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Tis article aims to introduce a new linear positive operator with a parameter. Our focus lies in analyzing the distinct char-
acteristics and inherent properties exhibited by this operator. Additionally, we provide a proof of the convergence rate and present
a revised version of the Voronovskaja theorem specifcally tailored for this newly defned operator. Furthermore, we provide an
upper bound for the error according to the modulus of continuity. Finally, the preservation of monotonicity and convexity by the
operator is being investigated.

1. Introduction

Te Bernstein polynomials are widely regarded as one of the
most well-known algebraic polynomials in approximation
theory, and they are defned as

pn,k(x) �
n

k
 x

k
(1 − x)

n− k
, k � 0, . . . , n& n ∈ N. (1)

Tese polynomials were frst introduced by Bernstein in
1912 to provide the frst constructive proof of Weierstrass’
approximation theorem [1]. Bernstein employed the Bern-
stein operators to approximate a given function on the
interval [0, 1] by a polynomial of degree n, as it is understood
by its formula

Bn(f; x) � 
n

k�0
pn,k(x)f

k

n
 , x ∈ [0, 1], (2)

the structure gets advantage of weighted sum of the function
values at equidistant points on the interval.

Many researchers have written books and papers ded-
icated to studying Bernstein polynomials and operators,
with Lorentz’s book being one of the most famous [2]. Te
signifcance of the Bernstein polynomials lies not only in

their own properties but also in the fact that their form has
inspired mathematicians to develop a wide range of other
approximation operators. Since its introduction, many re-
searchers have proposed modifcations and generalizations
of Bernstein operators to improve its approximation
properties and extend its applications. Some of the most
famous cases are the Schurer polynomials, Kantorovich
polynomials, Stancu polynomials, q-Bernstein polynomials,
Durrmeyer polynomials, Favard–Szász–Mirakyan opera-
tors, Baskakov operators, and numerous others [3–6]. Some
of the recent advances could be traced in [7–11].

Te construction and analysis of Bernstein-type opera-
tors aimed to achieve two primary objectives: preserving the
form of various functions, such as polynomials and expo-
nentials, and upholding their shape-preserving properties
[12, 13].

In 2003, King [14] presented a sequence of Bernstein-
type operators which preserve the function x2. Tis study
was extended by some authors [15–21].

Lately, attempts have been made to develop operators of
the Bernstein type. In 2017, Chen et al. [22] proposed a new
modifcation of Bernstein operators based on the so called
α-Bernstein polynomials; this paper has garnered signifcant
attention and inspired many researchers to further develop
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and extend their fndings for other families of Bernstein-type
operators, see [23–25] and the references therein. Tere are
also other simpler modifcations, like the one proposed by
Usta in [26].

Tis paper introduces a fresh set of Bernstein-like op-
erators that are based on a particular shape parameter. It has
been verifed that the new operators are linear positive
operators that preserve linearity, monotonicity, and con-
vexity. By taking advantage of Korovkin’s theorem, we
provide an alternative proof for Weierstrass’ approximation
theorem. Furthermore, we provide in-depth proofs re-
garding the convergence rate and the Voronovskaja-type
asymptotic estimation formula for these operators.

Overall, our work contributes to the ongoing research on
Bernstein-like operators and shows that further modifca-
tions and generalizations can lead to even more powerful
approximation tools with wider applications.

Te paper is structured as follows: Section 2 introduces
the new Bernstein-type operator and examines its funda-
mental properties. In Section 3, we focus on the shape-
preserving aspects. Finally, Section 4 concludes the paper by
highlighting key fndings of this study.

2. A Revised Version of the Bernstein Operator

In [27], the authors introduced a new set of Bernstein-like
basis functions. Building on this set, we propose a unique
variation of Bernstein-type operators and investigate their
fundamental properties.

Defnition 1 (Starting sq-basis) [27]. Te starting sq-basis
functions are defned on [0, 1] as

b2,0(x) �
1
2

− x + φ(x),

b2,1(x) � 1 − 2φ(x),

b2,2(x) � t −
1
2

+ φ(x),

(3)

where ] ∈ (0, 1] is a shape parameter and

φ(x) �

����������������

(1 − ]) x
2

− x  +
1
4



. (4)

Using the recursive relation of the classical Bernstein
basis functions [28], we generate sq-basis functions of order
n (n≥ 3) as follows:

bn,i(x) � (1 − x)bn−1,i(x) + xbn−1,i−1(x), x ∈ [0, 1], (5)

where i � 0, 1, 2, . . . , n. For i< 0 or i> n, we set bn,k(x) � 0.

Defnition 2 (sq-Bernstein operator). Te sq-Bernstein op-
erator for f(x) on [0, 1] can be defned for n ∈ N and any
] ∈ [0, 1] as follows:

Rn,](f; x) � 
n

i�0
fibn,i(x), (6)

where bn,i(x) 
n

i�0(n≥ 3) are the sq-basis functions defned
in (3) and (5) and fi � f(i/n) for i � 0, 1, . . . , n.

Te sq-Bernstein operator is a type of approximation
operator that maps the given function f(x) defned on [0, 1]

to Rn,](f; x) defned in (6). Te parameter ] controls the
level of smoothness of the approximation. In comparison
with the classical Bernstein operator, the sq-Bernstein op-
erator provides greater fexibility for controlling the shape of
the curve being approximated. By fne-adjusting the shape
parameter, one can exert a better infuence over the curve’s
curvature, degree of smoothness, and other geometric at-
tributes. Furthermore, the sq-Bernstein operator surpasses
the constraints of polynomial approximation and accom-
modates more intricate curved representations.

Tere are several properties and results for these oper-
ators that we will discuss.

Lemma 3 (End point interpolation). Te sq-Bernstein op-
erator applied to the function f(x) guarantees interpolation
of f(x) at the endpoints of [0, 1], i.e.,

Rn,](f; 0) � f(0), Rn,](f; 1) � f(1). (7)

Lemma 4 (Linearity). Te sq-Bernstein operator satisfes
linearity, that is,

Rn,] λf1 + μf2; x(  � λRn,] f1; x(  + μRn,] f2; x( , (8)

for any functions f1(x) and f2(x) defned on the interval
[0, 1], as well as any real values λ and μ.

Proof. From the defnition of the sq-Bernstein operator, for
any functions f1(x) and f2(x) and any real values λ and μ,
we have

Rn,] λf1 + μf2; x(  � 

n

i�0
λf1 + μf2( 

i

n
 bn,i(x)

� λ

n

i�0
f1

i

n
 bn,i(x) + μ

n

i�0
f2

i

n
 bn,i(x)

� λRn,] f1; x(  + μRn,] f2; x( .

(9)
□

Lemma 5 (Positivity). Te sq-Bernstein operators for
0< ]≤ 1 form a collection of positive operators. Tis means
that for x ∈ [0, 1], we have

if f(x)≥ 0, thenRn,](f; x)≥ 0, ] ∈ (0, 1]. (10)

Proof. It is an obvious result of the nonnegativity of the sq-
basis functions (see [27]).

Te above lemma leads to the following direct result: □

Corollary 6 (Monotonicity). For all x ∈ [0, 1] and ] ∈ (0, 1],
if f(x)≥g(x), then Rn,](f; x)≥Rn,](g; x) for the sq-
Bernstein operators.
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From the above result, we have

Corollary 7 (Boundedness preservation). If the function
f(x) satisfes the inequality m≤f(x)≤M for all x in the
interval [0, 1], then it can be concluded that Rn,](f; x) also
satisfes the inequality m≤Rn,](f; x)≤M for x in the same
interval [0, 1] and ] ∈ (0, 1].

Theorem 8. Te sq-Bernstein operators fulfll equalities

Rn,](1; x) � 1, ∀] ∈ (0, 1], (11)

Rn,](x; x) � x, ∀] ∈ (0, 1]. (12)

Proof. We use induction for verifying this case. Assuming
(3) yields 

2
i�0b2,i(x) � 1 and 

2
i�0i/2b2,i(x) � x, which

verifes the base case. Now, for the induction step, we
suppose that the result holds true for m ∈ N≥2. By utilizing
the recurrence relation (5), we can derive the following
conclusions:

.



m+1

i�0
bm+1,i(x) � (1 − x) 

m+1

i�0
bm,i(x) + x 

m+1

i�0
bm,i−1(x) � 1 − x + x � 1,



m+1

i�0

i

m + 1
bm+1,i(x) �

m

m + 1


m+1

i�0

i

m
(1 − x)bm,i(x) + xbm,i−1(x) 

�
m

m + 1
(1 − x) 

m

i�0

i

m
bm,i(x) +

m

m + 1
x 

m

i�0

i + 1
m

bm,i(x)⎤⎦

�
m

m + 1
(1 − x)x +

m

m + 1
x x +

1
m

  � x.

(13)

□
Lemma  (Preserving linearity). Te sq-Bernstein operators
for 0< ]≤ 1 accurately approximate linear functions, i.e.,

Rn,](λx + μ; x) � λx + μ, λ, μ ∈ R. (14)

Proof. By combining equations (11) and (12) with the lin-
earity property (8), it is an evident fact.

Our next step involves analyzing the sq-Bernstein op-
erators applied to the functions f(x) � x2, x3, x4. □

Lemma 10. Te sq-Bernstein operators satisfy the following
equalities:

Rn,] x
2
; x  �

1
n
2 (n + 1)(n − 2)x

2
+(n + 2)x − 1 + 2φ(x) , (15)

Rn,] x
3
; x  �

1
n
3 (n + 2)(n − 2)(n − 3)x

3
+ 3(n + 3)(n − 2)x

2


+ 2(6 − n)x + 6(n − 2)xφ(x) − 3 + 6φ(x)],

(16)

Rn,] x
4
; x  �

1
n
4 (n + 3)(n − 2)(n − 3)(n − 4)x

4
+ 6(n + 4)(n − 2)(n − 3)x

3


+[(n + 61)(n − 2) + 12(n − 2)(n − 3)φ]x
2

+[−17(n − 3) − 1 + 36(n − 2)φ]x − 7 + 14φ].

(17)

Proof. To prove these relations, we will use mathematical
induction. Te case n � 2 is simple, and the induction steps
are straightforward.

Te most efective criteria for determining the conver-
gence of a positive linear operator to the identity operator is
provided by the Bohman–Korovkin theorem, as follows: □

Lemma 11 (see [29, 30]). Consider a sequence of linear
positive operators, denoted as Lnf; n � 0, 1, . . . , operating
on the interval [a, b] from the space C[a, b] to itself. If this
sequence of operators converges uniformly to f(x) for the
functions f(x) � 1, x, x2 on [a, b], then for any function
f(x) belonging to C[a, b] and any x within the interval [a, b],
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the corresponding sequence of functions Ln(f; x)  will also
converge uniformly to f(x); i.e.,

lim
n⟶∞

Ln(f; x) � f(x), uniformly. (18)

Based on Lemma 11, we can now present the key fnding
of this paper, showcasing the convergence of the sequence
comprised of sq-Bernstein operators.

Theorem 12. For any function f(x) that is continuous on
the interval [0, 1], the sq-Bernstein operators Rn,](f(x); x) 

will uniformly converge to f(x) for any ] ∈ (0, 1).

Proof. From equation (15), we can deduce that the sq-
Bernstein operators converge uniformly to x2 for any
] ∈ (0, 1). Considering this fact along with equations (11)
and (12), the convergence is a straightforward result of the
Bohman–Korovkin theorem.

Te following lemma is a prerequisite for the Vor-
onovskaja theorem. □

Lemma 13. Suppose

Mk(x) � 
n

i�0
(i − nx)

k
bn,i(x). (19)

We have the following equalities:

(i) M1(x) � 0, (20)

(ii) M2(x) � (n + 2)x(1 − x) − 1 + 2φ(x), (21)

(iii) M3(x) � 2(n + 6)x
3

− 6(n + 3)x
2

+(n + 12)x − 12xφ(x) + 6φ(x) − 3,

(iv) M4(x) � 3(n + 6)(n − 4)x
4

− 6(n + 6)(n − 4)x
3

+ 3n
2

+ 11n − 122 x
2

+ 60(2 − n)φ(x)x
2

+ 5(10 − n)x + 12(n − 6)φ(x)x + 14φ(x) − 7.

(22)

Proof. Te necessary outcomes can be obtained by utilizing
the binomial expansion of (i − nx)k, k � 1, 2, 3, along with
Teorem 8 and Lemma 10.

Once we have established the convergence of the newly
introduced Bernstein-type operators, the next crucial con-
sideration is how quickly these operators approximate the
function f(x). Voronovskaya (1932) answered this question
for the Bernstein operator. In the next theorem, we present
a new variant of Voronovskaja’s result [31] for our newly
defned operator in (6) and we introduce the asymptotic
error for the sq-Bernstein operators. □

Theorem 14. Let f(x) be a bounded function on [0, 1], then
for any x ∈ [0, 1], at which f″(x) exists, we have

lim
t⟶x

n Rn,](f; x) − f(x)  �
1
2

x(1 − x)f
″
(x), (23)

where 0< ]≤ 1.

Proof. Employing Taylor’s expansion for i≤ n

f(t) � f(x) +(t − x)f
′
(x) +

1
2
(t − x)

2
f
″
(x)

+ r(t, x)(t − x)
2
,

(24)

where limt⟶x r(t, x) � 0, at t � i/n results in

f
i

n
  � f(x) +

i

n
− x f

′
(x)

+
1
2

i

n
− x 

2
f
″
(x) + r

i

n
, x 

i

n
− x 

2
.

(25)

Consequently,

n Rn,](f; x) − f(x)  � n 

n

i�0
bn,i(x) f

i

n
  − f(x) 

� n 
n

i�0
bn,i(x)

i

n
− x f

′
(x) +

1
2

i

n
− x 

2
f
″
(x) + r

i

n
, x 

i

n
− x 

2
 

� M1(x)f
′
(x) +

1
2n

M2(x)f
″
(x) + n 

n

i�0
r

i

n
, x 

i

n
− x 

2
bn,i(x).

(26)

4 Journal of Mathematics



Ten, according to (20) and (21), one can write

n Rn,](f; x) − f(x)  �
1
2

+
1
n

 x(1 − x)f
″
(x) +

2φ(x) − 1
2n

 f
″
(x) + Kn(x), (27)

where

Kn(x) � n 
n

i�0
r

i

n
, x 

i

n
− x 

2
bn,i(x)

� nRn,] r(t, x)(t − x)
2
; x .

(28)

To complete the proof, it is necessary to demonstrate that

lim
n⟶∞

nRn,] r(t, x)(t − x)
2
; x  � 0. (29)

By utilizing the Cauchy–Schwarz inequality, it is
straightforward to infer that

nRn,] r(t, x)(t − x)
2
; x ≤

�������������

Rn,] r
2
(t, x); x 

 ���������������

n
2
Rn,] (t − x)

4
; x 



. (30)

Using Korovkin’s theorem, we get

lim
n⟶∞

Rn,] r
2
(t, x); x  � r

2
(x, x) � 0. (31)

Since r2(x, x) � 0 and continuity of the function r2(., x)

in (0, 1), along with the fact that Rn,]((t − x)4; x) does not
increase faster than O(n− 2), we can conclude that equation
(29) holds, which completes the proof.

Now, we can analyze the rate of convergence of sq-
Bernstein operators with respect to the modulus of conti-
nuity (ω), and by getting advantage of the characteristics of
themodulus of continuity stated in [32], we can demonstrate
the principal outcome regarding the upper bound of the
approximation error. Te error is measured by the uniform
norm, which is defned on the interval [0, 1] as follows:

Rn,](f; x) − f(x)
����

���� � max
0≤x≤1

Rn,](f; x) − f(x)


. (32)
□

Theorem 15. For any value 0< ]≤ 1, if the function f(x) is
bounded on the interval [0, 1], then

Rn,](f; x) − f(x)
����

����≤
3
2
ω

�����
n + 6

√

n
 . (33)

Proof. According to (8) and (11), for 0< ]≤ 1, one has

f(x) − Rn,](f; x)
����

���� � 
n

i�0
bn,i(x) f(x) − f

i

n
  





≤ 
n

i�0
f(x) − f

i

n
 




bn,i(x)

≤ 
n

i�0
ω x −

i

n




 bn,i(x).

(34)

Now, considering properties of modulus of continuity,
one can deduce

ω x −
i

n




  � ω

n
�����
n + 6

√ x −
i

n





�����
n + 6

√

n
 

≤ 1 +
n

�����
n + 6

√ x −
i

n




 ω

�����
n + 6

√

n
 ,

(35)

which results in
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f(x) − Rn,](f; x)
����

���� � 
n

i�0
1 +

n
�����
n + 6

√ x −
i

n




 ω

�����
n + 6

√

n
 bn,i(x)

≤ω
�����
n + 6

√

n
  1 +

n
�����
n + 6

√ 

n

i�0
x −

i

n




bn,i(x)⎛⎝ ⎞⎠.

(36)

Next, we get advantage of the Cauchy–Schwarz’s in-
equality to have



n

i�0
x −

i

n




bn,i(x) � 

n

i�0
x −

i

n





������
bn,i(x)

 ������
bn,i(x)



≤ 
n

i�0
x −

i

n
 

2
bn,i(x)⎡⎣ ⎤⎦

1/2



n

i�0
bn,i(x)⎡⎣ ⎤⎦

1/2

� 
n

i�0
x −

i

n
 

2
bn,i(x)⎡⎣ ⎤⎦

1/2

.

(37)

For the last term, we can have an upper bound according
to (21) as follows:



n

i�0
x −

i

n
 

2
bn,i(x) �

1
n
2M2(x) �

(n + 2)x(1 − x) − 1 + 2φ(x)

n
2 ≤

n + 6
4n

2 , x ∈ [0, 1], (38)

which leads us to the fnal result

f(x) − Rn,](f; x)
����

����≤ω
�����
n + 6

√

n
  1 +

n
�����
n + 6

√ .

�����
n + 6

√

2n
 

�
3
2
ω

�����
n + 6

√

n
 ,

(39)

and this completes the proof.
According to Teorem 15, we provided an upper bound

for the error f(x) − Rn,](f; x) in terms of the modulus of
continuity. In addition, according to properties of the
modulus of continuity and continuity of the function f(x)

on [0, 1], we have

lim
n⟶∞

ω
�����
n + 6

√

n
  � 0. (40)

In another manner, Teorem 12 can be proven. □

Remark 16. Similar to the above proof process, another
upper bound for the error can be presented in terms of the
parameter ] as follows:

f(x) − Rn,](f; x)
����

����≤
3
2
ω

�������������
n − 2 + 4

����
2 − ]

√

n
 . (41)

3. Shape-Preserving Properties

In this section, we will demonstrate that the sq-Bernstein
operators preserve certain geometric properties such as
monotonicity and convexity.

3.1.Monotonicity Preservation. For verifying the monotony-
preserving property of the sq-Bernstein operators, we frst
state the following lemma:

Lemma 17. If A � αi 
n
i�0 is a monotone set of real values,

i.e., α0 ≤ α1 ≤ · · · ≤ αn, then the function 
n
i�0αibn,i(x), as

a linear combination of the elements of A, is monotonically
increasing.

Proof. We use induction to verify the result. Te base of
induction is n � 2, so for any set of real values α0 ≤ α1 ≤ α2,
we show that the function G(x, ]) � 

2
i�0αib2,i(x) is

monotonically increasing on [0, 1], and by rewriting G(x, ])

in a suitable way, one has

G(x, ]) � 
2

i�0
αib2,i(x) � α2 − α1( b2,2(x) + α1 − α0(  

2

i�1
b2,i(x)⎛⎝ ⎞⎠ + α0 

2

i�0
b2,i(x)⎛⎝ ⎞⎠. (42)
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We need to show that G(x, ]) has a nonnegative de-
rivative with respect to x:

d

dx
G(x, ]) � α2 − α1( 

d

dx
b2,2(x) + α1 − α0( 

d

dx


2

i�1
b2,i(x)⎛⎝ ⎞⎠ + α0

d

dx


2

i�0
b2,i(x)⎛⎝ ⎞⎠. (43)

As the coefcients are nonnegative in (43), it is sufcient
to verify the nonnegativity of the corresponding functions
which we verify term by term.

(i) From the partition of unity of the sq-basis functions,
one has


2

j�0
b2,j(x) � 1⟹

d

dx


2

j�0
b2,j(x)⎛⎝ ⎞⎠ � 0. (44)

(ii) Te second term could be treated as follows:



2

j�1
b2,j(x) � b2,1(x) + b2,2(x)

�
1
2

+ x − φ(x)⇒
d

dx


2

j�1
b2,j(x)⎛⎝ ⎞⎠

� 1 −
d

dx
φ(x).

(45)

From the convexity of the function φ(x) in [0, 1],
we conclude that the function −d/dxφ(x) takes its
minimum at x � 1, so one has 

2
j�1d/dx

b2,j(x)|x�1 � ] which has a nonnegative value.
(iii) For the frst term, we have

b2,2(x) � x −
1
2

+ φ(x)⟹
d

dx
b2,2(x) 

� 1 +
d

dx
φ(x),

(46)

which by taking advantage of the convexity of φ(x),
one observes that d/dxφ(x) has its minimum at
x � 0. Since d/dxb2,2(x)|x�0 � ], the nonnegativity
of the frst term is verifed.

As the induction hypothesis, we assume that for any set
of monotone real values α0 ≤ α1 ≤ · · · ≤ αn, the function


n
i�0αibn,i(x) is monotonically increasing.
Now, by considering the set of increasing values

β0 ≤ β1 ≤ · · · ≤ βn+1, we need to show that 
n+1
i�0 βibn+1,i(x) is

monotonically increasing.

G(x, ]) � 
n+1

i�0
βibn+1,i(x) � 

n+1

i�0
βi (1 − x)bn,i(x) + xbn,i−1(x) ,

⟹
d

dx
G(x, ]) � 

n+1

i�0
βi

d

dx
(1 − x)bn,i(x) + xbn,i−1(x) 

� 

n+1

i�0
βi −bn,i(x) +(1 − x)

d

dx
bn,i(x) + bn,i−1(x) + x

d

dx
bn,i−1(x) 

� 
n

i�0
βi+1 − βi( bn,i(x) +(1 − x) 

n

i�0
βi

d

dx
bn,i(x) + x 

n

i�0
βi+1

d

dx
bn,i(x).

(47)

According to the induction hypothesis, we have


n
i�0βid/dxbn,i(x), 

n
i�0βi+1d/dxbn,i(x)≥ 0 and βi+1 − βi, x,

1 − x≥ 0, so d/dxG(x, ])≥ 0. Tis completes the proof.
Te preceding lemma is more than needed and illustrates

a more general result, and we employ a special case to prove
the monotonicity preservation of the sq-
Bernstein bases. □

Theorem 18. 3.2. If f(x) is a continuous and monotonically
increasing (resp. decreasing) function on [0, 1], then its sq-
Bernstein operators are also increasing (resp. decreasing).

Proof. Let f(x) be a monotonically increasing function, so
one has f(0/n)≤f(1/n)≤ · · · ≤f(n/n). Now, Lemma 17
could be employed to verify that the function Rn,](f; x) �


n
i�0f(i/n)bn,i(x) is monotonically increasing.
Te decreasing case could be verifed in a similar

manner. □

3.2. Convexity Preservation. Te sq-Bernstein operators
preserve convexity, and this is verifed in the following
theorem.
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Theorem 1 . If f(x) is a convex function in C[0, 1], then all
its sq-Bernstein operators are convex.

Proof. We can employ the method of induction to dem-
onstrate the validity of the result. Our base case for induction
will be when n � 2. Consider a set of real values α0, α1, α2 and
assume that they form a convex data set, satisfying the
condition α2 − 2α1 + α0 ≥ 0. We aim to prove that the
function S(x, ]) � 

2
i�0αib2,i(x) is convex on the interval [0,

1]. We show that the function’s second derivative is non-
negative over the interval [0, 1]:

d
2

dx
2 S(x, ]) � 

2

i�0
αi

d
2

dx
2b2,i(x) � α2 − 2α1 + α0( 

d
2

dx
2 φ(x).

(48)

Given that φ(x) is a convex function, we can establish
that d2/dx2φ(x)≥ 0. Consequently, based on this fact and
α2 − 2α1 + α0 ≥ 0, we can conclude that d2/dx2S(x, ])≥ 0.

Assuming that a set of real values αi 
n

i�0 is convex, we
can consider the expression 

n
i�0αibn,i(x). As the induction

hypothesis, we assume this expression to be convex.
Now, let us consider a new set of convex values βi 

n+1
i�0 .

Our goal is to demonstrate that the function 
n+1
i�0 βibn+1,i(x)

is also convex. To do so, we consider

S(x, ]) � 
n+1

i�0
βibn+1,i(x) � 

n+1

i�0
βi (1 − x)bn,i(x) + xbn,i−1(x) ,

(49)

and show that the function d/dxS(x, ]) is increasing.

d

dx
S(x, ]) � 

n+1

i�0
βi

d

dx
(1 − x)bn,i(x) + xbn,i−1(x) 

� 
n+1

i�0
βi −bn,i(x) +(1 − x)

d

dx
bn,i(x) + bn,i−1(x) + x

d

dx
bn,i−1(x) 

� 
n

i�0
βi+1 − βi( bn,i(x) +(1 − x) 

n

i�0
βi

d

dx
bn,i(x) + x 

n

i�0
βi+1

d

dx
bn,i(x).

(50)

By assuming the induction hypothesis, since βi 
n+1
i�0

represents convex data, it follows that both 
n
i�0βibn,i(x) and


n
i�0βi+1bn,i(x) are convex functions. Tis implies that their

respective derivatives, 
n
i�0βid/dxbn,i(x) and 

n
i�0βi+1

d/dxbn,i(x), are increasing functions.
Since βi 

n+1
i�0 represents convex data, we can observe that

βi+1 − 2βi + βi−1 ≥ 0, i � 1, . . . , n − 1. Tis inequality implies
that βi+1 − βi ≥ βi − βi−1, i � 1, . . . , n − 1. In other words, the
diferences βi − βi−1, i � 1, . . . , n − 1 form an increasing se-
quence. Utilizing Lemma 17, we can ascertain that the
function 

n
i�0(βi+1 − βi)bn,i(x) is an increasing function.

By utilizing the derived fndings and considering
x ∈ [0, 1], it can be deduced that d/dxS(x, ]) is an increasing
function. Consequently, this implies that d2/dx2S(x, ])≥ 0,
indicating that S(x, ]) is a convex function.

We observe that if f is a convex function, then
f(0/n), f(1/n), . . . , f(n/n) forms a set of convex data. Based
on the obtained results, we can conclude that Rn,](f; x) �


n
i�0f(i/n)bn,i(x) is also a convex function. □

4. Conclusion

We have introduced a novel class of linear positive operators
characterized by shape parameters. Tese operators not only
share several properties with the Bernstein operators but also
possess the ability to preserve important shape character-
istics such as monotonicity and convexity of the underlying
data. Te operators converge uniformly for any value of the
parameter, and an upper bound for the approximation error

has been provided based on the modulus of continuity. By
altering the parameter value, it becomes possible to adjust
the shape of the resulting approximate curve produced by
the operator.

Te sq-Bernstein operators may provide an appropriate
basis for solving functional equations from diferent disci-
plines. Tis certainly could be a proposition for future
studies. Moreover, the structure used in equation (3) may be
generalized by using some novel auxiliary parameter-based
functions, φ(t), from diferent families of functions such as
trigonometrics, exponentials, etc. Tis will result in an
operator that is not only linear and preserves the properties
of the Bernstein operator but also preserves the mono-
tonicity and convexity of the data. Te operator defned by
these bases surpasses the constraints of polynomial ap-
proximation and accommodates more intricate curved
representations.
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[7] F. Özger, H. Srivastava, and S. Mohiuddine, “Approximation
of functions by a new class of generalized Bernstein–Schurer
operators,” Revista de la Real Academia de Ciencias Exactas,
Fı́sicas y Naturales. Serie A. Matemáticas, vol. 114, no. 4,
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