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We consider to represent an algorithm for time-fractional Burgers’ equation utilizing the multiquadric-radial basis functions with
the time-splitting technique. Tis algorithm is performed on the three examples. Te numerical results indicated that the al-
gorithm yields accurate approximate solutions of the time-fractional Burgers’ equation. Te physical behavior of the obtained
solutions is given with graphics, and the results showed that the obtained solutions are in good match with the solutions reported
in the literature. Te algorithm is accurate, fexible, and easy to implement.

1. Introduction

We address the numerical solution of the one-dimensional
fractional Burgers’ equation as follows:
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with the initial and boundary conditions

u(x, 0) � u0(x), 0≤x≤ 1,

u(0, t) � u1(t),

u(1, t) � u2(t), 0≤ t≤T,

(2)

respectively, where 0< α≤ 1 is Caputo fractional derivative; t
and x are time and space parameters, respectively; ]> 0 is the
viscosity constant; and u0(x), u1(t), and u2(t) are known
functions, and u0(x) is sufciently smooth. Here, (zαu/ztα)

are fractional derivatives in Caputo sense, defned by
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ut(x, τ)

(t − τ)
α dτ. (3)

Te steady-state solutions of the classical Burgers’
equation are primarily computed in [1]. Burger [2] proposed
to utilize classical Burgers’ equation for the turbulence
model. Since then, Burgers’ equation has always been the
focus of attention for researchers. Particularly, the devel-
opment of the fractional derivative in recent years has re-
quired the fractional modeling of classical mathematical
models. Burgers’ (1) is important one of such models. Te
reason why fractional derivative has been a hot topic lately is
that it fnds application in science and engineering in felds
such as physics, biology, and control theory [3, 4]. When it
was difcult for researchers to fnd analytical solutions for
fractional diferential equation models, error analyzes have
been made by searching numerical solutions in general. Te
authors of [5] presented an approximate scheme for frac-
tional diferential equations which is based on the gener-
alization of the Adams–Bashforth–Moulton method and
then provided an exhaustive error analysis of this scheme.
Te authors of [6] tailored a fully discrete diference scheme
for a difusion-wave system and it is based on the trans-
forming the governing equation into a low-order system of
equations by defning two new variables. In [7], the author
proves that the smooth solutions exist for the Caputo-type
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fractional diferential equations. Te author in [8] presented
a scheme for the fractional diferential equation.Tis scheme
is tailored by combining the predictor-corrector scheme
with the short memory principle.Te authors of [9] analyzed
the stability of the explicit multistep methods and derived
novel schemes which enable a larger stability region. Te
local truncation error and the stability of the high-order
compact fnite diference scheme for the fractional difusion
equation are investigated in [10]. Te fractional linear
multistep and the fnite element techniques are performed
for time and space discretization, respectively, for the time-
fractional subdifusion equation in [11]. Te convergence
and stability analysis of the fnite diference schemes for
fractional diferential equations are investigated in [12]. A
numerical scheme based on the combination of the Ali-
khanov scheme and the Galerkin fnite element methods for
solving nonlinear time-fractional parabolic equations is
proposed in [13]. A linear fnite diference scheme is tailored
for the numerical solutions of the generalized time-
fractional Burgers equation in [14]. In [15, 16], the au-
thors used lower- and higher-order classical time-splitting
methods to solve Burgers’ equation. Te authors of [17]
presented three diferent time-splitting algorithms with the
convergence and stability analysis for nonlinear time-
fractional diferential equations. In [12–16, 18–27], the
authors proposed numerical schemes such as fnite difer-
ence, fnite elements, spectral methods, and radial basis
functions to analyze the numerical solutions of the fractional
Burgers’-type equations.

In this work, we propose an algorithm depending on the
utilization of the multiquadric-radial basis functions and
a splitting method for solving time-fractional Burgers’
equation numerically. By using advantage of a meshfree
scheme in this algorithm, the goal is to get an approach that
yields accurate results and exhibits the physical dynamics of
the time-fractional Burgers’ equation.

Te remainder of this article is organized as follows. In
Section 2, themultiquadric-radial basis functions (MQ-RBF)
used in this paper were introduced. Section 3 contains the
time-splitting technique. In Section 4, the numerical results
are presented to show the performance of the proposed
algorithm. Finally, we give some concluding remarks in
Section 5.

2. The Multiquadric-Radial Basis
Functions (MQ-RBFs)

In order to obtain a fractional-order diferential equation
system, we discretize equation (1) in space by performing the
radial basis functions method [28, 29]. To do this, one can
represent the numerical solution of equation (1), u(x, t), as
follows:

u(x, t) ≈ 􏽘
k

j�0
βj(t)θj(x), x ∈ Rl

, (4)

where θj(x) is continuously diferentiable radial basis functions,
k represents the number of distributed nodes, x � (x0, x1,

. . . , xl− 1) is l dimensional vector, and βj are needed to be

defned by utilizing the collocationmethods. On the other hand,
we use the following MQ-RBF function:

θj(x) �

������

ξ2j + c
2

􏽱

, (5)

where c is the shape constant and ξj � ‖x − xj‖ denoted by
the Euclidean norm.

We defne an approximate solution u(x, t) by uk(x, t)

and then write

u
k
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k
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βj(t)θj(x) � ΘT

(x)β, (6)

where θj(x) �
������������
(x − xj)

2 + c2
􏽱

, xj � j/k (j � 0, 1, . . . , k) are
uniformly distributed nodes on the range [0, 1], and

Θ(x) � θ0(x), θ1(x), . . . , θk(x)( 􏼁
T
,

β � β0(t), β1(t), . . . , βk(t)( 􏼁
T

.

(7)

Equation (6) can be rewritten in the following form:

Λβ � w, (8)

where w � (u0(t), u1(t), . . . , uk(t)) with uk(xi, t) � ui(t)

for i � 1, . . . , k, and
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By considering equations (4), (6), and (8), it follows

u(x, t) ≈ u
k
(x, t) � 􏽘

k

j�0
βjθj(x)

� ΘT
(x)β

� ΘT
(x)Λ− 1

w � Φ(x)w.

(10)

If one replaces equation (10) and its derivatives with the
corresponding terms in equation (1) at the collocation nodes
xi � (i/k) (i � 0, 1, . . . , k) in [0, 1], then the following is
obtained:

C
D

α
0w􏼐 􏼑(t) + w(t)∗ Φxw(t)( 􏼁 � ]Φxx2Aw(t) + g(t),

(11)

where (CDα
0w)(t), α ∈ (0, 1) is the Caputo derivative,

w � (u0, u1, . . . , uk),

g(t) � g x0, t( 􏼁, g x1, t( 􏼁, . . . , g xk, t( 􏼁( 􏼁,

Φx �
z

zx
Φj xi( 􏼁􏼢 􏼣

(k+1)×(k+1)

,

Φxx �
z2

zx2Φj xi( 􏼁􏼢 􏼣
(k+1)×(k+1)

.

(12)
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Notice that, the operator “∗” is defned for point-wise
multiplication. Furthermore, equations (11) read in the form
as follows:

C
D

α
0w􏼐 􏼑(t) � Aw(t) + f(t, w(t)), (13)

where A � ]Φxx, f(t, w(t)) � g(t) − w(t)∗ (Φxw(t)).

3. Time-Splitting Method

Splitting methods have received much attention due to their
advantages such as speed, accuracy, and stability. Tese
methods are explicit and easy to implement. Furthermore,
splitting methods are designed as geometric numerical
schemes. Tese schemes preserve some qualitative proper-
ties of the systems [30]. Let us consider following fractional
diferential equation:

C
D

α
0w􏼐 􏼑(t) � βw(t) + ρw(t),

w(0) � w0, 0< t≤T, β, ρ ∈ C,
(14)

where (CDα
0w)(t), α ∈ (0, 1) is the Caputo derivative. Te

classical time-splitting method for one time step 0≤ t≤ h can
be considered for equation (14) as follows:

C
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α
0w􏼐 􏼑(t) � βw(t),

w(0) � w0,

C
D

α
0w􏼐 􏼑(t) � ρ􏽥w(t),

􏽥w(0) � w(h).

(15)

Tat is, equation (14) is split into two equations which
are solvable and easy to deal with separately. Tese two
equations are solved successively. Let us denote 􏽥w as ap-
proximate solution of fractional equation (14) and then the
error of the classical splitting methods is given as follows:

w(h) − 􏽥w(h) � w0 􏽘
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3α
􏼐 􏼑.

(16)

Te order of convergence of the classical splitting
method is O(h2α). Tus, it can be said that the convergence
order of the time-splitting scheme obtained for one step
decreases as α approaches zero. In order to solve this
problem, the author of [17] developed a division method for
the fractional nonlinear systems of ordinary diferential
equations. Te order of the convergence of this new division
method is O(h1+α) and we perform this method to solve
equation (13), with α ∈ (0, 1), A is (k + 1) × (k + 1) real
matrices, f: [0, T] × Rk+1⟶ Rk+1. Here, the continuous

function f fulflls the Lipschitz inequality, that is, on suitable
domain G,

f t, w1( 􏼁 − f t, w2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤K w1 − w2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, ∀w1, w2 ∈ G. (17)

Te Caputo derivative is defned by
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1− α
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I
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1− α dτ, t> a.
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For convenience, the following notations are used [17]:

C
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1− α dτ,
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af􏼐 􏼑(t, w(t)) �

1
Γ(α)

􏽚
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a

f(τ, w(τ))

(s − τ)
1− α dτ.

(19)

To obtain splitting schemes, the time-fractional difer-
ential system equation (13) is written in the integral form as
follows:

w(t) � w(0) + A I
α
0w( 􏼁(t) + I

α
0f( 􏼁(t, w(t)), 0≤ t≤T.

(20)

If one defnes tn � nh, 0≤ n≤N, as uniformly distributed
points on the range [0, T] with h � (T/N), then equation
(20) is written over (tn− 1, tn](n≥ 1) as follows:

w(t) � w t0( 􏼁 + I
α
tn− 1

Aw(t) + (t)I
α
t0

Aw􏼐 􏼑 tn− 1( 􏼁

+ I
α
t0

f􏼐 􏼑(t, w(t)).
(21)

In order to tailor a splitting scheme, the author of [17]
defned

w(t) � 􏽥w tn− 1( 􏼁 + (t)I
α
t0

A􏽥w􏼐 􏼑 tn− 1( 􏼁 + I
α
tn− 1

Aw􏼐 􏼑(t),

tn− 1 < t≤ tn,
(22)

where the solution on [0, tn− 1] is given and denoted with
􏽥w(t) for 0≤ t≤ tn− 1.

Te initial value of w at tn− 1 is defned as follows:

􏽥w
c

tn− 1( 􏼁 � 􏽥w tn− 1( 􏼁 + (t)I
α
t0

A􏽥w􏼐 􏼑 tn− 1( 􏼁. (23)

Ten, equation (22) reads

w(t) � 􏽥w
c

tn− 1( 􏼁 + I
α
tn− 1

Aw􏼐 􏼑(t), tn− 1 < t≤ tn. (24)

With equations (21) and (22), one has

􏽥w(t) � w
c

tn( 􏼁 + I
α
t0

f􏼐 􏼑(t, 􏽥w(t)), tn− 1 < t≤ tn, (25)

where

w
c

tn( 􏼁 � w(t) − 􏽥w tn− 1( 􏼁 + w t0( 􏼁 − I
α
tn− 1

A(w − 􏽥w)􏼐 􏼑(t).

(26)
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Te solution 􏽥w(t) for t ∈ (tn, tn+1] can be computed with
repetitions of above processes.

Notice that from equations (23)–(26), one can reach
equation (21). Tus, there is no splitting error.

With equations (23)–(26), one writes

w tn( 􏼁 � 􏽥w
c

tn− 1( 􏼁 + I
α
tn− 1

Aw􏼐 􏼑 tn( 􏼁, (27)

􏽥w
c

tn− 1( 􏼁 � 􏽥w tn− 1( 􏼁 + (tn)I
α
t0

A 􏽥w􏼐 􏼑 tn− 1( 􏼁, 􏽥w0 � w0, (28)

􏽥w tn( 􏼁 � w
c

tn( 􏼁 + I
α
t0

f􏼐 􏼑 tn, 􏽥w tn( 􏼁( 􏼁, (29)

w
c

tn( 􏼁 � w tn( 􏼁 − 􏽥w tn− 1( 􏼁 + w t0( 􏼁 − I
α
tn− 1

A(w − 􏽥w)􏼐 􏼑 tn( 􏼁. (30)

Te fully discrete time-splitting scheme can be tailored
by discretization of equations (27)–(30). If one performs the

weighted right-rectangle rule to equation (30), then the
following is obtained

:

w
c

tn( 􏼁 ≈ w tn( 􏼁 − 􏽥w tn− 1( 􏼁 + w t0( 􏼁 −
1
Γ(α)

􏽚
tn

tn− 1

A w tn( 􏼁 − 􏽥w tn( 􏼁( 􏼁

tn − τ( 􏼁
1− α dτ,

� w tn( 􏼁 − 􏽥w tn− 1( 􏼁 + w t0( 􏼁 −
Ah

α

Γ(1 + α)
w tn( 􏼁 − 􏽥w tn( 􏼁( 􏼁.

(31)

Using equation (31) with equation (29) yields

C
α
h 􏽥wn � C

α
hwn + w0 − 􏽥wn− 1 + I

α
t0

f􏼐 􏼑 tn, 􏽥w tn( 􏼁( 􏼁, (32)

where w(tn) � wn, 􏽥w(tn) � 􏽥wn, and Cα
h � I − A(hα/Γ(1 + α)).

If one defnes all known information in equation (32) by w
c

n,
then the following is obtained:

C
α
h 􏽥wn � w c

n + I
α
tn− 1

f􏼐 􏼑 tn, 􏽥w tn( 􏼁( 􏼁, (33)

w
c
n � C

α
hwn + w0 − 􏽥wn− 1 + (tn)I

α
t0

f􏼐 􏼑 tn− 1, 􏽥w tn− 1( 􏼁( 􏼁. (34)

On the other hand, the integrals in equations (28) and
(34) are computed by performing the weighted trapezoidal
rule and the weighted midpoint rule with
􏽥w(tj− (1/2)) ≈ (1/2)(􏽥w(tj− 1) − 􏽥w(tj)), respectively. However,
the integrals in equations (27) and (33) are computed by
utilizing the weighted right-rectangle rule and the weighted
left-rectangle rule, respectively. Ten, the following time-
splitting scheme is obtained [17]:

wn � 􏽥w
c
n− 1 +

Ah
α

Γ(1 + α)
wn,

n � 1, 2, 3, . . . , N,

(35)

􏽥w
c
n− 1 � 􏽥wn− 1 +

Ah
α

2Γ(1 + α)
􏽘

n− 1

j�1
z
α
n,j 􏽥wj− 1 + 􏽥wj􏼐 􏼑,

􏽥w0 � w0,

(36)

C
α
h 􏽥wn � w

c

n +
h
α

Γ(1 + α)
f tn− 1, 􏽥wn− 1( 􏼁, n � 1, 2, 3, . . . , N, (37)

w
c
n � C

α
hwn + w0 − 􏽥wn− 1 +

h
α

Γ(1 + α)
􏽘

n− 1

j�1
z
α
n,jf tj− (1/2),

􏽥wj− 1 + 􏽥wj

2
􏼠 􏼡, (38)
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where

z
α
n,j �

α
h
α 􏽚

tj

tj− 1

1
tn − τ( 􏼁

1− α dτ

� (n − j + 1)
α

− (n − j)
α
.

(39)

Te following approach is performed to get equation (36):

(tn)I
α
t0

A􏽥w􏼐 􏼑 tn− 1( 􏼁 �
1
Γ(α)

􏽚
tn− 1

t0

A􏽥w(τ)

tn − τ( 􏼁
1− α dτ

�
1
Γ(α)

􏽘

n− 1

j�1
􏽚

tj

tj− 1

A􏽥w(τ)

tn − τ( 􏼁
1− α dτ

≈
A

Γ(α)
􏽘

n− 1

j�1
􏽚

tj

tj− 1

􏽥wj + 􏽥wj+1􏼐 􏼑

2 tn − τ( 􏼁
1− α dτ

�
Ah

α

2Γ(1 + α)
􏽘

n− 1

j�1
z
α
n,j 􏽥wj− 1 + 􏽥wj􏼐 􏼑.

(40)

Tis time-splitting scheme is called as TS-I and the
following convergence theorem is valid [17].

Theorem  (see [17]). Let w(t) and 􏽥wn, n ∈ [0, N], be the
solution of equation (13) and the schemes equations
(35)–(38), respectively. Let h � T/N and Ahα ≠ Γ(1 + α)I.

If w ∈ C2[0, T] and f(t, w(t)) fulflls the Lipschitz in-
equality equation (17), then following equation holds:

w tn( 􏼁 − 􏽥wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤K 1 + w

′
(0)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌t
− α
n􏼒 􏼓h

1+α
, 1≤ n≤N, (41)

with a constants K> 0 that is independent of h. If f ∈ C2(G),

then

w tn( 􏼁 − 􏽥wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤K 1 + t

α− 1
n􏼐 􏼑h

1+α
, 1≤ n≤N. (42)

4. Numerical Results

To compare the performance of the mentioned algorithms
for each test examples, the following absolute error and L2
and L∞ error norms are used:

u
num

− u
����

����L2
�

�������������������

1
k

􏽘

k

j�0
uj,N − u xj, t􏼐 􏼑􏼐 􏼑

2

􏽶
􏽴

,

u
num

− u
����

����L∞
� max

0≤j≤k
uj,N − u xj, t􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

Abs.Error � uj,N − u xj, t􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, 0≤ j≤ k.

(43)

We consider to assign the shape constant using trial and
error. We have used errors between exact and numerical

solutions to determine the best value of shape parameters. As
shown in Figure 1, the selection of its best value c � 0.72 with
corresponding smallest error. We compute L∞ error norm
between exact and numerical solutions at the interval [0.01,
10] and compare them to specify the shape parameter.

Example 1. We frst compute the approximate solutions of
problem (1) satisfying the conditions as follows:

u(x, t � 0) � 0, t≥ 0,

u(x � 0, t) � t
2
,

u(x � 1, t)

� − t
2
, 0≤x≤ 1,

(44)

where

g(x, t) �
2t

2− α

Γ(3 − α)
− π4

t
4 sin(πx) + ]π2t2􏼠 􏼡cos(πx).

(45)

Te exact solution is [19]

u(x, t) � t
2cos(πx). (46)

A comparison of the errors between presentedmethod and
[19, 20] for Example 1 is given in Table 1 at T � 0.1 with h �

0.0005.Te results are obtained with k � 10 and ] � 1, ] � 0.5,
and ] � 0.1 with corresponding shape parameter values c �

0.7887, c � 5.71, and c � 0.72, respectively, for the present
method. It is clear that as the viscosity value ] decreases, the
errors become smaller as well as better than [19, 20]. In Table 2,
we compare the numerical results with those of [31] for Ex-
ample 1 at T � 1 with h � 0.02. For the presented scheme, the
computation was handled using c � 0.05, c � 0.0517,
c � 0.0536 for α � 0.25, α � 0.75, α � 0.9, respectively, and
k � 10. It indicates that the results obtained with the presented
algorithm are in good match with the exact solutions and
absolute errors are better than those given in [31]. We have
tabulated the numerical solutions for Example 1 at T � 1 with
h � 0.01, ] � 0.1, and α � 0.9 in Table 3.Te shape parameters
are c � 3.933, c � 5.138, and c � 5.289 for k � 30, k � 50,and
k � 70, respectively. It shows that the approximate solutions
are in good match with exact solutions and the absolute errors
are small enough. Furthermore, Figures 2 and 3 show the
behavior of the approximate solutions at T � 0.1 and the
absolute errors, respectively, with h � 0.0005, c � 0.72, v � 0.1,
k � 10, and α � 0.5. Figure 2 shows that the obtained solutions
are symmetric.

Example 2. In the next example, we deal with the time-
fractional Burgers’ equation (1) subject to following
condition:

u(x, t � 0) �
1

− 1 + 5(cosh(x/2) − sinh(x/2))
, t≥ 0. (47)

Te exact solution is given as [32]
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u(x, t) �
1

− 1 + 5 cosh (x/2) + t
α/4Γ(1 + α)( 􏼁( 􏼁 − sinh (x/2) + t

α/4Γ(1 + α)( 􏼁( 􏼁( 􏼁
, (48)

with force term

g(x, t) � 0. (49)

Te boundary conditions are computed by using the
exact solution.

In Table 4, numerical solutions and absolute errors at
T � 0.02 are obtained by the present method for Example 2
with c � 3.88, k � 50, α � 0.8, and h � 0.0001. Table 4 shows
that the numerical solutions of the presented methods are
highly accurate than the solutions tabulated in [32] with the
same parameter values.
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Smallest error = 1.940e-06

Figure 1: Te best value of shape parameter c for Example 1 at T � 0.1 with h � 0.0005, k � 10, and ] � 0.1.

Table 1: Error norms of Example 1 at T � 0.1 for h � 0.0005 and α � 0.5.

] � 1 ] � 0.5 ] � 0.1
L2 L∞ L2 L∞ L2 L∞

Reference [19] (m′ � 10) 6.980e − 06 9.547e − 06 6.492e − 06 8.854e − 06 4.288e − 06 5.714e − 06
Reference [20] (k � 80) 6.528e − 06 9.164e − 06 5.835e − 06 8.250e − 06 3.105e − 06 4.847e − 06
Present (k � 10) 3.601e − 05 6.175e − 05 1.386e − 06 2.410e − 06 1.428e − 06 1.940e − 06

Table 2: Results of Example 1 at T � 1 for h � 0.02.

α x
[31] Present Exact Abs. error Abs. error

k � 50 k � 10 [31] Present

0.25

0.10 0.9812176 0.9579127 0.9510565 3.016115e − 02 6.856230e − 03
0.30 0.6464059 0.5680175 0.5877853 5.862068e − 02 1.976778e − 02
0.50 − 3.075e − 59 − 4.5661e − 16 6.1232e − 17 3.304634e − 59 5.178393e − 16
0.70 − 0.664067 − 0.5680175 − 0.5877853 5.862068e − 02 1.976778e − 02
0.90 − 9.812136 − 0.9579127 − 0.9510565 3.016115e − 02 6.856230e − 03

0.75

0.10 0.9319893 0.9643378 0.9510565 1.906739e − 02 1.328133e − 02
0.30 0.5418891 0.5746742 0.5877853 4.589585e − 02 1.311105e − 02
0.50 6.120e − 59 − 6.1287e − 15 6.1232e − 17 5.890384e − 59 6.189963e − 15
0.70 − 0.541856 − 0.5746742 − 0.5877853 4.589585e − 02 1.311105e − 02
0.90 − 0.931992 − 0.9643378 − 0.9510565 1.906739e − 02 1.328133e − 02

0.9

0.10 0.9146401 0.9628647 0.9510565 3.641245e − 02 1.180823e − 02
0.30 0.5061482 0.5757488 0.5877853 8.163693e − 02 1.203643e − 02
0.50 − 1.950e − 59 1.9096e − 15 6.1232e − 17 2.179615e − 59 1.848389e − 15
0.70 − 0.506129 − 0.5757488 − 0.5877853 8.163693e − 02 1.203643e − 02
0.90 − 0.914626 − 0.9628647 − 0.9510565 3.641245e − 02 1.180823e − 02
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Example 3. As a fnal example, we investigate the numerical
solutions of (1) satisfying the conditions as follows:

u(x, t � 0) � sin(πx),

u(x � 0, t) � u(x � 1, t) � 0, t≥ 0.
(50)

Te series solutions are obtained in [33] by performing
the Hopf-Cole technique [34, 35] as follows:

u(x, t) � 2]π
􏽐
∞
m�1 bme

− m2π2]tα
m sin(mπx)

b0 + 􏽐
∞
m�1 bme

− m2π2]tαcos(mπx)
, (51)

where

b0 � 􏽚
1

0
e

− (2π])− 1[1− cos(πx)]dx,

bm � 2􏽚
1

0
e

− (2π])− 1[1− cos(πx)]cos(mπx)dx,

(m � 1, 2, 3 . . .).

(52)

In Table 5, numerical solutions and absolute errors at
T � 0.1 are computed by the present scheme for Example 3
with k � 10 and α � 0.9. Te shape parameters are chosen as
c � 0.76, c � 0.05, and c � 0.06 for h � 0.01, h � 0.001, and
h � 0.0001, respectively. Table 5 shows a good match be-
tween the obtained and the analytical results.

Table 3: Results of Example 1 at T � 1, h � 0.01, ] � 0.1, and α � 0.9.

k x Present Exact Abs. error

30

0.10 0.9510383 0.9510565 1.823706e − 05
0.30 0.5877661 0.5877853 1.917656e − 05
0.70 − 0.5877274 − 0.5877853 5.787549e − 05
0.90 − 0.9510221 − 0.9510565 3.439243e − 05

50

0.10 0.9510147 0.9510565 4.184683e − 05
0.30 0.5877117 0.5877853 7.358647e − 05
0.70 − 0.5877305 − 0.5877853 5.470573e − 05
0.90 − 0.9509895 − 0.9510565 6.705913e − 05

70

0.10 0.9510408 0.9510565 1.568811e − 05
0.30 0.5877369 0.5877853 4.836005e − 05
0.70 − 0.5877776 − 0.5877853 7.668952e − 06
0.90 − 0.9510778 − 0.9510565 2.125912e − 05
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Figure 2: Numerical solutions of Example 1 at T � 0.1 with h � 0.0005, c � 0.72, v � 0.1, k � 10, and α � 0.5.
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Figure 3: Absolute errors of Example 1 at T � 0.1 with h � 0.0005, c � 0.72, v � 0.1, k � 10, and α � 0.5.
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5. Conclusions

A numerical algorithm based on the combination of the
MQ-RBF and splitting technique is presented to investigate
the solutions of the fractional Burgers’ equation, numeri-
cally. Instead of classical splitting methods, a division
method for the fractional nonlinear systems of ordinary
diferential equations is performed. Tis method has
O(h1+α) order of convergence which is diferent fromO(h2α)

. Tat is, when α tends to zero, the error does not increase
signifcantly. Furthermore, this algorithm also takes ad-
vantage of a meshfree scheme. It is concluded that the
present approach yields accurate results and exhibits
physical dynamics of the time-fractional Burgers’ equation.
Tis proposed scheme can be used for the other nonlinear
fractional PDEs.
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