of the E-Bayesian estimation for ϑ under π2(φ,ϕ) according to LINEXLF, CLINEXLF, WLINEXLF, and
WCLINEXLF, respectively, under type II censored data of GR for bladder cancer data.
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Figure 4: Te MCMC plots of the E-Bayesian estimation for ϑ under π1(φ,ϕ) according to LINEXLF, CLINEXLF, WLINEXLF, and
WCLINEXLF, respectively, under type II censored data of GR for bladder cancer data.
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Figures 3–6 show the trace plots of 10,000 MCMC
samples and histogram plots of generated ϑ under Bayesian
estimation and E-Bayesian estimation according to
π1(φ, ϕ), π2(φ, ϕ), and π3(φ,ϕ) based on type II censored
data of GR for bladder cancer data according to LINEXLF,
CLINEXLF, WLINEXLF, andWCLINEXLF, respectively. In
the simulation study, we found that Bayesian and E-Bayesian
estimation methods of ϑ under the suggested WCLINEXLF
transcend other methods.

7. Conclusion

Te current paper focuses on the Bayesian and E-Bayesian
estimation procedures of an unknown shape parameter of
the GR distribution based on type-II censoring data. A
precise procedure for the Bayesian and E-Bayesian esti-
mators has been proposed using several LF methods. Te
gamma distribution is used as a conjugate prior for GR’s
parameter, and the various LFs, including LINEXLF,

Iterations
0 2000 4000 6000 8000 10000

800

600

400

200

0
0.5 1.0 1.5 2.0

Fr
eq
ue
nc
y

ϑ

ϑ

2.0

1.5

1.0

0.5

(a)

Iterations
0 2000 4000 6000 8000 10000

800

600

400

200

0

Fr
eq
ue
nc
y

0.6 0.8 1.0 1.2
ϑ

ϑ

1.0

0.8

0.6

1.2

(b)

Iterations
0 2000 4000 6000 8000 10000

1000

800

600

400

200

0

Fr
eq
ue
nc
y

5.5 6.5 7.5 8.5
ϑ

ϑ

8.5

7.5

6.5

5.5

(c)

Iterations
0 2000 4000 6000 8000 10000

1200
1000
800
600
400
200
0

Fr
eq
ue
nc
y

0.5 1.0 1.5 3.0 3.52.0 2.5
ϑ

ϑ

3.5
3.0
2.5
2.0
1.5

0.5
1.0

(d)

Figure 6: Te MCMC plots of the E-Bayesian estimation for ϑ under π3(φ,ϕ) according to LINEXLF, CLINEXLF, WLINEXLF, and
WCLINEXLF, respectively, under type II censored data of GR for bladder cancer data.
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WLINEXLF, CLINEXLF, and a new suggested LF called
WCLINEXLF, are used to derive the E-Bayesian and
Bayesian estimators. In addition, the E-Bayesian estimator is
derived using three prior hyperparameter distributions.

Under various prior assumptions and several LFs, the
accuracy of Bayesian and E-Bayesian estimators for an un-
known shape parameter of the GR distribution has been in-
vestigated via a Monte Carlo technique. Te results of the
simulation indicated that each of the prior distributions under
the shape parameter had performed brilliantly and efciently
according to the suggested WCLINEXLF, as the Bayesian and
E-Bayesian estimation methods under WCLINEXLF out-
performed the Bayesian and E-Bayesian estimation schemes
under the rest of the loss functions, particularly when it comes
to the least MSE. Furthermore, it has been recommended that
a novel LF called WCLINEXLF be used while estimating
hyperparameters. According to simulation results, the E-
Bayesian estimator performs better than the Bayesian esti-
mator based on the minimum MSE. In addition, the results of
the real data on bladder cancer clarify how to get the suggested
estimators in real life and show that the E-Bayesian and
Bayesian estimation techniques according to WCLINEXLF
surpass other loss functions due to the minimum value of St. E,
whichmeans that these results of this analysis of the application
accord with the simulation results. Based on the simulation and

real data results, we recommend using the E-Bayesian method
according to WCLINXLF to estimate an unknown shape
parameter of the GR distribution under type-II censoring data.

It is essential to remember that this paper assumes a known
prior parameter. If the prior parameter is unknown, this paper
can be improved by evolving empirical Bayesian estimators.
Another improvement of this work is developing an estimation
scheme under the multivariate structure of the GR model.
Moreover, given the failure data that follows various probability
distributions, comparisons between the researchers’ suggested
formula and other approaches may be established. Te pro-
posed formula may be improved, and comparisons to other
theoretical probability distributions can be made theoretically
and practically in medical applications.

Appendix

A. Derivation of the Likelihood Function under
the Type-II Censoring Sample in Equation (11)

Tepurpose of this derivation is to explain the steps involved
in arriving at the likelihood function under the type-II
censoring sample in equation (11) for the GR distribution.
Tis derivation is based on the following assumptions:

L(ϑ, ] | x) �
n!

(n − s)!
× 

s

i�1
2ϑ]2xi exp − ]xi( 

2
  1 − exp − ]xi( 

2
  

ϑ− 1
× 1 − 1 − exp − ]xs( 

2
  

ϑ
 

n− s

�
n!

(n − s)!
2sϑs]2s

× 
s

i�1
xi

exp − ]xi( 
2

 

1 − exp − ]xi( 
2

 
⎛⎝ ⎞⎠ 

s

i�1
1 − exp − ]xi( 

2
  

ϑ
⎛⎝ ⎞⎠ × 1 − 1 − exp − ]xs( 

2
  

ϑ
 

n− s

 .

(A.1)

First, we assume F � 
s
i�1(1 − exp(− (]xi)

2))ϑ; using
some properties of logarithms and exponential functions, we
conclude that F � exp (ϑ.

s
i�1ln(1 − exp(− (]xi)

2)) and we
also assume Z � (1 − (1 − exp(− (]xs)

2))ϑ)n− s; using some

properties of logarithms, exponential functions, and Taylor
expansion ln(1 − x) � 

∞
k�1 − (x)k/k, we conclude that

Z � exp(
∞
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Finally, we substitute their values into the equation.
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where ε � − 
s
i�1ln(1 − exp(− (]xi)

2)) − 
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B. Derivation of the Bayesian Estimator of ϑ
Based on LINEXLF in Equation (15)
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C. Derivation of the Bayesian Estimator of ϑ
Based on CLINEXLF in Equation (16)
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Also, we have
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Ten, the Bayesian estimator of ϑ has the following form:
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D. Derivation of the Bayesian Estimator of ϑ
Based on WLINEXLF in Equation (17)
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such that
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Also, we have
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I4 � Eϑ(exp(− ϑ(w + ψ)) | x) � 
∞

0
exp(− ϑ(w + ψ))π(ϑ | x)dϑ

� 
∞

0
exp(− ϑ(w + ψ))

ϑφ+s− 1 exp(− ϑ(ε + ϕ))(ϕ + ε)φ+s

Γ(φ + s)
dϑ

� 1 +
w + ψ
ε + ϕ

 

− (φ+s)

.

(D.3)

Terefore, the Bayesian estimator of ϑ is expressed as
follows:

ϑWBL �
1
ψ
ln

(1 + w/ε + ϕ)
− (φ+s)

(1 + w + ψ/ε + ϕ)
− (φ+s)

⎛⎝ ⎞⎠

�
− (φ + s)

ψ
ln

1 + w/ε + ϕ
1 + w + ψ/ε + ϕ

 .

(D.4)

E. Derivation of the Bayesian Estimator of ϑ
Based on WCLINEXLF in Equation (1 )

ϑWCBL �
1
2ψ

ln
Eϑ(exp(− ϑ(w − ψ)) | x)

Eϑ(exp(− ϑ(w + ψ)) | x)
 

�
1
2ψ

ln
I5
I6

 ,

(E.1)

such that

I5 � Eϑ(exp(− ϑ(w − ψ)) | x) � 
∞

0
exp(− ϑ(w − ψ))π(ϑ | x)dϑ

� 
∞

0
exp(− ϑ(w − ψ))

ϑφ+s− 1 exp(− ϑ(ε + ϕ))(ϕ + ε)φ+s

Γ(φ + s)
dϑ

� 1 +
w − ψ
ε + ϕ

 

− (φ+s)

.

(E.2)

Also, we have

I6 � Eϑ(exp(− ϑ(w + ψ)) | x) � 
∞

0
exp(− ϑ(w + ψ))π(ϑ | x)dϑ

� 
∞

0
exp(− ϑ(w + ψ))

ϑφ+s− 1 exp(− ϑ(ε + ϕ))(ϕ + ε)φ+s

Γ(φ + s)
dϑ

� 1 +
w + ψ
ε + ϕ

 

− (φ+s)

.

(E.3)

Ten, the Bayesian estimator of ϑ is expressed as follows:

ϑWCBL �
1
2ψ

ln
(1 + w − ψ/ε + ϕ)

− (φ+s)

(1 + w + ψ/ε + ϕ)
− (φ+s)

⎛⎝ ⎞⎠

�
− (φ + s)

2ψ
ln

1 + w − ψ/ε + ϕ
1 + w + ψ/ε + ϕ

 .

(E.4)
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