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Tis paper proposes a real-life volume reduction for cancer cells using optimal doses of radiation and an anti-angiogenic drug. A
generalized dynamical system based on the difusion-consumption equation along with stimulation and inhibition factors is
proposed. To achieve continuous and low-dose therapy, the related problem is simulated by an optimal regulator problem
mathematically. By combining steepest descent, conjugate gradient, and Armijo techniques, a novel hybrid indirect iterative solver
is designed. For accuracy and execution speed, the current solver is compared with an interior-point optimizer and sequential
quadratic Hamiltonian methods. Cancer therapy under two diferent treatment strategies and 24 various versions of the general
dynamical system is considered numerically. A comprehensive analysis of the corresponding outcomes is presented. Numerical
results and related diagrams are provided.

1. Introduction

According to World Health Organization reports for the
year 2019, cancer diseases are considered the main cause of
death and the most important cause of life expectancy re-
duction [1]. Malek and Abbasi [2–5] in years 2016, 2019,
2020, and 2022 introduced some mathematical models to
simulate and solve optimal control problems for cancer
therapy. Cancer cells form and reproduce abnormal cells
irregularly, while the proliferation of adult normal cells is
based on the division and replacement of dying cells.
General cancer therapies have two categories: treatments
that directly kill cancer cells and treatments that prevent
cancer cell growth. Cancer therapy usually has negative side
efects. Tus, treatment is acceptable if there is a reasonable
balance between the outcome and its negative side efects.
Anti-angiogenic treatment is a cancer therapy to prevent
cancer cell proliferation. Radiation therapy leads to direct
cancer cell killing and is frequently combined with anti-
angiogenic or other therapies to increase its efectiveness [6].
Several mathematical models have been proposed to de-
scribe the evolution of tumor anti-angiogenesis as

a dynamical system. Among them, the models developed by
Hahnfeldt et al. [7] and Ergun et al. [8] are widely recognized
as the most prominent. Hahnfeldt formulated a difusion-
consumption equation to model the concentration of
stimulators and inhibitors both inside and outside the tu-
mor. His research revealed that the inhibitor would have
a signifcant impact on the target endothelial cells in the
tumor, ultimately leading to growth proportional to the
tumor surface, while the efect of stimulators would be
relatively independent of tumor or vascular size. Endothelial
cells play a signifcant role in carrying blood, nutrients, and
oxygen to vital organs, while also facilitating the removal of
deoxygenated blood from these organs [9]. In the Ergun
model, the inhibition term is proportional to the tumor
radius rather than its surface area, under the assumption that
the system is in a steady state. Kienle et al. [10] considered an
inconsistent convex combination of the Hahnfeldt (tumor
surface) and Ergun (tumor radius) models; this combination
would reduce the medical relevance. Tere are many studies
that have separately used diferent dynamics of vascular
carrying capacity. For example, Owolabi et al. [11] separately
employed three diferent carrying capacity dynamics to
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investigate the singular arc for the optimal problems. In this
article, we generalize the Hahnfeldt model by aiming to
provide an improved description of the vasculature’s car-
rying capacity while incorporating optimal strategies in the
existence of anti-angiogenesis and radiotherapy. Here, we
face bothmathematical and clinical challenges; regarding the
clinical aspect, treatment strategies for tumor reduction are
encountered during treatment and fnal time, where the fnal
time is fxed. From a mathematical point of view, we con-
sider the quadratic term to control doses in the objective
function.

Numerical methods for solving optimal control prob-
lems fall into two main categories: indirect and direct ap-
proaches. In the indirect method, the calculus of variations
determines the frst-order optimality conditions for the
optimal control problem [12–14]. Tis approach yields
a multipoint boundary-value problem to fnd optimal so-
lutions. In direct methods, the state and control variables of
the optimal control problem are approximated in an ap-
propriate manner, transforming the problem into nonlinear
programming (NLP) [15, 16]. Tese two approaches stem
from diferent philosophies.Te indirect approach indirectly
solves the problem (reason for naming indirect) by con-
verting it into a boundary-value problem, solving a set of
diferential equations for the optimal solution. In contrast,
the direct method transcribes an infnite-dimensional op-
timization problem into a fnite-dimensional one, leading to
the optimal solution. Iterative indirect methods, such as
steepest descent, consist of two components. One part fo-
cuses on determining the direction of movement, while
another part focuses on determining the length of the
movement step required to reach the optimal solution
[17, 18]. Hence, employing a hybrid indirect solver concept
may be an appropriate approach.

Indirect methods utilize Pontryagin’s maximum prin-
ciple (PMP) to provide analytical insights into the optimal
control problem, leading to a better understanding of the
system’s behavior. Moreover, indirect methods can yield
highly accurate solutions when they converge. In contrast,
while direct methods can handle a wide range of problems,
the accuracy of their solutions depends on the discretization
grid and initial guess [17, 19]. Furthermore, when dealing
with NLP, we often fnd ourselves needing to employ black
box software, with no access to its internal workings.
Consequently, we are strongly motivated to adopt a hybrid
indirect method for solving the optimal control problem,
comprehensively analyzing the dynamical system under
control. To achieve this, we prove the global convergence of
the hybrid indirect solver.

Tis paper is organized as follows. In Section 2, we
propose two diferent dynamical systems in the absence and
presence of treatment with a novel generalized vasculature’s
carrying capacity. In Section 3, an optimal control therapy is
presented that incorporates both anti-angiogenic and ra-
diotherapy as two diferent control variables. Additionally,
we propose a novel hybrid indirect method to solve the
corresponding problem. Section 4 presents the numerical
examples, while Section 5 discusses the results. Concluding
remarks are provided in Section 6.

2. Problem Formulation

Te simplifed geometry for cancer treatment includes three
types of cells: healthy cells, cancer cells, and endothelial cells.
In this paper, a fact on the mathematical model is on the rate
of nutrient consumption and the difusion of nutrients and
oxygen to various parts of the tumor and vascular blood
vessels. More precisely, we focused on the interaction be-
tween cancer cells and endothelial cells. To describe their
interaction, a 2-compartment, cell population-based model
is employed. Te model considers the cancer cell volume,
denoted as p, and the endothelial cell volume, denoted as q,
as variables. In the following subsections, we will discuss
tumor dynamics, propose a general carrying capacity dy-
namics, and present its general dynamical systems in the
absence and presence of treatments in full detail.

2.1. Tumor Dynamics. To describe tumor growth dynamics,
there are three growth models: exponential growth, logistic
growth, and Gompertzian growth [9]. In 1825, Benjamin
Gompertz introduced and applied his growth and mortality
law, which is often used to describe the growth of animals
and plants, as well as the quantity or volume of bacteria and
cancer cells over time [20]. Te Gompertzian growth model
ofers several advantages compared to the exponential and
growth models. Exponential and logistic growth models
failed to accurately describe the experimental data, whereas
the Gompertzian model exhibited remarkable descriptive
capability [21]. Above all, the Gompertzian growth model
efectively captures how tumor cells rely on nutrients, ox-
ygen, and space in a continuous process. As the tumor
grows, the availability of these essential resources gradually
diminishes, causing the growth rate to slow down until the
tumor reaches its maximum size [22]. Hence, we consider
the Gompertzian growth model in the form of an ordinary
diferential equation (ODE):

_p(t) � − ξp(t) ln
p(t)

q(t)
􏼠 􏼡, (1)

where ξ denotes the tumor growth parameter. Equation (1)
implies that a tumor shrinks when p(t)/q(t)> 1. However,
when p(t) tends to zero, the Gompertzian growthmodel will
sufer from singularity. Tus, the Gompertzian model is not
an adequate description of very small tumor volumes [23].
Note that when tumor grows, we have p(t)/q(t) < 1 and in
medical studies [24, 25], the Gompertzian growth model is
responsible.

2.2. General Carrying Capacity Dynamics. Te dynamical
model for endothelial cells is represented by a balance
equation between the stimulatory efect S(p, q) and the
inhibitory efect I(p, q), given in the form:

_q(t) � S(p, q) − I(p, q). (2)

Hahnfeldt proposed a difusion-consumption equation
with quasi-steady state to describe the concentration n of
stimulators and inhibitors inside the tumor as
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D
2∇2n − cn + s0 � 0, (3)

where D2 is the difusion coefcient, s0 is the cells’ secreting
rate, and c is the cells’ clearing rate. Te difusion-
consumption equation (3) can be represented in both
Cartesian and spherical coordinate systems as follows.

(i) In a Cartesian coordinate system, the inhibitor or
stimulator concentration at the point (x, y, z) within
the tumor at time t will be denoted as n(x, y, z, t).
Te concentration n can be determined by solving
the following diferential equation:

D
2∇2n(x, y, z, t) − cn(x, y, z, t) + s0 � 0. (4)

(ii) In a spherical coordinate system (􏽢ρ, 􏽢θ, 􏽢φ) [26],
Hahnfeldt considered the concentration as an ex-
plicit function of the tumor radius, assuming
a symmetric tumor for simplifcation. Consequently,
the concentration n at a specifc point within the
tumor, located at a distance 􏽢r from the center, is
introduced by solving the following diferential
equation:

n″ +
2n′

􏽢r
−

cn

D
2 +

s0

D
2 � 0. (5)

After solving equation (5), Hahnfeldt determined the
interior concentrations of the inhibitor nI(􏽢r) and stimulator
nS(􏽢r) at a specifc point within the tumor as follows:

nS(􏽢r, t) �
s0

c
,

nI(􏽢r, t) �
s0

6D
2 3􏽢r

2
0 − 􏽢r

2
􏼐 􏼑,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(6)

where 􏽢r0 represents the initial tumor radius. By considering
equation (6), it is concluded that the inhibitor would have
a signifcant impact on the target endothelial cells within the
tumor, leading to growth proportional to the tumor surface
or (volume)(2/3). In contrast, the efect of stimulators would
remain relatively independent of the tumor or vasculature
size [7]. However, by utilizing integration in spherical co-
ordinate system [26], we drive the total stimulation and
inhibition concentration inside the tumor as follows:

S 􏽢r0, t( 􏼁 � 􏽚
2π

0
􏽚
π

0
􏽚

􏽢r0

0
nS(􏽢r, t)􏽢ρ2 sin(􏽢φ)d􏽢ρd􏽢φd􏽢θ �

4πs0

3c
􏼒 􏼓􏽢r

3
0,

(7)

I 􏽢r0, t( 􏼁 � 􏽚
2π

0
􏽚
π

0
􏽚

􏽢r0

0
nI(􏽢r, t)􏽢ρ2 sin(􏽢φ)d􏽢ρd􏽢φd􏽢θ �

8πs0

15D
2􏼠 􏼡􏽢r

5
0. (8)

Based on equation (7), we can conclude that the total
stimulating efect is in accordance with either 􏽢r30 or
(volume)(3/3). Tus, the general form of the total stimulating
efect can be proposed as follows:

S(p, q) � bp(t)
αs q(t)

βs , (9)

where birth rate b> 0 and αs + βs � (3/3). Similarly,
according to equation (8), the fnal expression of the total
inhibition efect is in accordance with either 􏽢r50 or
(volume)(5/3). Tus, we can propose the general form for the
total inhibition efect as

I(p, q) � dp(t)
αi q(t)

βi , (10)

where αi + βi � (5/3) and death rate d> 0. Hahnfeldt made
the assumption that the inhibition term prevents tumor cell
production, which has an impact on endothelial cells.
According to the total concentration of inhibition equation
(8), there can also be other cases in which the inhibition
term, in addition to preventing tumor cell production, also
inhibits the endothelial cells production, thereby impacting
endothelial cells once again. Tus, without losing generality,
we propose the general carrying capacity dynamic as

_q(t) � bp(t)
αs q(t)

βs − dp(t)
αi q(t)

βi . (11)

From equation (11), we understand that working with
only the tumor radius means working with the smallest
geometrical dimension. Consequently, there are 4 choices
for the stimulating efect and 6 choices for the inhibiting
efect as follows:

αs, βs ∈ 0,
1
3
,
2
3
,
3
3

􏼚 􏼛 for αs + βs �
3
3

, (12)

αi, βi ∈ 0,
1
3
,
2
3
,
3
3
,
4
3
,
5
3

􏼚 􏼛 for αi + βi �
5
3

. (13)

According to the multiplication principle, the carrying
capacity model can be written in 24 diferent ways, with each
model being consistent with the actual tumor characteristics.
For example, Hahnfeldt gives αs � 1, βs � 0, αi � (2/3), and
βi � 1 to write

_q(t) � bp(t) − dp(t)
(2/3)

q(t). (14)

Ergun et al. [8] selected questionable values: αs � 0,
βs � (2/3), αi � 0, and βi � (4/3), which are inconsistent
with the actual tumor characteristics. Te reason is that the
inhibitor factor must be proportional to the tumor surface,
while Ergun considered it to be proportional to the tumor
radius (see equations (12) and (13)). Unfortunately, Kienle
et al. [10], without providing any justifcation, made two
mistakes: (i) using the above questionable values of the
Ergun model and (ii) using an inconsistent convex com-
bination of the Hahnfeldt model (proportional to tumor
surface) and the Ergun model (proportional to tumor ra-
dius). From amathematical point of view, with knowledge of
the authors, the only possible selections for αs, βs, αi, and βi

are the 24 cases given in this paper, and any selection except
these 24 cases is questionable.

2.3. General Dynamical System in the Absence of Treatment.
Here, we propose and provide a description of the dynamical
system under consideration in the absence of treatment for
cancer cells and endothelial cells:
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_p(t) � − ξp(t) ln
p(t)

q(t)
􏼠 􏼡,

_q(t) � bp(t)
αs q(t)

βs − dp(t)
αi q(t)

βi ,

p t0( 􏼁 � p0,

q t0( 􏼁 � q0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

where αs + βs � (3/3) and αi + βi � (5/3). In the rest of this
subsection, we discuss the existence and uniqueness solution
for dynamical system (15).

2.3.1. Existence and Uniqueness Solution for General Dy-
namical System. Te purpose of this subsection is to es-
tablish the existence and uniqueness of the solution for the
general dynamical system (15). To achieve this goal, we need
to demonstrate measurability, locally Lipschitz, and locally
integrable. Subsequently, we will apply the existence and
uniqueness theorem as presented and proven by Sontag [27].

Lemma 1 (measurable). Assume that dynamical system (15)
is in the form _x(t) � f(t, x(t)) such that f: I × X⟶ R2, I

is an interval from t0 initial time to tf fnal time, and X �

(p, q)|p, q ∈ R+􏼈 􏼉 is an open subset in R2. If the following
properties hold, then for all values of αs, βs, αi, and βi that
satisfy equations (12) and (13), f(t, x(t)) is measurable.

(i) f(., x): I⟶ R2 is measurable for each fxed x.
(ii) f(t, .): X⟶ R2 is continuous for each fxed t.

Proof. (i) Consider an arbitrary set x1 � (p1, q1) in X and
substitute in the dynamical system (15); we have vector
function as follows:

f ., x1( 􏼁 �

− ξp1 ln
p1

q1
􏼠 􏼡

bpαs

1 q
βs

1 − dpαi

1 q
βi

1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (16)

We know that constant real-value functions are mea-
surable. Tus, the vector function f(., x) is measurable (see
[26]; Section 3 Teorem 6). □

Proof. (ii) By substituting an arbitrary time t1 ∈ I in the
dynamical system (15), the vector function f(t1, .) is similar
to f(., x1). We know that constant real-value functions and
their linear combinations are continuous. Tus, the vector
function f(t, .) is continuous. □

Lemma 2 (locally Lipschitz). Suppose Lemma 1 holds. Ten
for all values of αs, βs, αi, and βi that satisfy equations (12) and
(13), f is locally Lipschitz on X.

Proof. To prove locally Lipschitz, we must show that there
are for every x0 ∈ X a real number δ > 0 and a locally in-
tegrable function α: I⟶ R+ such that

Table 1: Notation and numerical values for model parameters and state and control variables.

Symbol Description Unit Value
Model parameters
ξ Tumor growth parameter day− 1 0.084∗
b Tumor-induced stimulation parameter day− 1 5.85∗
d Tumor-induced inhibition parameter mm− 2day− 1 0.00873∗
α Tumor radiosensitivity parameter Gy− 1 0.7∗∗
β Tumor radiosensitivity parameter Gy− 2 0.14∗∗
η Endothelial radiosensitivity parameter Gy− 1 0.136∗∗
δ Endothelial radiosensitivity parameter Gy− 2 0.086∗∗
c Anti-angiogenic elimination parameter [kg/mg of dose]day− 1 0.15∗∗
ρ Tumor/endothelial repair rate day− 1 ln(2)/0.02∗∗

State variables
p Primary tumor volume mm3

p0 Initial tumor volume mm3 8000
q Carrying capacity of the vasculature mm3

q0 Initial carrying capacity of the vasculature mm3 11000
r Variable associated with quadratic radiation efects
r0 Initial variable associated with quadratic radiation efects 0
Control variables
u Anti-angiogenic agent (AA) dose rate [mgof dose/kg]

w Radiation agent (RA) dose rate Gy
References for ∗ and ∗∗ are [7, 8]. Te absorbed energy per unit mass of tissue is typically measured in units of gray (Gy).
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∀x, y ∈ Bδ x0( 􏼁, ∀t ∈ I, ‖f(t, x) − f(t, y)‖≤ α‖x − y‖,

(17)

where Bδ(x0) is a ball with radius δ and center x0 contained
in X. For this purpose, let x: � (p1, q1), y: � (p2, q2), and
fi be the ith element of vector function f for i ∈ 1, 2{ }. We
have

fi(t, x) − fi(t, y)
����

���� � fi t, p1, q1( 􏼁( 􏼁 − fi t, p2, q2( 􏼁( 􏼁
����

����

� fi t, p1, q1( 􏼁( 􏼁 − fi t, p2, q1( 􏼁( 􏼁 + fi t, p2, q1( 􏼁( 􏼁 − fi t, p2, q2( 􏼁( 􏼁
����

����

≤ fi t, p1, q1( 􏼁( 􏼁 − fi t, p2, q1( 􏼁( 􏼁
����

���� + fi t, p2, q1( 􏼁( 􏼁 − fi t, p2, q2( 􏼁( 􏼁
����

����.

(18)

According to the Lemma 1, vector function f(t, .) is
continuous and Bδ(x0) is bounded and is not contained (0,

0), so the following corresponding bounds can be consid-
ered. For i � 1, we have:

f1 t, p1, q1( 􏼁( 􏼁 − f1 t, p2, q1( 􏼁( 􏼁
����

����≤ ξ p1 − p2( 􏼁ln q1( 􏼁
����

���� + ξ p2 ln p2( 􏼁 − p1 ln p1( 􏼁
����

����≤L1,p p1 − p2
����

����,

f1 t, p2, q1( 􏼁( 􏼁 − f1 t, p2, q2( 􏼁( 􏼁
����

����≤ ξ p2 ln q1 − p2 ln q2
����

����≤ L1,q q1 − q2
����

����.
(19)

If the elements of x and y do not tend towards zero, then
in this case, we can defne L1′: � max L1,p, L1,q􏽮 􏽯, and sim-
ilarly for i � 2, we have:

f2 t, p1, q1( 􏼁( 􏼁 − f2 t, p2, q1( 􏼁( 􏼁
����

����≤ b q
βs

1 p
αs

2 − p
αs

1( 􏼁
�����

����� + d q
βi

1 p
αi

2 − p
αi

1( 􏼁
�����

�����≤ L2,p p2 − p1
����

����,

f2 t, p2, q1( 􏼁( 􏼁 − f2 t, p2, q2( 􏼁( 􏼁
����

����≤ b p
αs

2 q
βs

2 − q
βs

1􏼐 􏼑
�����

����� + d p
αi

2 q
αi

2 − q
αi

1( 􏼁
����

����≤ L2,q q2 − q1
����

����.
(20)

Defne L2′ :� max L2,p, L2,q􏽮 􏽯 and L′ :� max L1′, L2′􏼈 􏼉. By

applying (a + b≤ 2
������
a2 + b2

√
), we have:

fi(t, x) − fi(t, y)
����

����≤ L
′

p1 − p2
����

���� + q1 − q2
����

����􏼐 􏼑≤
�
2

√
L
′

p1, q1( 􏼁 − p2, q2( 􏼁
����

����. (21)

Tus, f is locally Lipschitz. □

Lemma 3 (locally integrable). Suppose Lemma 1 holds. Ten
f is locally integrable on t.

Proof. To prove that f is locally integrable, we must show
that the following inequality holds:

∀x0 ∈ X, ∃β: I⟶ R
+
,∀t ∈ I, f t, x0( 􏼁

����
����≤ β(t), (22)

where β is a locally integrable function. Consider an arbi-
trary set x0 � (p0, q0) inX andfi as the ith element of vector
function f for i ∈ 1, 2{ }; we defne

c1 ≔ − ξp0 ln
p0

s0
􏼠 􏼡,

c2 ≔ bp
αs

0 q
βs

0 − dp
αi

0 q
βi

0 ,

(23)

and C: � max c1, c2􏼈 􏼉. Tus, by introducing β(t) � C + et,
the lemma is proved.

Te presented Lemmas 1, 2, and 3 are the assumptions
for Teorem 54 in [27], and by applying the aforementioned
theorem, the existence and uniqueness of the solution for the
general dynamical system (15) are concluded.

Te followingmatters must be considered if one wants to
use the proposed general dynamical system (15).

(i) Scale. Te Hahnfeldt model is based on serious as-
ymptotic analysis of the difusion-consumption
equation underlying tumor anti-angiogenesis and
makes the reasonable assumption that the inhibitory
factor in the dynamic is proportional to the tumor
surface, while the Ergun model questionably scales
down these to the tumor radius. Te proposed
general dynamical system (15) works with all the
possible scaling features (see equations (12) and
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(13)). However, the authors in Section 5 show that
there are better selected values for αs, βs, αi, and βi

compared with the Hahnfeldt model [7].
(ii) Medical Relevance. In the Hahnfeldt model and our

proposed general dynamical system, the tumor-
induced inhibition parameter d has mm− 2day− 1

dimension, while in the Ergun model, d has
mm− 1day− 1 dimension. Indeed, it is not feasible to
consider two diferent physical concepts for a given
biological phenomenon when one is measured in
terms of death rates per unit length and the other in
terms of death rates per unit area. □

2.4. General Dynamical System Modeling with Anti-
Angiogenic Treatment. Te process of stimulating the for-
mation of new blood vessels and capillaries in order to
supply the tumor with the necessary nutrients is called
tumor angiogenesis [11]. In contrast, anti-angiogenic
treatment prevents the cancer cell nutrition by eradicating
the current tumor blood vessels while restricting the for-
mation of new blood vessels [28, 29]. Initially, it was as-
sumed that anti-angiogenic therapy might not exhibit
toxicity compared to other chemotherapeutic agents due to
the genetic stability and quiescence of endothelial cells under
normal physiological conditions, as well as the selectivity of
targeted drugs. However, this assumption proved to be
a miscalculation [30]. In Figure 1, it is shown that tumors
initiate angiogenesis through the activation of vascular
endothelial growth factor (VEGF). Over 60 anti-angiogenic
agents (AAs) have existed in clinical trials in the US since
2006. For example, endostatin inhibits VEGF, disrupting the
endothelial cell growth that forms the lining of the newly
developed blood vessels [31–33].

We consider a control variable u that represents the AA
dose and is taken as a Lebesgue-measurable function in
a compact interval [0, umax] with umax denoting the highest
dose. Tus, from equation (2), the dynamical model for
endothelial cells volume under anti-angiogenic treatment
yields [9]

_q(t) � S(p, q) − I(p, q) − cq(t)u(t), (24)

where c denotes the anti-angiogenic elimination parameter.
Based on the above discussion and the proposed general
dynamical system (15), the ODE system for anti-angiogenic
treatment as monotherapy is given as follows:

_p(t) � − ξp(t) ln
p(t)

q(t)
􏼠 􏼡,

_q(t) � bp(t)
αs q(t)

βs − dp(t)
αi q(t)

βi − cq(t)u(t),

p t0( 􏼁 � p0,

q t0( 􏼁 � q0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

Numerous medical studies confrm that once mono-
therapy is halted, the tumor will grow back [34–36]. Tus,
anti-angiogenic therapy is not efcient as a stand-alone
treatment. Still, in combination with other therapies that
destroy cancer cells, such as chemotherapy or radiotherapy,
it can enhance their efect and lead to synergistic benefts
[6, 8].

2.5. General Dynamical System Modeling with Radiotherapy.
For all types of tumors, radiotherapy is a common thera-
peutic approach. It is carried out in 60–70% of newly di-
agnosed cancer patients, either as monotherapy or as
a combination treatment with surgery, chemotherapy, and
anti-angiogenic therapy, which are useful [37, 38]. We
consider a control variable w that represents the amount of
the radiotherapy agent (RA) rate in a compact interval
[0, wmax] with wmax denoting the highest dose rate. Wein, in
the year 2000, modeled cancer cells radiation damage by [39]

− p(t) α + β􏽚
tf

t0

w(s) exp(− ρ(t − s))ds􏼠 􏼡w(t), (26)

where α and β are cancer cell radiosensitivity parameters, ρ is
the tumor repair rate, and the fnal time tf is fxed in every
instance within this paper. Note that

r(t) ≔ 􏽚
tf

t0

w(s) exp(− ρ(t − s))ds, (27)

is the solution to the linear ODE given by

_r(t) � − ρr(t) + w(t),

r t0( 􏼁 � r0.
(28)

Tus, the term that quantifes the radiation damage to
the cancer cells can be written in the form

− p(t)(α + βr(t))w(t). (29)

Notice that the radiation has a destructive efect on
endothelial cells, so the damage to endothelial cells is given
by

− q(t)(η + δr(t))w(t), (30)

where η and δ are endothelial cell radiosensitivity param-
eters. In the literature, often the efects of radiotherapy on
healthy cells, cancer cells, and endothelial cells are modeled
by a system of ODEs [40]. Based on the preceding discussion
and the proposed general dynamical system (15), we write:

_p(t) � − ξp(t) ln
p(t)

q(t)
􏼠 􏼡 − p(t)(α + βr(t))w(t),

_q(t) � bp(t)
αs q(t)

βs − dp(t)
αi q(t)

βi − q(t)(η + δr(t))w(t),

_r(t) � − ρr(t) + w(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(31)

with initial conditions p(t0) � p0, q(t0) � q0, and r(t0) � r0.
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2.6. General Dynamical System with Combined Terapy.
Te use of diversifed methods in anti-cancer therapy ofers
a broader range of options for clinical treatment and enables
the formation of robust partnerships [30]. For this purpose,

the general dynamical systemwith control variables u(t) and
w(t) for cancer therapy using the combination of anti-
angiogenic treatment and radiotherapy is in the following
form:

_p(t) � − ξp(t) ln
p(t)

q(t)
􏼠 􏼡 − p(t)(α + βr(t))w(t),

_q(t) � bp(t)
αs q(t)

βs − dp(t)
αi q(t)

βi − q(t)(η + δr(t))w(t) − cq(t)u(t),

_r(t) � − ρr(t) + w(t),

p t0( 􏼁 � p0,

q t0( 􏼁 � q0,

r t0( 􏼁 � r0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(32)

where the parameter values and notation descriptions can be
found in Table 1. Te classifcation of the general dynamical
system (32) using equations (12) and (13) leads to 24 distinct
types of dynamical systems (see second column in Table 2).

3. Optimal Control Problem for a General
Dynamical System

Tis paper aims to determine the optimal dosage scheme of
AA and RA that minimizes tumor volume while causing the
least harm to healthy cells. According to Food and Drug
Administration recommendations and clinical discussions
of the efectiveness of some AAs, it is reasonable to use the
lowest possible dose [6, 41, 42]. On the other hand, in ra-
diotherapy, the healthy cells around the cancer cells are
almost destroyed, and the side efects depend on accuracy

and the amount of radiation dose [43]. Hence, the impor-
tance of optimal control methods in this context is
signifcant.

3.1. Optimal Control Formulation. Based on the general
dynamical system discussed in Section 2, one faces both
mathematical and clinical challenges. Regarding the clinical
aspect, treatment strategies for tumor reduction are en-
countered during treatment and the fnal time, where the
fnal time is fxed. From a mathematical point of view, both
linear and quadratic terms can be employed to control doses
in the objective function. Numerous studies have demon-
strated that administering continuous and low doses of
therapeutic drugs leads to improved outcomes [44]. Led-
zewicz et al. [45] investigated linear controls and determined

Initial Cancer Cells
VEGF

Newly Blood Vessels

Cancer Cells Growth

Tumor Angiogenesis Process

Figure 1: Angiogenic process and intense growth of cancer cells and endothelial cells.
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that optimal control is a singular arc, while bang-bang
control fails to be optimal or desirable due to the need
for dose continuity [12]. Terefore, we consider the qua-
dratic term in the objective function to control doses, aiming
to achieve continuous and low doses, as demonstrated in
a previous study [12]. To ensure that the tumor volume

remains nonnegative without introducing additional con-
straints, we express the tumor volume in a quadratic form
within the objective function. Te following optimal control
problem (OCP) is considered as an optimal regulator
problem [46]:

OCP:

min
(u,w)

J ≔
τp

2
p tf􏼐 􏼑

2
+
θp

2
􏽚

tf

t0

p(t)
2
dt +

θu

2
􏽚

tf

t0

u(t)
2
dt +

θw

2
􏽚

tf

t0

w(t)
2dt,

subject  to:

_p(t) � − ξp(t) ln
p(t)

q(t)
􏼠 􏼡 − p(t)(α + βr(t))w(t),

_q(t) � bp(t)
αs q(t)

βs − dp(t)
αi q(t)

βi − q(t)(η + δr(t))w(t) − cq(t)u(t),

_r(t) � − ρr(t) + w(t),

p t0( 􏼁 � p0,

q t0( 􏼁 � q0,

r t0( 􏼁 � r0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(33)

Table 2: Numerical results for 24 distinct versions of a general dynamical system for the optimal control problem (33), with a treatment
strategy in Example 1.

No. (αs, βs, αi, βi) J∗ p∗(tf) q∗(tf) D∗AA D∗RA

1 (0, (3/3), 0, (5/3)) 4.020 × 103 86.847 1.233 × 104 70 10
2 (0, (3/3), (1/3), (4/3)) 6.072 × 104 347.780 4.030 × 105 70 10
3 (0, (3/3), (2/3), (3/3)) 4.119 × 108 2.870 × 104 2.171 × 107 70 0
4 (0, (3/3), (3/3), (2/3)) 1.849 × 1015 6.081 × 107 7.978 × 1022 70 10
5 (0, (3/3), (4/3), (1/3)) 5.835 × 1015 1.080 × 108 2.419 × 1023 70 10
6 (0, (3/3), (5/3), 0) 8.913 × 1015 1.335 × 108 3.566 × 1023 70 10
7 ((1/3), (2/3), 0, (5/3)) 958.633 40.232 1.296 × 103 52.90 10
8 ((1/3), (2/3), (1/3), (4/3)) 1.992 × 103 59.036 3.336 × 103 70 10
9 ((1/3), (2/3), (2/3), (3/3)) 6.004 × 103 107.289 1.236 × 104 69.75 10
10 ((1/3), (2/3), (3/3), (2/3)) 1.872 × 104 192.210 3.465 × 104 69.89 10
11 ((1/3), (2/3), (4/3), (1/3)) 3.433 × 104 261.085 5.580 × 104 70 10
12 ((1/3), (2/3), (5/3), 0) 4.330 × 104 293.437 6.536 × 104 70 10
13 ((2/3), (1/3), 0, (5/3)) 463.763 27.760 428.625 35.198 10
14 ((2/3), (1/3), (1/3), (4/3)) 655.861 31.357 550.807 54.203 10
15 ((2/3), (1/3), (2/3), (3/3)) 921.419 37.294 700.984 66.085 10
16 ((2/3), (1/3), (3/3), (2/3)) 1.305 × 103 46.079 999.607 68.87 10
17 ((2/3), (1/3), (4/3), (1/3)) 1.782 × 103 55.422 1.244 × 103 69.37 10
18 ((2/3), (1/3), (5/3), 0) 2.187 × 103 62.288 1.438 × 103 69.42 10
19 ((3/3), 0, 0, (5/3)) 297.917 22.309 240.407 26.400 10
20 ((3/3), 0, (1/3), (4/3)) 384.771 23.869 278.480 39.80 10
21 ((3/3), 0, (2/3), (3/3)) 478.261 25.171 301.336 52.998 10
22 ((3/3), 0, (3/3), (2/3)) 573.127 26.999 323.040 62.307 10
23 ((3/3), 0, (4/3), (1/3)) 665.911 29.396 344.896 66.762 10
24 ((3/3), 0, (5/3), 0) 751.671 32.009 364.274 67.736 10
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Here, according to control theory,X � (p, q, r) is a state
space, and U � (u, w) is a control space.

3.2. Solving Optimal Control Problems: Direct and Indirect
Methods. Tere are twomain numerical approaches to solve
optimal control problems, depending on whether the
problem is frst optimized then discretized or vice versa. Te
purpose of the indirect method (optimize-then-discretize) is
to fnd a solution to the ODE system resulting from Pon-
tryagin’s minimum principle. Te direct method, a more
recent approach, involves discretizing the optimal control
problem and then fnding the optimal solution to this
discrete problem, which transforms into a fnite-
dimensional problem of nonlinear programming. Each of
these two approaches has advantages and disadvantages
[47, 48]. In recent years, numerous studies on cancer therapy

with combinations of anti-angiogenic and radiotherapy
treatments are done by direct methods. Using the direct
method yields an NLP, which is solved by the interior-point
optimizer (IPOPT) [49–52] via the Applied Mathematical
Programming Language (AMPL) [53]. On the other hand,
Kienle et al. [10] applied the sequential quadratic Hamil-
tonian (SQH) method as the indirect method, which was
frst introduced in [48, 54], to solve the related optimal
control problem. Here, in this article, we propose a novel
hybrid indirect method to solve the corresponding problem.

3.3. Optimality Conditions for the Optimal Control Problem.
We propose an optimization algorithm based on the indirect
method for OCP (33). For this purpose, we apply the op-
timality necessary condition by using PMP. Te general
form for OCP (33) is as follows:

min
U∈Uad

J � ϕ X tf􏼐 􏼑􏼐 􏼑 + 􏽚
tf

t0

L(X(t),U(t), t)dt,

subject  to:

X
.

(t) � f(X(t),U(t), t),

with  initial  conditions X t0( 􏼁 � p0, q0, r0( 􏼁,

(34)

where Uad is admissible control space and is given by

Uad � (u, w) ∈ U × W|U(t): t0, tf􏽨 􏽩⟶ 0, umax􏼂 􏼃  and W(t): t0, tf􏽨 􏽩⟶ 0, wmax􏼂 􏼃􏽮 􏽯. (35)

We defne the Hamiltonian function, which involves the
integrand of the performance index and the costate variables
with the right-hand side of the ODEs (34) in the form [48]

H � L(X(t),U(t), t) + λT
f(X(t),U(t), t), (36)

where λ represents the costate space. Specifcally, the
Hamiltonian function for OCP (33) is as follows:

H �
θp

2
p
2

+
θu

2
u
2

+
θw

2
w

2
+ λp − ξp ln

p

q
􏼠 􏼡 − p(α + βr)w􏼠 􏼡

+ λq bpαs q
βs − dpαi q

βi − q(η + δr)w − cqu􏼐 􏼑 + λr(− ρr + w),

(37)
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where λp, λq, and λr are the corresponding costate variables
for the state variables p, q, and r, respectively. Canonical
Hamiltonian equations [46] for the OCP (33) using PMP
yield

λ
.

p � − θpp + λp ξ ln
p

q
+ 1􏼠 􏼡 +(α + βr)w􏼠 􏼡 + λq dαip

αi− 1
q
βi − bαsp

αs− 1
q
βs􏼐 􏼑,

λ
.

q � − λpξ
p

q
+ λq dβip

αi q
βi − 1

− bβsp
αs q

βs− 1
+(η + δr)w + cu􏼐 􏼑,

λ
.

r � λpβpw + λqδqw + λrρ,

zH

zu
� 0 thus, θuu − cλqq � 0,

zH

zw
� 0 thus, θww − λp(α + βr)p − λq(η + δr)q + λr � 0,

with  transversality  conditions λp tf􏼐 􏼑 � τpp tf􏼐 􏼑, λq tf􏼐 􏼑 � 0, and λr tf􏼐 􏼑 � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(38)

Te general dynamical system (32) and canonical
Hamiltonian equation (38) form a two-point boundary-
value problem (TPBVP). If the boundary conditions are
all given at either t0 or tf, one would numerically integrate
the reduced diferential equations to deriveX∗(t) and λ∗(t),
t ∈ [t0, tf] [48]. Unfortunately, the transversality conditions
are dependent on state variables. Moreover, initial and
transversality conditions are split, so the TPBVP cannot be
solved in a standard manner [48]. Terefore, it is motivated
to apply an iterative numerical technique to overcome these
difculties. By the hybrid technique here, we apply the
steepest descent as an indirect method [48], conjugate
gradient for search direction [55], and Armijo technique for
the step length [56]. Although each of the three mentioned
techniques exists in the literature, by integrating and
implementing them, we have designed and developed
a hybrid method to solve the optimal control problem. Tis
hybrid method exhibits remarkable performance when
compared to direct and indirect algorithms, which will be
discussed in detail in the numerical results section.

3.4. Armijo Conjugate Steepest Descent Solver. Te steepest
descent method is an iterative numerical technique used for
determining the minimum of a diferentiable function and is
employed as an indirect method for solving the general
dynamical system (32) and canonical Hamiltonian equation

(38). Te main idea for solving them is to utilize the
framework of the steepest descent method [48]. To search
the direction, we use the conjugate gradient method as an
exact line search [55]. Moreover, in order to determine
distinct step lengths for the two control variables, we employ
the Armijo technique [56] as an inexact line search method.
Te proposed hybrid method is called the Armijo conjugate
steepest descent (ACSD) method. Here, the conjugate
gradient direction is similar to the path opposite to ∇J with
respect to the control variables u and w. For simplicity, in
each step, the general dynamical system (32) and canonical
Hamiltonian equation (38) are considered as the following
form.

TPBVP:

X
.

i(t) � f Xi(t),Ui(t), t( 􏼁,

λ
.

i(t) � −
zH

zX
Xi(t), λi(t),Ui(t), t( 􏼁,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(39)

and TPBVP (39) satisfes the boundary conditions

Xi t0( 􏼁 � p t0( 􏼁, q t0( 􏼁, r t0( 􏼁( 􏼁,

λi tf􏼐 􏼑 � τpp tf􏼐 􏼑, 0, 0􏼐 􏼑.
(40)

Nominal control history in each step will update by
direction ψi and step length ϵi:
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Ui+1(t) � Ui(t) + ϵiψi. (41)

For better readability, in the following, we defne
gi: � (zH/zU)(Xi(t), λi(t),Ui(t), t). Te value of ψi is
determined through the conjugate gradient method using
the following equation [55]:

ψi �
− gi, if i � 1,

− gi + ζ iψi− 1, if i≥ 2,
􏼨 (42)

where ζ i is a scalar in the following form:

ζ i � −
g

T
i gi

ψT
i− 1gi− 1

. (43)

Furthermore, the computation of distinct step lengths
ϵi � (ϵui

, ϵwi
) for the two control variables involves an in-

exact line search using the Armijo technique, as outlined in
[44, 56]:

J Ui + ϵiψi( 􏼁≤ J Ui( 􏼁 + κϵig
T
i ψi, (44)

where κ ∈ (0, 1) is known as Armijo backtracking param-
eter. Restrictions on AAs and RAs for nonnegativity and
admissibility force us to put the following step to Algorithm
1.

Ui+1(t) � min max 0,Ui(t) + ϵiψi􏼈 􏼉,Umax􏼈 􏼉, (45)

where Umax � (umax, wmax). Finally, the iteration is stopped
when the criterion ‖ψi‖≤ ϑ is satisfed, where ϑ is a pre-
selected positive constant and we have:

ψi

����
����
2

� 􏽚
tf

t0

ψi(t)􏼂 􏼃
T ψi(t)􏼂 􏼃dt. (46)

Hence, we summarize the Armijo steepest descent
method for the general dynamical system (32) and canonical
Hamiltonian equation (38) in Algorithm 1.

3.5. Convergence Analysis of the Armijo Conjugate Steepest
Descent Method. In this subsection, we present the con-
vergence analysis of the Armijo conjugate steepest descent
method. For this purpose, we will demonstrate that the
conjugate gradient coefcient satisfes a sufcient descent
condition, and we will prove global convergence. Here, we
defne an additional condition by the Hamiltonian gradient
and direction to ensure that the algorithmmakes meaningful
progress, as follows:

∃ω> 1,
gi+1

����
���� ψi

����
����

ψT
i gi

����
����
≤ 1 −

1
ω

. (47)

It is important to mention that equation (47) is more
general than the curvature condition in the strong Wolfe
conditions (see equation (3.7b) in [44]).

Lemma 4. If we have Armijo conjugate steepest descent with
conditions equations (44) and (47), then for ‖gi‖≠ 0, we have

gi+1
����

���� − gi

����
����< 0. (48)

Proof. From equation (27) and the Cauchy–Schwarz
properties, we have

gi+1
����

���� ψi

����
����≤ 1 −

1
ω

􏼒 􏼓 ψT
i gi

����
����≤ 1 −

1
ω

􏼒 􏼓 ψi

����
���� gi

����
����. (49)

Dividing both sides by ‖ψi‖ yields

gi+1
����

���� − gi

����
����≤ −

1
ω

gi

����
����. (50)

Te right-hand side of the above inequality is always
negative. Tus, the proof is complete. □

Lemma 5. If we have Armijo conjugate steepest descent with
conditions equations (44) and (47), then we have

gi

����
����

ψi

����
����
≤

1
1 − c

, (51)

where c ∈ (0, 1).

Proof. From equation (42), for i � 1, it is clear that
‖g1‖/‖ψ1‖ � 1, and for i≥ 2 by multiplying gT

i+1, we have

g
T
i+1ψi+1 � g

T
i+1 − gi+1 + ζ i+1ψi( 􏼁 � − gi+1

����
����
2

+ ζ i+1g
T
i+1ψi,

gi+1
����

����
2

� − g
T
i+1ψi+1 − g

T
i+1

gi+1
����

����
2

ψT
i gi

ψi.

(52)

Taking the absolute value and applying the Cau-
chy–Schwarz properties,

gi+1
����

����
2 ≤ gi+1

����
���� ψi+1
����

���� + gi+1
����

����
gi+1

����
����
2 ψi

����
����

ψT
i gi

����
����

. (53)

Terefore, we have

gi+1
����

����
2 1 −

gi+1
����

���� ψi

����
����

ψT
i gi

����
����

⎛⎝ ⎞⎠≤ gi+1
����

���� ψi+1
����

����, (54)

and by dividing both sides of the above inequality by
‖gi+1‖‖ψi+1‖, we have
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gi+1
����

����

ψi+1
����

����
1 −

gi+1
����

���� ψi

����
����

ψT
i gi

����
����

⎛⎝ ⎞⎠≤ 1. (55)

Tis suggests that

gi+1
����

����

ψi+1
����

����
≤

1
1 − gi+1

����
���� ψi

����
����/ ψT

i gi

����
����􏼐 􏼑

. (56)

From equation (47),

gi+1
����

����

ψi+1
����

����
≤ω or  gi+1

����
����≤ω ψi+1

����
����. (57)

Tus, the proof is complete. □

Theorem 6. Assuming that ψi is generated using equation
(42) and ζ i is obtained from equation (43), a sufcient
condition is satisfed when

g
T
i ψi ≤ − M gi

����
����
2
, (58)

where M> 0 holds.

Proof. Multiplying both sides of equation (42) by gT
i+1 and

using ζ i+1 yields

g
T
i+1ψi+1 � g

T
i+1 − gi+1 + ζ i+1ψi( 􏼁

� − gi+1
����

����
2

−
gi+1

����
����
2

ψT
i gi

g
T
i+1ψi,

(59)

and we have

g
T
i+1ψi+1 + gi+1

����
����
2

� −
gi+1

����
����
2

ψT
i gi

g
T
i+1ψi.

(60)

For the right-hand side of the above inequality, we can
take the absolute value and apply the Cauchy–Schwarz
properties:

g
T
i+1ψi+1 + gi+1

����
����
2 ≤

gi+1
����

����
2

ψT
i gi

����
����

g
T
i+1

����
���� ψi

����
����. (61)

By employing the condition stated in equation (47), we
obtain:

g
T
i+1ψi+1 ≤ gi+1

����
����
2

− 1 + 1 −
1
ω

􏼒 􏼓. (62)

Te proof is complete. Terefore, for ‖gi+1‖≠ 0, this
implies that

g
T
i+1ψi+1 < 0. (63)

Te following theorem provides proof of the Zoutendijk
conditions [57], establishing the global convergence of
Armijo conjugate steepest descent with the new
condition (47). □

Theorem 7. Consider the Armijo conjugate steepest descent
method, where ϵi is obtained using the Armijo inexact line
search rule equations (44) and (47). Assuming Lemma 4,
Lemma 5, and Teorem 6 hold true, then either

lim
i⟶∞

gi

����
���� � 0 or 􏽘

∞

i�1

g
T
i ψi􏼐 􏼑

2

ψi

����
����
2 <∞. (64)

Proof. We employ a proof by contradiction argument. If
Teorem 7 is not true, then there exists a> 0, such that

gi

����
����≥ a. (65)

From equation (42),

ψi+1 + gi+1 � ζ i+1ψi. (66)

Upon squaring both sides of the above equation, we have

(1) Subdividing the interval [t0, tf] into N equal subintervals and considering piecewise-constant controls:
U0(t) � U0(tk), tk ∈ [tk, tk+1), k � 0, 1, .., N − 1

(2) Applying the assumed control Ui to integrate the state equations from t0 to tf with initial condition Xi(t0) and store the state
matrix Xi.

(3) Calculate λi(tf) from equation (40), use Ui and Xi to integrate the ODE costate from tf to t0, and store the costate matrix λi.
(4) Evaluate ψi from equation (42) and store as a vector.
(5) if‖ψi‖≤ ϑ then
(6) terminate the iterative procedure and output Ui and Xi.
(7) else
(8) fnd the ϵi from Armijo technique for the two control variables such that

J(Ui + ϵiψi)≤ J(Ui) + κϵigT
i ψi.

(9) adjust the piecewise-constant control by:
Ui+1(tk) � min max 0,Ui(tk) + ϵiψi(tk)􏼈 􏼉,Umax􏼈 􏼉, k � 0, 1, . . . , N − 1,

(10) then replace Ui by Ui+1 and return to step 2.
(11) end if

ALGORITHM 1: ACSD method.
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. (67) Dividing both sides by (gT
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(68)

Applying equation (43) yields
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From equation (57) of Lemma 5, we have

ψi+1
����

����
2

g
T
i+1ψi+1􏼐 􏼑

2 ≤
ω2
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����
����
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and based on equation (48) of Lemma 4, we have

ψi+1
����

����
2

g
T
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2 <
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2 . (71)

On the other hand, from equation (59), we have:

g
T
i+1ψi+1 � − gi+1

����
����
2

−
gi+1

����
����
2

ψT
i gi

g
T
i+1ψi.

(72)

For the right-hand side of the above inequality, we can take
the absolute value and apply the Cauchy–Schwarz properties:

g
T
i+1ψi+1 ≤ gi+1
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����
2

+
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����
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����. (73)

By employing the condition stated in equation (47), we
obtain:

g
T
i+1ψi+1 ≤ gi+1

����
����
2 2 −

1
ω

􏼒 􏼓. (74)

We know that (2 − 1/ω)> 1, and thus

gi+1
����

����
2 ≥

g
T
i+1ψi+1􏼐 􏼑

(2 − (1/ω))
. (75)

Substitute equation (75) in equation (71), and we get

2 −
1
ω

􏼒 􏼓 g
T
i+1ψi+1􏼐 􏼑>

ψi+1
����

����
2

ω2
+ 1

. (76)

Dividing both sides by (2 − (1/ω)) yields

g
T
i+1ψi+1􏼐 􏼑>

ψi+1
����

����
2

(2 − (1/ω)) ω2
+ 1􏼐 􏼑

. (77)

By applying equation (57), we have

g
T
i+1ψi+1􏼐 􏼑>

gi+1
����
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2

ω2
(2 − (1/ω)) ω2
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(78)

Te right-hand side of the above inequality is always
positive; then

g
T
i+1ψi+1􏼐 􏼑> 0. (79)

Tis contradicts equation (63) in Teorem 6. Terefore,
the proof is completed.

Te questions to be asked at this stage are these:

(i) Can we determine values for αs, βs, αi, and βi from
the values of second column in Table 2 so that they
satisfy OCP (33)?

(ii) Do indirect methods work better compared to direct
methods?
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(iii) Between the ACSD and SQH solvers, which one is
better?

(iv) What are the efects of tumor and carrying capacity
volumes on inhibition and stimulation factors?

(v) Which one of the treatment strategies makes more
medical sense? □

4. Numerical Examples

In this section, we present the raw data obtained from three
diferent methods: ACSD (Algorithm 1), IPOPT-AMPL,
and SQH, used to solve the optimal control problem (33),
considering 24 distinct versions of a general dynamical
system and two treatment strategies. Comparisons are
performed for the cost, cancer cell volume, endothelial cell
volume, elapsed CPU time, total AA doses (computed as
L1-integrals) denoted as DAA, and total RA doses (com-
puted as L1-integrals) denoted as DRA utilized in the
treatment. Goedegebuure et al. [58] confrmed that frac-
tionated low-dose radiotherapy, i.e., daily fractions of up to
2Gy, has a positive efect on cancer cells. Tus, in the
following two diferent examples, we bound the wmax to be
less than or equal to 2Gy. Te results have been conducted
on an Intel Core i5 CPU 6th Generation at 2.4 GHz, with
4GB RAM.

Example 1. Tis example aims to solve and analyze 24
distinct versions of a general dynamical system for the
optimal control problem (33), with a treatment strategy to
reduce tumor volume at the fnal time as optimal regulator
problem in Bolza form. Te admissible control space
(u, w) ∈ [0, 7] × [0, 1] is considered, while the parameter
values are given by tf � 10, τp � 1, θp � 0, θu � 1, θw � 1,
and others in Table 1. Our proposed Armijo conjugate
steepest descent method is used as the solver, and the results
are reported in Table 2. Note that dynamical system number
21 in Table 2 is known as the Hahnfeldt dynamical system.

Figure 2 depicts the comparison among the four se-
lected dynamical systems in Example 1, including tumor
volume, vascular carrying capacity, and the amounts of
anti-angiogenic and radiation agents. In Figure 2(b), the
optimal vascular carrying capacity of dynamical system 21
initially increased slightly and then decreased. Te reason
for this event is the role of vascular carrying capacity in the
inhibiting factor. Strictly speaking, by reducing the efect of
vascular carrying capacity, the response to anti-angiogenic
treatment also decreases. In Figure 2(c), considering the
daily dosage limit for the anti-angiogenic drug, dynamical
system 21 exhibited the highest consumption of the drug
between days 5 and 8. However, its performance in terms of
the fnal tumor volume was not as efective. In contrast,
dynamical system 19 had lower anti-angiogenic drug usage
throughout the treatment period and achieved the smallest
fnal tumor volume. In Figure 2(d), in accordance with the
limitation of the daily radiation therapy dose, as expected,
the maximum allowable daily dosage has been
administered.

Among the 24 possible dynamical systems listed in
Table 2, the four dynamical systems (13, 19, 20, and 21) with
the lower costs have been selected.

Example 2. Tis example aims to compare results obtained
from both direct and indirect methods. Here, the treatment
strategy focuses on reducing tumor volume during treat-
ment using the lowest possible anti-angiogenic and radiation
agents as optimal regulator problem in Lagrange form. As in
Example 1, we employ the four selected dynamical systems
in order to make a regular comparison between two
treatment strategies while serving the purpose of abbrevi-
ation. Other parameter values in performance index are
given by tf � 10, τp � 0, θp � 1, θu � 1, and θw � 1.

Figure 3 depicts the comparison of tumor volume,
vascular carrying capacity, and the amounts of anti-
angiogenic and radiation therapy for the four selected dy-
namical systems in Example 2. According to Figure 3(c), an
anti-angiogenic drug is proposed with a bang-bang property
for each selected dynamical system (13, 19, 20, and 21).
Given the constraint on the daily permissible dose of ra-
diation therapy within the acceptable range [58], it was as
expected that the optimal radiation therapy dose would be
selected as the highest possible value throughout the
treatment (shown in Figures 2(d) and 3(d)).

 . Discussion of Results

Based on the numerical results reported in Section 4 re-
garding the dynamical system, solver method, and treatment
strategy, we have arrived at the following fndings.

5.1. Dynamical System. Based on Example 1 and its nu-
merical results, the discussion for the 24 distinct versions of
a general dynamical system are as follows:

For stimulatory efect, one can say the following.
“By increasing αs (which increases the tumor volume

infuence) or decreasing βs (which decreases the carrying
capacity infuence), all values of J, p(tf), and q(tf) expe-
rience a signifcant decrease. Tis implies that if the stim-
ulating efect of a tumor exceeds its volume in comparison to
the vascular carrying capacity, there will be a substantial
reduction in p(tf), q(tf), and the overall treatment cost.
Consequently, low-cost treatments can be employed where
tumor volume plays a crucial role in the stimulation efect.”

For the inhibitory efect, we have the following.
“Trough the αi increase (which enhances the tumor

volume infuence) or the βi decrease (which diminishes the
carrying capacity impact), almost signifcant increases are
observed in the values of J, p(tf), q(tf), and DAA. Tis
indicates that if the inhibitory efect of a tumor exceeds its
volume in relation to the vascular carrying capacity, there
will be substantial increases in tumor volume, vascular
carrying capacity at the end of the treatment, and the overall
treatment cost. Terefore, high-cost treatments can be
justifably applied where tumor volume plays a critical role
in the inhibition efect.
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For the dynamical systems, the following aspects can be
considered.

“TeHahnfeldt dynamical system, among the four above
selected dynamical systems, has consumed the highest
amount of anti-angiogenic drugs. It can be concluded that
the Hahnfeldt dynamical system compared to the three other
dynamical systems (13, 19, and 20) has more resistance to
treatment. Tus, in order to respond to the arguments in
[40], we propose to the physician to use dynamical system
number 19 that has less cost, tumor and carrying capacity
volumes at fnal time, and total dose of anti-angiogenic agent
among other dynamical systems.”

5.2. Solver Method. Considering the numerical results
presented in Table 3 for the analysis of the solver methods,
we have reached the following conclusions:

(i) In the Armijo conjugate steepest descent method,
searching for the direction using the conjugate
gradient method and determining the step length
through the Armijo technique increase the execu-
tion time. However, the Armijo conjugate steepest
descent solver is much faster than IPOPT-AMPL
solver. On the other hand, the sequential quadratic
Hamiltonian method is faster than the Armijo
conjugate steepest descent method. Terefore, the
Armijo conjugate steepest descent method takes the
second place in terms of speed (see CPU time
column in Table 3).

(ii) Te execution speed of the IPOPT-AMPLmethod is
very slow and depends on the lower bound values of
state variables. If the lower bounds of the state
variables are chosen to be greater than or equal to
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Figure 2: Optimal regulator problem in Bolza form: treatment strategy to reduce tumor volume at the fnal time based on data in Example 1
for the selected dynamical systems (13, 19, 20, and 21) using the Armijo conjugate steepest descent method. (a) Optimal cancer cell volume.
(b) Optimal endothelial cell volume. (c) Optimal anti-angiogenic agent. (d) Optimal radiation agent.
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Figure 3: Optimal regulator problem in Lagrange form: treatment strategy to reduce tumor volume during 10 days treatment based on given
values in Example 2 for the selected dynamical systems (13, 19, 20, and 21) using current ACSDmethod. (a) Optimal cancer cell volume. (b)
Optimal endothelial cell volume. (c) Optimal anti-angiogenic agent. (d) Optimal radiation agent.

Table 3: Numerical results obtained by three diferent solvers (ACSD, SQH, and IPOPT-AMPL) applied to selected dynamical systems with
a treatment strategy in Example 2.

No. Solver J∗ p∗(tf) q∗(tf) D∗AA D∗RA CPU time (s)

13
ACSD 2.42252071 × 107 24.8355 491.3313 63.6117 10 4.4
SQH 2.42252072 × 107 24.8609 496.5655 63.4589 10 1.7
IPOPT 2.42252099 × 107 24.6910 488.7144 63.7676 10 70

19
ACSD 2.39545712 × 107 19.1978 235.3552 62.2380 10 6.4
SQH 2.39545712 × 107 19.1978 235.3557 62.2379 10 2.5
IPOPT 2.39545728 × 107 19.0982 234.8001 62.2726 10 13.2

20
ACSD 2.41563291 × 107 21.2859 295.4723 63.1083 10 5.9
SQH 2.41563291 × 107 21.2859 295.4725 63.1083 10 2.3
IPOPT 2.41563311 × 107 21.1768 294.8252 63.1469 10 12

21
ACSD 2.44238229 × 107 23.7813 351.1526 63.8398 10 7
SQH 2.44238229 × 107 23.7812 351.1491 63.8399 10 2.7
IPOPT 2.44238254 × 107 23.6602 350.3479 63.8816 10 24.5

16 Journal of Mathematics



zero, then the IPOPT-AMPL encounters “cannot
compute 0/0” error. Tis error is due to checking all
grid points for the optimal value of NLP. Another
disadvantage of the AMPL-IPOPTmethod is that it
encounters a “slack too small” error when applied to
dynamical systems 4, 5, 6, 11, and 12 with objective
function in Example 2.Tus, there are limitations in
the AMPL-IPOPT implementation, making it un-
suitable for solving many optimal control problems,
which has been confrmed and further analyzed
in [59].

(iii) Te Armijo conjugate steepest descent method al-
most provides a better solution for optimal control
problems compared to the other two methods.

5.3. Treatment Strategy. Upon comparing the numerical
results presented in Examples 1 and 2 to investigate the
treatment strategies, one can conclude the following (see
Tables 2 and 3).

“In the treatment strategy for reducing the cancer cell
volume during treatment, a large amount of anti-angiogenic
drug is used compared to the other treatment strategy.
However, this strategy does not show a signifcant change in
the reduction of tumor and vascular carrying capacity
volumes. Additionally, the use of an anti-angiogenic drug
with a bang-bang property contradicts the low-dose and
continuous treatment approach for each of the selected
dynamical systems (13, 19, 20, and 21) (see Figure 3(c)).
Consequently, the administration of high doses of anti-
angiogenic drug comes with its own side efects [60],
which can be clinically harmful. However, if it is necessary to
reduce the vascular carrying capacity volume, one can
consider adopting the treatment strategy of decreasing tu-
mor volume during treatment by using a higher dosage of
anti-angiogenic drugs, while also accepting its associated
side efects. By implementing this strategy, the probability of
tumor growth after the treatment signifcantly decreases. On
the other hand, for optimal control problems with dy-
namical system 19, the tumor volume at the fnal time
reaches levels between 19 and 22, while the carrying capacity
volume at the fnal time reaches levels between 235 and 240,
indicating strong medical sense.”

6. Conclusion

In this paper, cancer therapy with anti-angiogenic and ra-
diotherapy treatments is discussed. Te general dynamical
system (15) is proposed. Te hybrid indirect solver is pro-
posed which successfully solves the related optimal control
problems (33). Mathematically, the existence and unique-
ness of the solution, as well as the convergence of the hybrid
indirect method, were proven. Te fndings of this paper are
as follows:

(a) Te low-cost treatments can be employed, where
tumor volume plays a crucial role in the stimulation
efect.

(b) Te application of high-cost treatments can be
justifed when tumor volume signifcantly infuences
the inhibitory efect.

(c) Ofer to physicians and scientists: among the
available options, there is at least one dynamical
system that demonstrates lower costs, reduced tu-
mor and carrying capacity volumes at the fnal time
of treatment, and a lower total dose of the anti-
angiogenic agent compared to the other dynamical
systems.

(d) Te Armijo conjugate steepest descent method al-
most ofers a better solution for optimal control
problems compared to the IPOPT-AMPL and SQH
methods.

(e) Comparison of two treatment strategies (see Ex-
amples 1 and 2) makes it clear that the medical
experts can use diferent strategies based on the
situation and weights that they put on the way of the
treatment.

In the next future work, we will mathematically present
the reasons behind the resistance observed in reducing the
carrying capacity of blood vessels when increasing the use of
anti-angiogenic drugs.
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