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This paper investigates the estimation of an unknown shape parameter of the generalized Rayleigh distribution using Bayesian and
expected Bayesian estimation techniques based on type-II censoring data. Subsequently, these estimators are obtained using four
different loss functions: the linear exponential loss function, the weighted linear exponential loss function, the compound linear
exponential loss function, and the weighted compound linear exponential loss function. The weighted compound linear ex-
ponential loss function is a novel suggested loss function generated by combining weights with the compound linear exponential
loss function. We use the gamma distribution as a prior distribution. In addition, the expected Bayesian estimator is obtained
through three different prior distributions of the hyperparameters. Moreover, depending on the four distinct forms of loss
functions, Bayesian and expected Bayesian estimation techniques are performed using Monte Carlo simulations to verify the
effectiveness of the suggested loss function and to compare Bayesian and expected Bayesian estimation methods. Furthermore, the
simulation results indicate that, depending on the minimum mean squared error, the Bayesian and expected Bayesian estimations
corresponding to the weighted compound linear exponential loss function suggested in this paper have significantly better
performance compared to other loss functions, and the expected Bayesian estimator also performs better than the Bayesian
estimator. Finally, the proposed techniques are demonstrated using a set of real data from the medical field to clarify the
applicability of the suggested estimators to real phenomena and to show that the discussed weighted compound linear exponential
loss function is efficient and can be applied in a real-life scenario.

1. Introduction

The expected Bayesian (E-Bayesian) estimation is a novel
technique for estimating unknown parameters. It presents
an expectancy of the Bayesian estimator based on the
hyperparameters’ distributions as prior distributions and
was first proposed by Han [1]. Many researchers have used
the E-Bayesian method with different lifetime distributions.
For example, Reyad and Othman [2] estimated the pa-
rameters of a two-component mixture of the inverse Lomax
distribution by E-Bayesian and Bayesian estimation,
depending on the squared error loss function (SELF), the
linear exponential loss function (LINEXLF), and the entropy
loss function (ELF) under type-I censoring data. Okasha [3]

proposed the E-Bayesian approach to estimate the parameter
of the exponential distribution and the reliability function
based on higher-recorded statistical data. Using E-Bayesian
estimation, Liu and Yin [4] evaluated the reliability function
for the geometric distribution based on the scaled SELF.
Okasha [5] also determined the Lomax distribution’s pa-
rameters and the reliability function while considering the
balanced SELF with type-II censored data.

In the study of progressive type-II censored samples,
Okasha et al. [6] focused on the Bayesian and E-Bayesian
estimation of the Weibull distribution’s scale parameter,
reliability, and hazard rate functions. Algarni and Almarashi
[7] used a similar methodology to estimate the parameters of
bathtub-shaped lifespan distributions and determine the
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reliability functions that depended on type-II censoring
samples. Athirakrishnan and Abdul-Sathar [8] introduced
E-Bayesian estimation techniques for evaluating the scale
parameters for the inverse Rayleigh distribution depending
on SELF and precautionary loss functions. Heidari et al. [9]
presented Bayesian and E-Bayesian approaches to conclude
the Rayleigh distribution’s parameter, considering SELF,
depending on type-II censored samples.

Recently, Athirakrishnan and Abdul-Sathar [10] esti-
mated the scale parameter of the Chen distribution using E-
Bayesian and Bayesian methods under Type II censoring
samples. Based on different loss functions (LFs) such as
SELF, ELF, and LINEXLF, Wang et al. [11] used E-Bayesian
and Bayesian estimation for a simple step-stress model
under progressively Type-II censoring. Igbal and Yousuf
Shad [12] used the E-Bayesian technique to estimate the
parameters of the inverse gamma distribution. Basheer et al.
[13] presented hierarchical and E-Bayesian estimations for
the inverse Weibull model and concluded that the E-
Bayesian was better than the other compared methods.
Nassar et al. [14] used the E-Bayesian and Bayesian esti-
mation approaches to estimate the generalized inverted
exponential distribution parameters under type-II censored
data. Mohie El-din et al. [15] estimated the parameters of the
Gompertz distribution under different types of LFs using E-
Bayesian estimation. Algarni et al. [16] estimated the scale
parameter of the Chen distribution via an E-Bayesian ap-
proach based on a type-I censoring scheme. Prabhu [17]
used E-Bayesian techniques to assess the shape parameter of
the Lomax distribution under different types of LFs. Liu and
Zhang [18] estimated the parameter of the Lomax distri-
bution using E-Bayesian estimation under generalized Type-
I hybrid censoring and agreed that E-Bayesian estimation is
the best and most effective method.

In past years, Hosseini et al. [19] estimated the scale
parameter of a two-parameter exponential distribution us-
ing Bayesian and Bayesian shrinkage estimations under the
SELF and Al-Bayyati LFs based on right-censored data.
Amirzadi et al. [20] used maximum likelihood and Bayesian
estimations to evaluate the shape parameter of the inverse
generalized Weibull distribution and reliability function
based on several LFs such as the general entropy, squared log
error, weight squared error, and a new loss function (LF).
Moreover, Hosseini et al. [21] used a novel lifetime distri-
bution called the Exponential-Weibull logarithmic trans-
formation, and they estimated its parameter through
maximum likelihood, Bayesian, and Bayesian shrinkage
estimations that depended on the right censored scheme.

More recently, a three-parameter bounded beta distri-
bution was a new model introduced by Althubyani et al. [22]
and MLE and Bayesian estimation under LINEXLF and
squared error were used to estimate the distribution’s un-
known parameters. Atchadé et al. [23] estimated the un-
known parameters of the new power Topp-Leone generated
distribution using MLE. Rasekhi et al. [24] presented
a simple method that performs better than MLE, using the
approximation of the likelihood equations, to estimate the
scale and location parameters of a generalized Guderman-
nian distribution. Alghamdi et al. [25] presented a new
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distribution called the half-logistic modified Kies expo-
nential distribution and estimated its parameters using eight
distinct estimation methods to determine the most accurate
methodology by comparing the results. Almugqrin et al. [26]
presented the extended reduced Kies distribution and es-
timated its parameters employing eight different schemes.

The generalized Rayleigh (GR) distribution is a contin-
uous distribution presented by Surles and Padgett [27, 28].
Several authors have used various estimation techniques to
estimate the parameters and the reliability functions of the
GR distribution, as detailed in [29-34].

The GR’s probability density function (pdf) has the
following form:

) -1
f(x;9,7) = 29" xe (”)2<1—e wx)) ,x>0; 9,9>0.
(1

The cumulative distribution function (CDF), survival
function (SF), and hazard (failure) rate function (HARF) are
obtained as follows:

9
2
F(x;9,v):<1—e (Vx)>,x>0; 9,v>0,

9
R(x):l—(l—e“”"’2>,

o o1
29v*xe” 9 <1 —e ™ )

1 —(1 - (”)2>9
(2)

where 9, v, and x are the shape parameter, the scale pa-
rameter, and the random variable, respectively.

The GR distribution is a significant continuous life
distribution widely used to analyze skewed data, conduct
survival analysis, and construct lifetime models in various
fields, including medical, industrial, and life sciences. In this
paper, we used actual data on bladder cancer to determine
a suitable statistical model for this data. It is significant to
analyze all distributions that are suitable for use as lifetime
distributions. After applying a precise identity to this dis-
tribution, we found that the GR distribution fits these data
well, as medical studies often exhibit a right-skewed dis-
tribution. Positively skewed distributions, such as the GR
distribution, play a crucial role in decision-making when
using Bayesian estimators, especially in medicine and public
health. For treatment diagnosis, doctors can use Bayesian
estimation to study the results of patients with specified
diseases by considering prior information.

Figure 1 illustrates various representative plots of f (x),
F(x), R(x) =1-F(x), and h(x) for the GR distribution
with v = 1. The shape of both curves for the GR functions, the
failure rate (FR) function, and the survival function (SF)
depends on the value of the shape parameter 9. The FR
increases and concaves up when 9> 1, while when 9<1, the
FR reduces to a straight line. Due to the flexibility of the FR,
the GR distribution has been suggested in statistical

9,v>0,

h(x;9,v) = , x>0;
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FiGure 1: Plots of pdf, CDF, SF, and HARF for GR distribution for different values of 9 for given v = 1.

literature for analyzing real-world applications in medical
reliability inference. On the other hand, the SF decreases and
concaves up when 9 < 1, and when 9> 1, the SF declines and
concaves down.

We estimate the shape parameter and set the scale to one
because the shape parameter of the asymmetric probability
distribution is often more difficult to assess and more ac-
curate than the location and scale parameters. This paper
suggests an intuitive but innovative estimation method for
this parameter. Due to the changing value of the shape
parameter, the GR distribution enables the modeling of
various physical and medical applications, as shown in
Figure 1.

The purpose of this research paper is to estimate an
unknown shape parameter of the GR distribution under
type-II censoring data through Bayesian and E-Bayesian
estimation, depending on a category of informative prior

(IP) based on the hypotheses of four LFs, presented
throughout the paper. We aim to determine which one of the
LFs is the best in terms of the estimation approach. We used
an innovative novel LF called the weighted compound linear
exponential loss function, which produced impressive re-
sults in the estimation compared to other LF techniques.
This research is unique because no attempts have been made
to evaluate all these E-Bayesian and Bayesian estimation
techniques for the shape parameter of the GR distribution
using type-1I censoring data.

The remainder of this paper is organized as follows.
Section 2 presents the GR’s derivation using various LFs.
Section 3 discusses the Bayesian estimation for GR’s un-
known shape parameter. The E-Bayesian method has been
used in Section 4 to estimate the unknown parameter. In
Section 5, the Monte Carlo simulation is described, and the
results of the simulations are discussed. In Section 6, we used



real data on bladder cancer to demonstrate the proposed
inference. Finally, in Section 7, the study’s conclusions are
presented.

2. Loss Function (LF)

The LF is essential to Bayesian analysis and decision theory
because of its crucial use in describing underestimation and
overestimation in analysis. Square and LINEX are the two
most used LFs. The LINEXLF gives different weights to
underestimation and overestimation, and it is a symmetrical
generalization of the square loss function. In contrast, the
square loss function treats underestimation and over-
estimation equally. The LINEXLF is more practical and
advantageous in real-world applications than the square loss.
For instance, overestimating the reliability function or av-
erage failure time in reliability and survival analysis is
typically more serious than underestimating the reliability
function or mean failure time. In comparison, under-
estimating the failure rate has more negative consequences
than overestimating. Moreover, numerous other authors
have discovered that the frequently used square loss function
may not be appropriate in real applications. These authors
include Zellner [35], Huang and Chang [36], and Matin and
Khatun [37]. As a result, in this paper, we used four types of
LINEXLF and got the minimum MSE under the suggested
WCLINEXLF according to E-Bayesian and Bayesian
estimations.

This section spotlights four main categories of LF:
LINEXLF, CLINEXLF, WLINXLF, and WCLINEXLF.

2.1. Linear Exponential Loss Function (LINEXLF). The
LINEXLF for the parameter v is evaluated by the following
[38, 39]:

LE 9o [exp(y(B-9)-y@-9-1Ly#0, ()

where 9 is an estimator for 9. The Bayesian estimator,
depending on LINEXLF, is defined as follows:

9y = %ln(Es(expwm 1), @

where Ej is the expectation of posterior and Eg (exp (—y9)) is
finite and exists.

2.2.  Weighted Linear Exponential Loss Function
(WLINEXLF). Al-Duais [40, 41] and Al-Duais and Hmood
[42] presented this loss function.

L,O-9) =w®[exp(y(O-9) -y(O-9) -1],

(5)
w(9) = exp (—wY),

where w(9) is denoted as the proposed weighted function.
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The value of 9 is the Bayesian estimator of 9 under
WLINEXLF, which minimizes equation (5) and is defined as

follows:
-~ 1
9 =—In
WBL v (

where Eg(exp(-w9)) and Egy(exp (-9(w + y))) are finite
and exist.

(6)

Eg(exp (—wd) | x) )
Eg(exp (-9(w +y)) | x) )’

2.3.  Composite Linear Exponential Loss Function
(CLINEXLF). The CLINEXLF is formed as follows [43, 44]:

LE9=L,,9+L,O,9

=[exp(-y(9-9) +exp(y(9-9) - 2]; y>0.
7)

The Bayesian estimator of 9, depending on CLINEXLF, is
obtained as follows:

(8)

‘9CBL =

Lln( Eg(exp (y9) | x) >
2y \ Eg(exp(-y9)|x) )’

2.4. Weighted Composite Linear Exponential Loss Function
(WCLINEXLF). Al-Bossly [45] suggested WCLINEXLF,
which is based on the weighting for CLINEXLF. The form of
WCLINEXLF is given by the following equation:

L,(9,9) =w®L®,9) =w®)L,®,9 =w@®)L, (9

= [w(®) exp (=¥ (5, 9) + w(9) exp(y(5,9))
-2];y>0,
9)
where w(9) = exp(-wd) is denoted as the proposed
weighted function.

The Bayesian estimator of Y under WCLINEXLF is
obtained as follows:

5 1 | (Es(exp(—S(w -y) | x)).

= 20 "™\ By (exp (L0 (w + 9)) | %) (10)

WCBL = 5y

Note: when w = 0 in equation (10), the CLINEXLF will

be the special case of WCLINEXLFE. It implies that the

WCLINEXLF will represent the general form of the
CLINEXLF.

3. Bayesian Estimation

In this section, we obtained the Bayesian estimation for the
shape parameter 9 by considering different types of LFs,
including LINEXLF, WLINEXLF, CLINEXLF, and WCLI-
NEXLEF. The likelihood function under the type-II censoring
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sample of size s obtained from # items of a life test from the
GR is expressed as follows:

L(9,v]|x) = (nnf's)' X 1j29v2xi exp(—(in)z)(l - exp(—(vxi)z))s_l ><<1 —(1 - exp(—(vxs)Z))S)n—s

- (n—s)!

where &= —[Y In(1-exp(-(vx,)%)) - ¥2,In (1 - exp
(- (Wcs)z))k];

< n-s
£ = ;m(T). (12)

More illustrations for equation (11) were placed in
Appendix A.
The gamma distribution (¢, ¢) used as a prior distri-
bution of 9 and its pdf is given by
¢" o1
u(9 g, ¢) ==——9"" exp(-¢9); 9,¢>0. (13)
) p(=¢9); . ¢

By substituting the likelihood function mentioned in
equation (11) and the prior distribution for 9 mentioned in
equation (13), the posterior distribution for 9 is given by

(9] x) = L(9,7|x)u(9)
[ L[ x)u(9)d9

(14)

9 exp(-9(e+ 9) (g + £)¢+S; 9>0.
I‘(q) + S)

3.1. Bayesian Estimation for O Depending on LINEXLF.
The Bayesian estimator of 9 based on LINEXLF, which is
symbolized by 95, can be expressed as follows:

AL y
9y = ; ln<l+¢+€>. (15)

We have included additional illustrations for equation
(15) in Appendix B.

3.2. Bayesian Estimation for 9 Depending on CLINEXLF.
The Bayesian estimator of 9 based on CLINEXLF, which is
symbolized by -5, can be shown as follows:

5 _ (p+s) 1-yle+¢
ScnL = 2y ln(l +yle+ </>)' (16)

More illustrations for equation (16) were placed in
Appendix C.

n! 2395v25<ﬁx exp(_(vxi)z)

A eXP(‘(”xi)z)

(11)

)exp(—98+ b,

3.3. Bayesian Estimation for 9 Depending on WLINEXLF.
The Bayesian estimator of 9 based on WLINEXLF, which is
symbolized by 9y, 5;, can be obtained as follows:

- _—(p+s) 1+wle+ ¢
Swpr = v ln<1+w+1///s+¢)'

We have included additional illustrations for equation
(17) in Appendix D.

(17)

3.4. Bayesian Estimation for 9 Depending on WCLINEXLF.
The Bayesian estimator of 9 based on WCLINEXLF, which is
symbolized by 9,¢p., can be given as follows:

—((,0+s)1 l+w-vyle+¢
2y t l+w+vyle+¢)

More illustrations for equation (18) were placed in
Appendix E.

<o)

WCBL = (18)

4. E-Bayesian Estimation

Throughout this section, we evaluated the E-Bayesian esti-
mation for the shape parameter 9 by considering different
types of LFs, including LINEXLF, WLINEXLF, CLINEXLF,
and WCLINEXLF. As stated by [46], the prior parameters ¢
and ¢ should be chosen to ensure that the former u (9| ¢, ¢)
in equation (13) decreases as a function of 9. The derivative
of u(9| ¢, ¢) according to 9 is expressed as follows:

u®dlp.¢) 9 exp(-9¢)(9)° _
0 I'(g) [(p—1)—¢9%; $>0,0<p<1.

(19)

Therefore, for ¢ >0, ¢ >0, and 9> 0 in equation (13), it
follows ¢ >0 and 0 < ¢ < 1 due to ou (9| ¢, $)/09 < 0, and the
prior u(9|¢,¢) decreases as a function of 9. Let the
hyperparameters ¢ and ¢ be independent random variables
with pdfs 7, (¢) and m, (¢). The joint bivariate probability
density function of ¢ and ¢ is given by

(9, ¢) = 7, (9)7, (). (20)



Thus, the expectation of Bayesian estimation of ¢ is
obtained as follows:
95 = ED]x) = J JVQSB(¢, Or(o,dpds.  (21)
Such Q refers to the set of all values of ¢ and ¢. 95 (¢, ¢) is
the Bayesian estimation for 9 by equations (15)-(18).
Therefore, ¢ should be smaller than an upper bound G,
where G >0 is a constant. Accordingly, hyperparameters ¢
and ¢ should be selected with the restriction of 0 < ¢ <1 and
0< ¢ <G. The E-Bayesian estimation for 9 is determined
using three distributions for hyperparameters ¢ and ¢. These
distributions are used to study the impact of the various
prior distributions on the E-Bayesian estimation for 9. The
distributions for ¢ and ¢ are written as follows:
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2(G-¢),

n1(¢,¢)=?,0<¢<1,0<¢<& (22)
1

ﬂ2(¢,¢)=6;0<(p<1,0<¢><G, (23)

n3(go,¢)=%-0<go<1,0<¢<G. (24)

G¥

4.1. E-Bayesian Estimation for 9§ under LINEXLF. The E-
Bayesian estimator for 9 based on LINEXLF with 7, (¢, ¢)
can be obtained by solving equations (15), (21), and (22) as
follows:

O = J J O, 1 (9, $)do dg
vQ
(f(2G-9)
_ - pts |4
_JJ< e ) v ln<1+¢+s>d¢d<p
00
5 G 1
__2 _ v
_szl(G ¢)ln(l+¢+s)l((p+s)d¢d¢ (25)
2s+1 T 17 ¢ Y
s+
:F{Glln<l+m)d¢—£¢ln(l+¢+£)d¢]
2 1
= :/éz [GI; - L],
such that
i y
I = ln<1+>d</)
7 J; d+e (26)
={(G+e+y)n(G+e+y)—(e+y)n(e+y) —(G+eln(G+e) + () In(e)}.
Also, we have
G
18:j¢ln(1+¢_v:£)d¢
0 (27)

)[(82 - Gz)ln(G +¢) —(82 +G + wz + 21//£)ln(e +v+G) +(s2 + wz + 21pe)ln(1// +¢€) —(82) In(e) + GW]}~
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Therefore, the E-Bayesian estimation for 9 is given by Furthermore, we drive the E-Bayesian estimation for 9
_ 2541 according to LINEXLF under m,(¢,¢) and m;(¢,¢) by
L1 = e [GI, - I]. (28)  solving equations (15), (23), and (24). It can be written as

yG follows:

§BLﬂ2 (p,¢)dod¢
vQ

B ( l go+s

_l <G> y (1+¢ )d(pdq)
25+1]§ " (29)
S

-5 I:J;ln(1+¢+s>d¢j|

2s+1
-~ 229G

9EBLZ

I
—_—
—

o—0

[17]

2s+1
e

(G+e+y)n(G+e+y) —(e+Win(e+y) — (G+eln(G +¢) + (¢) In(e)].

Also, we have

) et o

_2stl [<l> [(82 - Gz)ln(G +e) —(sz +G Yt Zws)ln(s +y+G) +(£2 +y’+ 2we)ln(1// ) —(sz) In(e) + Gw]].
(30)

4.2. E-Bayesian Estimation for 9 under WLINEXLF. The
E-Bayesian estimator for 9 based on WLINEXLF with
7, (@, ¢) can be obtained by solving equations (17), (21), and
(22) as follows:
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9EWBL1 =

—_—

J §WBL7TI (9, 9)dod¢

vQ

2(G-¢)\[—(p+5s) In l+wle+ ¢ dpd
G? v l+w+yle+¢ 4
G

1
- e (1) (o v gy G
0

O C—
S0

l+w+yle+¢
0

G G
_—(2s+1) l+wle+¢ B 1+w/e+¢
- vG’ !G,([ln<1+w+1///(s+¢)d¢> lqbln(l +w+w/e+¢>d¢}

_—(2s+1)
= 1//G2

[GIy - I];

such that

G
1+wle+¢
I, - ln<—>d¢>
l ltw+ylet+¢ (32)
={(G+e+w)n(G+e+w)-(G+e+y+whn(G+e+y+w) —(w+en(w+e) +(e+w+yYn(e+w+ y)h

Also, we have where A, is expressed as follows:

G
B 1+w/e+¢
hho = J¢ln(1+w+1///e+¢>d¢

0

G
¢ln(s+¢+w)d¢—J¢ln(e+¢+w+w)d¢
0

S0

(33)

A =

2
- {(G2 ~(-e- wﬂ(@) +(-e- w)z(ln(“;r €)> (@ 22(8 W) (G-w-¢) }

¢In(e+ ¢ +w)de

o—0

(34)

Also, A, is expressed as follows:
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G
A2=J¢ln(s+¢+w+w)d¢
0

2
= +t(wrety) )| ——— |+ (w+e+vy) - 2 +G(w+e+vy)¢.
G nfIn(G+w+e+y) of In(w+e+y) (G + G(e+w+1;/)

2 2 4
(35)
Thus, the E-Bayesian estimation for 9 is given by Furthermore, we drive the E-Bayesian estimation for 9
R —(2s+1) according to WLINEXLF under 7, (¢, ¢) and 75 (¢, ) by
pwprr = ——5— [Glo — 1) (36)  solving equations (17), (23), and (24). It can be written as
vG follows:
§EWBL2 = J JVQ§WBLﬂ2 (¢ p)do d¢
(/1 1+ w/
ZJJ'<*) —(p+s) In +wle+ ¢ dodg
G Yy ltw+vyle+¢
00
G
:—(25+1) Jln l+wle+¢ do
2yG ! l+w+yle+¢ (37)
—-(2s+1)
) (Zs]
yvG
_2s+1

= G {(G+s+w)ln(G+£+w)—(G+£+1//+w)ln(G+£+1p+w)—(w+s)ln(w+£)

+He+tw+yhn(e+w+y)l

Also, we have
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10
- = 4.3. E-Bayesian Estimation for 9 under CLINEXLF. The E-
ewpis = J JVQSWBLﬂ3 (9, 9)dpd¢ Bayesian estimator for 9 based on CLINEXLF with 7, (¢, ¢)
is obtained by solving equations (16), (21), and (22) as
[ 20\ (¢ +5) l+w/e+¢ follows:
) J J G {1 e+ )10
) G 14 +w+yle+ ¢
as+1) [ ] Lt wle+¢
—(2s + +wle +
- vG’ I:! ¢ln(l +w+yle+ ¢)d¢]
—-(2s+1)
= sz [110]
(38)
gECBLl = J j §CBL m, (¢, $)do de
VO
[(((2G-9) ~9+9, (1-vle+s
- —(p+s -yle+
= 1
l K G ) 2y n(l + w/s+¢>d¢d¢
. . (39)
_—(2s+1) 1-vyle+¢ _J’ 1-vyle+¢
G Glln<1 +1///e+¢>d¢ ) ¢ln L+yle+¢ d¢
—-(2s+1)
= sz [GLy; - 11,),
G
such that _ 1-yle+¢
G ha J¢ln(1+w/s+¢ ¢
I, = Jln 1-yle+d d ’
“_0 L+yle+¢ ¢ G < (41)
~ [$nte+g-vido- [gmnie+ g+ yidg
={(G+e-y)n(G+e-y) - (G+e+Yn(G+e+y)} 0 0
(40) =A; - Ay
Also, we have where A; is expressed as follows:
G
Ay= [+ - pdg
' (42)
- —¢)? G* +2G (e -
_ {(G2)<IH(G 21//+5)) +((V/2 €) )[IH(G—V/‘Fs) —In(e- 1/,)] _M_G(w_g) }

Also, A, is expressed as follows:
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G
= J¢ln(£+¢+w)d¢
0

2
:{(G2)<ln(G+2£+1//)>_ (e+21//) [n(G + £+ ) -

Therefore, the E-Bayesian estimation for 9 is given by

=~ -(2s+1)

Okcpr1 = W (G}, - I),]. (44)

Furthermore, we drive the E-Bayesian estimation for 9
according to CLINEXLF under 7, (¢, ¢) and 75 (¢, ¢) by
solving equations (16), (23), and (24). It can be written as

follows:

‘§ECBL2 = J JVQ§CBLHZ (¢, $)do d¢
(F/1\ ~(p+9) [1-vle+d
B 1\ —(p+s - yle+
- ,([ l (G) 2y 1n(l +yle+ ¢>d¢ de

G
_—(2s+1) 1-vyle+¢
 4yG J;ln(l +yle+ ¢)d¢j| (45)
(1]

(25 +1)
41//G

_—(2s+1)
- 4yG

{(G+e-y)n(G+e-v)

~(G+e+yn(G+e+y)}

gEWCBLl = ijgwcm m, (¢, §)do d¢

11

(43)
ln(s+w)]—w+G(s+w)2}.
Also, we have
Sucs = [ [ o (9. dpds
[1/20\ <(o+9) [1-yle+d
=”< ) =5 (e e
(46)

G
—(2$+1)i: (1—w/s+¢) ]
= ¢ln| ——— |d¢
2yG’ ! 1+yle+ ¢
:—(25+1)

21//7 [1},].

4.4. E-Bayesian Estimation for 9 under WCLINEXLF. The E-
Bayesian estimator for 9 based on WCLINEXLF with
7, (¢, ¢) is obtained by solving equations (18), (21), and (22)
as follows:

1G
[[(2ee) Hera,
00 G2 zw

—(2s+1)
yG*

= [G113 _114];

Such that

(

G G
Q+w-vyle+¢) 1+w-vyle+¢)
¢ J ln(ww/w)d‘b - J *"1“()‘14

Q1+w-vyle+¢)
ltw+vylet+¢ )¢d

(47)

l+w+yle+¢
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G
I = Mw)w
0

l+w+vyle+ ¢
(48)
={(G)[ln(¢+s+w—1//)—ln(¢+e+w+1//)] —(w+e+yY)[In(G+e+w+y)-In(w+e+y)]
+w+e-Y[n(G+e+w-y)-In(w+e-y)}
Also, we have where A; is expressed as follows:
G
3 (I1+w-vyle+¢)
T = ,([(pln( l+w+ylet+¢ aé
G G
- J¢ln(s+gb+w—1//)d¢— j¢ln(s+¢+w+1//)d¢
0 0
= As; - A
(49)
G
A= J¢ln(e+¢+w—w)d¢
0
2
_ {(Gz)<ln(G 1//2+e+w)> _( (£+u; v) )[ln(G ~y+et+w) -In(e—y+w)) (50)
G -2G(e-y+
( (z L4 w))+G(w—w+£)}.
Also, A, is expressed as follows:
G
Ag = J¢ln(s+¢+w+y/)d¢
0
2
:{(G2)<IH(G+£2+LU+1//)) B (w+;+1lf) (n(w+G+e+y)—In(wet ) (51)
G’ -2G(e+w+
—( f v 1//)+G(s+1//+w)2}.
Thus, the E-Bayesian estimation for 9 is given by Furthermore, we drive the E-Bayesian estimation for 9
R —(2s+1) according to WCLINEXLF under 7, (¢, ¢) and 75 (¢, ¢) by
ewenL = [GI,5 - I,4])- (52)  solving equations (18), (23), and (24). It can be written as

2
2yG follows:
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QWCBLTIZ (¢, $)do d¢
vQ

C—

SEWCBLZ = J

G

1]
O C—
O e, Q)

2y

3 (2s+1)
- 4G

B (2s+1)
4G

[1:]

(25+1)
- 4G

(i) —(go+s)l Q1+w-vyle+¢)
" l+w+yle+¢

G
Q+w-vyle+¢)
lln( l+w+yle+¢ >d¢]

13

>d¢ do

(53)

{(@n(p+e+w-y)-In(p+e+w+y)] - (w+e+y)[In(G+e+w+y)

“-In(w+e+ )]+ (w+e—y)[In(G+e+w-v) - In(w+e-y)]}

Also, we have

J- 9WCBL7'[3 (¢, $)dpdd

76

i —(go+s)rl (1+w-yle+¢) dod
) l+w+yle+¢ 4

G
_—(2s+1) Q+w-vyle+¢)
© 29G £¢ln< l+tw+yle+d >d¢:|
[114]

9EWCBLs =

—

o—0

B —-(2s+1)
2yG
(54)

The hyperparameters are selected in Bayesian and E-
Bayesian models based on prior knowledge (informative
prior) of the data and are randomly sampled from pre-
defined distributions over the hyperparameter space. The
model is evaluated for each sample, and a random search is
conducted to identify the best combination of hyper-
parameters. The methodological approach was extensively
used in the studies cited in the references [10, 18].

5. Simulation Study

The behavior of Bayesian and E-Bayesian estimators for the
GR distribution’s shape parameter has been evaluated and
examined using a Monte Carlo simulation study. The fol-
lowing procedures in simulation analysis have been carried
out through R software:

(1) By considering different censoring schemes, simu-
lations are run at n=30,50,...,110,s = 75%,
50%, 100%,v = 2,w = 0.5,y = 2,-1,1, and G = 2.

(2) Determined values of ¢ and ¢ are 0.3 and 0.7,
respectively.

(3) Generate the value of 9 from the pdf of the gamma

distribution given in equation (13).

(4) For n, we generate censoring samples type-II from

GR (9,7v) with a known value v by applying the
following scheme:

(a) Generate u from a uniform distribution on the
interval (0, 1).

(b) Apply the inverse transform sampling method as
follows:

1/2

1
X; =F_1(ui)=%[—ln<1—(ui)§>:| pi=1,...,n

(55)

(5) The estimates §BL, §EBL1,§EBL2, and gEBLS of 9 under
LINEXLF are evaluated from equations (15), (28),
(29), and (30), respectively.

(6) The estimates 9y 57> Iz pr1> Qewprar and gy gz of 9
under WLINEXLF are evaluated from equations
(17), (36), (37), and (38), respectively.

(7) The estimates 9cp;, 9pcpr1 pcpra> and Ipcps of 9
under CLINEXLF are evaluated from equations (16),
(44), (45), and (46), respectively.

(8) The estimates ycpr» Ypwepr Yewenrzs and Ypweprs
of 9 under WCLINEXLF are evaluated from equa-
tions (18), (52), (53), and (54), respectively.

(9) We repeat the above steps 10000 times. The mean
square errors (MSE) for each estimate 9 are then
calculated as follows:

10000

1 <3\2
MSE®) = {5555 : (9-9) 50

where 9, is denoted as the estimate at i run and
9 = 1.5386.
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TaBLE 1: The values of MSEs for the Bayesian estimation for 9.
" < 91 Shpr ScpL Senr
1/,:_] Y= 1//:2 V/:_l w:] 1//:2 1//:_] 1//:1 1//:2 V/:_l v = 1//:2
15 0.2548 0.1999  0.1948 0.1521 0.1412 0.1311 0.1958 0.1812 0.1615 0.1594 0.1301 0.1310
30 22 0.1506 0.1397  0.1226 0.1198 0.1078  0.1008 0.1676 0.1201 0.1151 0.1205 0.0909  0.0926
30 0.1321 0.1231 0.1105 0.1056 0.1048  0.0995 0.1451 0.1069  0.1014 0.0958 0.0901 0.0909
25 0.2465 0.1936  0.1232 0.1432 0.1210  0.1080 0.1319 0.1216 0.1015 0.1315 0.1005  0.0981
50 37 0.2387 0.1910  0.0943 0.1352 0.0911 0.0945 0.1248 0.0956  0.0921 0.1009 0.0907  0.0899
50 0.1337  0.0974 0.0899  0.1099  0.0905 0.0934  0.0961 0.0901  0.0897  0.0900 0.0844  0.0891
35 0.1329  0.0886 0.0853  0.1054 0.0968 0.0812  0.1145 0.1009 0.1000 0.1054  0.0789  0.0798
70 52 0.1222 0.0831 0.0821 0.0956  0.0875  0.0745 0.0991 0.0985  0.0914 0.0800 0.0701 0.0645
70 0.1189 0.0787  0.0709  0.0850  0.0795 0.0694  0.0876 0.0856  0.0807 0.0641 0.0681 0.0542
45 0.1129 0.0840  0.0811 0.0954  0.0940 0.0756 0.0992 0.0977  0.0968 0.0861 0.0709  0.0683
90 67 0.1107 0.0760  0.0713 0.0845 0.0845  0.0698 0.0934 0.0864  0.0795 0.0753 0.0614  0.0415
90 0.1102 0.0752  0.0721 0.0802 0.0756  0.0584 0.0719 0.0798  0.0741 0.0617 0.0518  0.0318
55 0.1122 0.0725  0.0526 0.0891 0.0712  0.0642 0.0807  0.0894  0.0801 0.0689  0.0689  0.0546
110 82 0.0986 0.0719  0.0523 0.0650 0.0618  0.0601 0.0656 0.0764  0.0684  0.0602 0.0502  0.0489
110 0.0973 0.0689  0.0501 0.0512 0.0602  0.0542 0.0541 0.0645  0.0548 0.0482 0.0458  0.0405
TaBLE 2: The values of MSEs for the E-Bayesian estimation for 9 under 7, (¢, ¢).
" < k11 ewnL1 IkcaLr IewenL
y=-1 y=1 y=2 wy=-1 y=1 y=2 y=-1 y=1 y=2 =-1 y=1 y=2
15 0.2335 0.1798  0.1745 0.1475 0.1384  0.1247 0.1841 0.1774  0.1602 0.1387 0.1284  0.1282
30 22 0.1417 0.1302  0.1212 0.1149 0.1067  0.0994 0.1607 0.1182  0.1083 0.0964  0.0867  0.0921
30 0.1241 0.1207  0.1049  0.1014 0.1011  0.0968  0.1389  0.1043  0.1008  0.0900  0.0853  0.0884
25 0.2265 0.1856  0.1194 0.1404 0.1302  0.1052 0.1012 0.1184  0.0997  0.0907  0.0985  0.0962
50 37 0.2199 0.1605  0.0913 0.1338 0.0907  0.0931 0.0918 0.0949  0.0916 0.0852 0.0902  0.0846
50 0.1298 0.0897  0.0801 0.1064 0.0894  0.0914 0.0913 0.0872  0.0877  0.0794 0.0819  0.0817
35 0.1289 0.0804  0.0814 0.1013 0.0876  0.0796 0.0875 0.0982  0.0973 0.0813 0.0774  0.0712
70 52 0.1147 0.0789  0.0807  0.0939  0.0842  0.0731 0.0743 0.0968  0.0819 0.0700  0.0697  0.0619
70 0.1101 0.0702  0.0700 0.0816 0.0784  0.0682 0.0712 0.0813  0.0784  0.0678 0.0675  0.0532
45 0.1065 0.0826  0.0799  0.0923 0.0936  0.0731 0.0861 0.0961  0.0947  0.0808 0.0681 0.0674
90 67 0.1009 0.0715  0.0709 0.0814 0.0829  0.0662 0.0756 0.0838  0.0768 0.0617 0.0609  0.0407
90 0.1000 0.0689  0.0701 0.0795 0.0748  0.0541 0.0630 0.0764  0.0712 0.0548 0.0507  0.0312
55 0.1081 0.0712  0.0520 0.0776 ~ 0.0708  0.0642 0.0701 0.0872  0.0768 0.0601 0.0672  0.0537
110 82 0.0809 0.0701 0.0517 0.0615 0.0611 0.0590 0.0654  0.0745  0.0613 0.0512 0.0498  0.0472
110  0.0801 0.0654 0.0495 0.0499  0.0587  0.0512  0.0531 0.0598 0.0519  0.0404  0.0441 0.0394
TaBLE 3: The values of MSEs for the E-Bayesian estimation for 9 under 7, (¢, ¢).
» s kB2 L2 Ixcaia IewenLa
y=-1 y=1 y=2 y=-1 y=1 y=2 y=-1 y=1 y=2 y=-1 y=1 y=2
15 0.1987 0.1618  0.1652 0.1468 0.1287  0.1199 0.1706 0.1624  0.1581 0.1254 0.1141 0.1102
30 22 0.1394 0.1294  0.1120 0.1108 0.1001 0.0896 0.1581 0.1152  0.0917 0.0879  0.0807  0.0894
30 0.1237 0.1123  0.1027 0.0982 0.0983  0.0843 0.1295 0.1007  0.0908 0.0851 0.0812  0.0798
25 0.1962 0.1590  0.1175 0.1312 0.1217  0.0982 0.1189 0.1037  0.0971 0.0900 0.0917  0.0892
50 37 0.1948 0.1548  0.0874 0.1296 0.0864  0.0927 0.0821 0.0931  0.0892 0.0819 0.0852  0.0806
50 0.1245  0.0867 0.0768  0.0967  0.0827  0.0909  0.0813  0.0827  0.0818  0.0709  0.0749  0.0737
35 0.1271 0.0794  0.0717  0.0984  0.0782  0.0783  0.0854  0.0974 0.0945 0.0713  0.0701  0.0698
70 52 0.1132 0.0751  0.0709  0.0924 0.0747 0.0704 0.0819 0.0824 0.0807  0.0700 0.0681  0.0609
70 0.1079 0.0689  0.0668 0.0802 0.0720  0.0672 0.0817 0.0807  0.0719 0.0670  0.0657  0.0523
45 0.0984 0.0818  0.0710 0.0876  0.0794  0.0713 0.0807  0.0902  0.0913 0.0647 0.0618  0.0647
90 67 0.0972 0.0704 0.0672  0.0784  0.0738  0.0608 0.0749 0.0817  0.0747  0.0554  0.0587  0.0398
90 0.0819 0.0637  0.0658 0.0682 0.0704  0.0527 0.0662 0.0752  0.0681 0.0432 0.0492  0.0261
55 0.0967 0.0694  0.0449 0.0612 0.0692  0.0613 0.0686 0.0794  0.0702 0.0608 0.0512  0.0514
110 82 0.0771 0.0642  0.0408 0.0598 0.0607  0.0571 0.0649 0.0672  0.0611 0.0400 0.0381 0.0370
110 0.0719 0.0607  0.0397 0.0417 0.0543  0.0484  0.0528 0.0517  0.0412 0.0357 0.0321 0.0301
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TaBLE 4: The values of MSEs for the E-Bayesian estimation for 9 under 75 (¢, ¢).
" < IkB13 I5waLs 9kcais IpwesLs
y=-1 y=1 y=2 y=-1 y=1 y=2 y=-1 y=1 y=2 y=-1 y=1 y=2
15 0.1712 0.1547  0.1427 0.1378 0.1124  0.1098 0.1549 0.1524  0.1491 0.1103 0.1042  0.0954
30 22 0.1254 0.1192  0.1091 0.1012 0.0981 0.0749 0.1205 0.1018  0.0815 0.0804 0.0794  0.0701
30 0.1148 0.1101 0.0941 0.0817 0.0972  0.0715 0.0984  0.0976  0.0801 0.0775 0.0712  0.0684
25 0.1514 0.1437  0.1012 0.1197 0.1182  0.0908 0.1119 0.1012  0.0894 0.0813 0.0783  0.0714
50 37 0.1502 0.1409  0.0718 0.1104 0.0798  0.0819 0.0987 0.0871  0.0862 0.0750  0.0764  0.0672
50 0.1497 0.0841  0.0684 0.0916 0.0746  0.0807 0.0956 0.0814  0.0806 0.0714 0.0708  0.0636
35 01113  0.0774  0.0682  0.0892  0.0713  0.0719  0.0850  0.0891  0.0873  0.0744 0.0684 0.0674
70 52 0.1097 0.0711  0.0674 0.0871 0.0681 0.0684  0.0800 0.0805  0.0749 0.0612 0.0652  0.0583
70 0.1007 0.0640  0.0619 0.0794  0.0679  0.0653 0.0715 0.0976  0.0707  0.0607  0.0638  0.0492
45 0.0974  0.0782  0.0657  0.0796 0.0681 0.0819 0.0735 0.0814  0.0864 0.0594  0.0586  0.0537
90 67 0.0962 0.0614  0.0613 0.0763 0.0674  0.0557 0.0702 0.0807 0.0684  0.0430  0.0542  0.0308
90 0.0767  0.0607  0.0594 0.0614 0.0612  0.0512 0.0617 0.0734 0.0664  0.0308 0.0461 0.0167
55 0.0910 0.0581 0.0412 0.0597  0.0594  0.0584 0.0718 0.0772  0.0608 0.0412 0.0475  0.0468
110 82 0.0641 0.0574  0.0381 0.0519 0.0526  0.0536 0.0640 0.0651  0.0587 0.0364 0.0356  0.0248
110 0.0634 0.0551  0.0372 0.0408 0.0508  0.0474 0.0516 0.0503  0.0319 0.0315 0.0274  0.0201

The simulation results are shown in Tables 1-4. We
conclude the following from the results:

(1) According to the lowest MSE, the E-Bayesian esti-
mation for 9 surpasses the Bayesian estimation in
all cases

(2) The Bayesian estimation for 9 under the WCLI-
NEXLF surpasses the Bayesian estimations under
LINEXLF, CLINEXLF, and WLINEXLF because of
the smallest value of MSE

(3) The E-Bayesian estimation for 9 under WCLINEXLF
with 7, (¢, ¢) and m, (¢, ¢) has the least MSE re-
garding all other estimations

(4) The E-Bayesian estimation for 9 under WLINEXLF
with 75 (¢, ¢) has the least MSE regarding all other
estimations

(5) The Bayesian and E-Bayesian estimation methods for
9 under the suggested WCLINEXLF outperform the
Bayesian and E-Bayesian estimation methods under
CLINEXLF because of the minimum MSE

(6) The values of MSE under Bayesian and E-Bayesian
estimation techniques are decreasing when the
sample size n and s are increasing

Therefore, we suggest using the E-Bayesian approach for
estimating the parameter 9. In addition, applying the type-II
censoring data for the life test owes to its better performance
than other estimates.

6. Applications on Real Data

A real data set is applied to illustrate Bayesian and E-
Bayesian estimation. The data set, first published by
Wang and Lee [47], includes the remission times (months)
for a random sample of 137 patients with bladder cancer,
which are displayed in Table 5.

According to the type-II censoring scheme, we assume
137 independent patients (n) are placed on a life test with the
corresponding remission times (months)
X1, %X, ... X137 = 0.08,0.2,...,79.05, which are displayed in
Table 5. It is supposed that these variables are identical and
independent with pdf in equation (1). We determine s = 25
on the condition that s < n. The experiment was terminated
after the 25" independent patient was observed, by the time
that x,; = 2.64. This decision was made based on a pre-
determined number of failures that had occurred in the
experiment up to that point. In addition, the remission time
of the surviving units (n —s) is removed from the test.

Regarding these data, we calculated the Kolmogor-
ov-Smirnov (KS) distance (D) between the empirical
distribution function and its fitted function to be 0.1910,
and the p value is 0.6385. The Bayesian estimation for 9
and the standard error (St. E) under type II censored data
for bladder cancer data according to LINEXLF, CLI-
NEXLF, WLINEXLF, and WCLINEXLF are shown in
Table 6. The E-Bayesian estimation for 9 under 7, (¢, ¢)
and St. E under type II censored data for bladder cancer
data according to LINEXLF, CLINEXLF, WLINEXLF, and
WCLINEXLF are shown in Table 7. The E-Bayesian es-
timation for 9 under m,(¢,¢) and St.E under type II
censored data for bladder cancer data according to
LINEXLF, CLINEXLF, WLINEXLF, and WCLINEXLF are
shown in Table 8. The E-Bayesian estimation for 9 based
on m;(¢,¢) and St. E under type II censored data for
bladder cancer data according to LINEXLF, CLINEXLF,
WLINEXLF, and WCLINEXLF are shown in Table 9. The
results are shown in Tables 6-9. Therefore, we can obtain
the following results (see Figure 2):

(1) Due to the lowest value of St. E, the E-Bayesian
estimation for 9 transcends the Bayesian estimations
in all cases.
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TABLE 5: Remission times (months) for a random sample of 137 patients with bladder cancer.

8.65 2.23 32.15 4.87 5.71 7.59 3.02 4.51 1.05 9.47
6.54 4.23 3.48 2.46 22.69 3.82 26.31 4.65 5.41 4.34
79.05 2.02 4.26 11.25 10.34 10.66 12.03 2.64 14.76 1.19
8.66 14.83 5.62 18.1 25.74 17.36 1.35 9.02 6.94 7.26
4.7 3.7 3.64 3.57 11.64 6.25 25.82 3.88 3.02 19.36
20.28 46.12 517 0.2 36.66 10.06 4.98 5.06 16.62 12.07
6.97 0.08 1.4 2.75 7.32 1.26 6.76 8.6 7.62 3.52
9.74 0.4 5.41 2.54 2.69 8.26 0.5 5.32 5.09 2.09
7.93 12.02 13.8 5.85 7.09 5.32 4.33 2.83 8.37 14.77
8.53 11.98 1.76 4.4 34.26 2.07 17.12 12.63 7.66 4.18
13.29 23.63 3.25 7.63 2.87 3.31 2.26 2.69 11.79 534
24.8 10.86 17.14 15.96 7.28 4.33 7.39 13.11 10.75 6.93
2.62 0.9 21.73 0.87 0.51 3.36 43.01 0.81 3.36 1.46
4.5 19.13 14.24 7.87 5.49 2.02 9.22

TaBLE 6: The Bayesian estimation of 9 and St. E under type II censored data for bladder cancer data.

s=257v=0.7565,w = 0.5,y = -1, and G = 2
91 St. E SwaL St. E . St. E Swent St. E
3.6573 0.3645 3.4853 0.3467 3.1721 0.3301 2.9681 0.2970

TaBLE 7: The E-Bayesian estimation for 9 under 7, (¢, ¢) and St. E under type II censored data for bladder cancer data.

s=25,v=0.7565,w = 0.5, = -1, and G = 2

es11 St. E YewaL1 St. E ke St. E Sewenn St. E

2.8721 0.2776 2.4687 0.2504 1.9896 0.2276 1.7592 0.1843

TaBLE 8: The E-Bayesian estimation for 9 under 7, (¢, ) and St. E under type II censored data for bladder cancer data.

s=25,v=0.7565,w = 0.5,y =-1,and G =2

k512 St. E Sewara St. E rcaia St. E YewesLa St. E

1.5367 0.1690 1.3964 0.1320 1.1943 0.1112 1.0872 0.1080

TaBLE 9: The E-Bayesian estimation for 9 under 7; (¢, ¢) and St. E under type II censored data for bladder cancer data.

s=257v=0.7565,w = 0.5y = -1, and G = 2

k513 St. E YewaLs St. E kcBis St. E OewcenLs St. E
0.9589 0.0756 0.7963 0.0479 0.6279 0.0195 0.5196 0.0002
(2) The Bayesian estimation for ¥ under WCLINEXLF Therefore, we suggest using the E-Bayesian approach

surpasses the Bayesian estimations under LINEXLF,  under the suggested WCLINEXLF to estimate the parameter
CLINEXLF, and WLINEXLF because of the smallest 9 depending on the type-II censoring scheme due to its

value of St. E. better performance than other estimators.

(3) The E-Bayesian estimation for 9 under WCLINEXLF The histogram plot, MCMC convergence, and approx-
with 7, (@, ¢), 7, (¢, $), and 75 (¢, ¢) has the least St.  imate marginal posterior density of 9 are represented in
E regarding all other estimators. Figures 3-6.

(4) The Bayesian and E-Bayesian estimation of 9 under Figure 2 illustrates the plots between the empirical and

the suggested WCLINEXLF transcends the Bayesian  its fitted function under the CDF curve, the histogram, the P-
and E-Bayesian estimation under CLINEXLF be- P plot, and the Q-Q plot for GR, resulting in the GR fitting
cause of the minimum St. E. the bladder cancer data set.
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FiGure 2: The plot of the maximum distance between two CDF curves, histogram, P-P plot, and Q-Q plot of GR for bladder cancer data.

1500
4.20 ‘
5 1000
9 4.00 ‘ ) 3
j=al
| ‘ | 8
‘ ‘ ‘ ‘ } ‘ ‘ £ 500
™ A LA A
i I I \ l
‘ " 1 ! HAAM .
! T ! | - T )
0 2000 4000 6000 8000 10000 3.80 4.00 4.20
Iterations 9
(a)
4.00 2000 -
380 4 L | L s I 1500
jr i &
[=1
9 3.60 21000 -
o
2
23
3.40 - | 500
I
320 - ‘ e 0l
0 2000 4000 6000 8000 10000 4.00 4.20
Iterations 9
(b)

Figure 3: Continued.
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Figure 3: The MCMC plots of the Bayesian estimation for 9 according to LINEXLF, CLINEXLF, WLINEXLF, and WCLINEXLF, re-
spectively, under type II censored data of GR for bladder cancer data.
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Ficure 4: The MCMC plots of the E-Bayesian estimation for 9 under 7, (¢, ¢) according to LINEXLF, CLINEXLF, WLINEXLF, and
WCLINEXLEF, respectively, under type II censored data of GR for bladder cancer data.
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Figure 5: The MCMC plots of the E-Bayesian estimation for 9 under 7, (¢, ¢) according to LINEXLF, CLINEXLF, WLINEXLF, and
WCLINEXLF, respectively, under type II censored data of GR for bladder cancer data.
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Figure 6: The MCMC plots of the E-Bayesian estimation for 9 under 75 (¢, ¢) according to LINEXLF, CLINEXLF, WLINEXLF, and
WCLINEXLF, respectively, under type II censored data of GR for bladder cancer data.

Figures 3-6 show the trace plots of 10,000 MCMC
samples and histogram plots of generated 9 under Bayesian
estimation and E-Bayesian estimation according to
7, (9, $), m, (¢, ¢), and 75 (¢, ) based on type II censored
data of GR for bladder cancer data according to LINEXLF,
CLINEXLF, WLINEXLF, and WCLINEXLF, respectively. In
the simulation study, we found that Bayesian and E-Bayesian
estimation methods of 9 under the suggested WCLINEXLF
transcend other methods.

7. Conclusion

The current paper focuses on the Bayesian and E-Bayesian
estimation procedures of an unknown shape parameter of
the GR distribution based on type-II censoring data. A
precise procedure for the Bayesian and E-Bayesian esti-
mators has been proposed using several LF methods. The
gamma distribution is used as a conjugate prior for GR’s
parameter, and the various LFs, including LINEXLF,
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WLINEXLF, CLINEXLF, and a new suggested LF called
WCLINEXLEF, are used to derive the E-Bayesian and
Bayesian estimators. In addition, the E-Bayesian estimator is
derived using three prior hyperparameter distributions.
Under various prior assumptions and several LFs, the
accuracy of Bayesian and E-Bayesian estimators for an un-
known shape parameter of the GR distribution has been in-
vestigated via a Monte Carlo technique. The results of the
simulation indicated that each of the prior distributions under
the shape parameter had performed brilliantly and efficiently
according to the suggested WCLINEXLEF, as the Bayesian and
E-Bayesian estimation methods under WCLINEXLF out-
performed the Bayesian and E-Bayesian estimation schemes
under the rest of the loss functions, particularly when it comes
to the least MSE. Furthermore, it has been recommended that
a novel LF called WCLINEXLF be used while estimating
hyperparameters. According to simulation results, the E-
Bayesian estimator performs better than the Bayesian esti-
mator based on the minimum MSE. In addition, the results of
the real data on bladder cancer clarify how to get the suggested
estimators in real life and show that the E-Bayesian and
Bayesian estimation techniques according to WCLINEXLF
surpass other loss functions due to the minimum value of St. E,
which means that these results of this analysis of the application
accord with the simulation results. Based on the simulation and

L, 7|x) =

exp( (vx;) )

First, we assume F =[], (1- exp(—(vxl-)z))s; using
some properties of logarithms and exponential functlons, we
conclude that F = exp (9.); ;In(1 - exp( (vx; ))) and we
also assume Z = (1 — (1 —exp (- (vx,)* )oY, using some

exp(—(vxi)z)

o 's % H 29v°x; exp( (vx;) )(1 - exp(—(vxi)z))s_1

95 25 : x'_—iz
(n - s)l2 <£1[ 1- exp(—(vxi)2)> < i
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real data results, we recommend using the E-Bayesian method
according to WCLINXLF to estimate an unknown shape
parameter of the GR distribution under type-II censoring data.

It is essential to remember that this paper assumes a known
prior parameter. If the prior parameter is unknown, this paper
can be improved by evolving empirical Bayesian estimators.
Another improvement of this work is developing an estimation
scheme under the multivariate structure of the GR model.
Moreover, given the failure data that follows various probability
distributions, comparisons between the researchers’ suggested
formula and other approaches may be established. The pro-
posed formula may be improved, and comparisons to other
theoretical probability distributions can be made theoretically
and practically in medical applications.

Appendix

A. Derivation of the Likelihood Function under
the Type-II Censoring Sample in Equation (11)

The purpose of this derivation is to explain the steps involved
in arriving at the likelihood function under the type-II
censoring sample in equation (11) for the GR distribution.
This derivation is based on the following assumptions:

><<1 —(1 - exp(—(vxs)z))s)n_s

1

( exp( (vx;) )) > x((l -(1- exp(—(vxs)z))s)n_s).

(A1)

properties of logarithms, exponentlal functions, and Taylor

expans1on In(1-x)=3.2, — (x)*/k, we conclude that
=exp (Yo In(n—s/k) — 922, In (1 — exp (- (vx; ))F).

Pmally, we substitute their values into the equation.

n! 55,28 - S 5
= e S)!Z CRY (i_l xim> <exp (9. i:zlln(l - eXP(_(in) )))

<exp<zln( ) - 9zln(1_exp( (7x.)%)) ))
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where &= —[Y5 In(1 - exp(-(vx;)%)) -

Yoo n (1 - exp
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B. Derivation of the Bayesian Estimator of 9
Based on LINEXLF in Equation (15)

Journal of Mathematics

951 = LIn[Ey (exp(—y9) | )] = —t1In jm exp (—y9)7 (9] x)d9
y v Jo

97 Lexp (—9(e + ¢)) (¢ + )7 p

-1 (o8]
=—1 -yd
" nJ'O exp (—y9)

:q)—ﬂln(1+ L4 )
1 d+e

C. Derivation of the Bayesian Estimator of 9
Based on CLINEXLF in Equation (16)

5 _ 1 Egy(exp (y9) | x) _ (L
Fen = zwln(Es (exp (99| x)) - 2wln(lz>’ (D
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Also, we have
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Then, the Bayesian estimator of 9 has the following form:
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D. Derivation of the Bayesian Estimator of 9
Based on WLINEXLF in Equation (17)

s 1 Eg (exp (—w9) | x) _L (L
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Also, we have
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Therefore, the Bayesian estimator of 9 is expressed as E. Derivation of the Bayesian Estimator of 9
follows: Based on WCLINEXLF in Equation (18)
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Then, the Bayesian estimator of 9 is expressed as follows: Data Availability
1 (1+w-yle+ ¢)—(<p+s) The data considered were obtained from the study by Lee
S, =5 In v and Wang [47].
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