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In this paper, we studied a zero-sum game described by the partial diferential equations as an application on Coronavirus. Te
game contains two players, player 1 is Coronavirus and player 2 is the population. We used∞-Laplacian which is denoted by ∆∞.
We added the time variable to the partial diferential equation to see the behaviour of the spreading of Coronavirus. We used
analytical methods, the Homotopy PerturbationMethod and New Iterative Method, for solving the partial diferential equation. A
comparison between the two methods to the residual error is made. We showed in the graph the decreasing of spreading for
Coronavirus with increasing the area with the time.

1. Introduction

Te partial diferential equations are one of the important
branches ofmathematics as it servesmany felds and it contains
applications such as physical problems, fuid fow, elasticity,
electrodynamics, and game theory [1, 2]. Blanc and Rossi in [3]
illustrate the strong and important relationship between
nonlinear second-order partial diferential equations and the
game theory; there are many applications in the game theory
via nonlinear second-order partial diferential equations.

A game is called zero-sum game if and only if the sum of
all payofs is zero when the game contains more than two
players. A zero-sum game is one type of the game theory in
which one player’s gain is equivalent to another’s loss in case
of two players, i.e., the frst player has a payof and the
second player has necessarily the negative payof of the frst
player. It is easy to see that the second player gives this
amount to the frst player; therefore, the net change in
beneft equals zero [4, 5]. Tere are many examples of zero-
sum games, such as poker, gambling, chess, tennis, tug of
wars, and fnancial markets. Megahed et al. used a min-max
zero-sum diferential game approach as an optimization
method in counter terrorism [6].

Just as game theory is important in the economic as-
pect, it has an equally important role in the medical aspect,
such as cancer and Covid-19. In [7], Kareva and Karev
applied the study of single games to cancer. Tey dem-
onstrated games between tumor and treatment depending
on metabolism and development of resistance. Kabir and
Tanimoto performed the behavioural dynamics of the
economic shutdowns and immunization in COVID-19
pandemic [8].

Also, the COVID-19 pandemic is known as the Coro-
navirus pandemic. Coronavirus is a dangerous disease, and
the entire world sufers from this virus till now. Te novel
virus was frst identifed from an outbreak inWuhan, China,
in December 2019. Tey failed to contain it, allowing the
virus to spread to other areas of China and later worldwide.
Te World Health Organization (WHO) declared the out-
break a public health emergency of international concern on
30 January 2020 and a pandemic on 11 March 2020. As of 3
October 2022, the pandemic had caused more than 618
million cases and 6.54 million confrmed deaths, making it
one of the deadliest in history. Watson et al. demonstrated
a mathematical modelling for global impact of the frst year
of COVID-19 vaccination [9].
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In this work, we are studying a diferential game related
to Coronavirus, and we consider a min-max diferential
game between Coronavirus and population. In our problem,
Coronavirus is player 1; this virus tries adapting to the
existing environment, and it wants to spread rapidly and
resists vaccines andmutates. Population is player 2; they take
the necessary precautionary measures and have to eat
healthy and varied meals and not go to the crowded places to
avoid the infection. Player 1 wants to maximize its outcome
by rapid spreading and player 2 wants to minimize player 1’s
outcome by avoiding the infection.

We used ∞-Laplacian, which is denoted by ∆∞. It is
a nonlinear elliptic operator defned by ∆∞u � i,juxi

uxj

uxixj
� 0. Blanc and Rossi in [3] apply the infnity Laplacian

in one dimension; in this paper, we added the time variable
to the equation for showing the behaviour of the spreading
of the disease with the time.

In this paper, the rest of it is organized as follows: the
description of the problem is explained in Section 2. Section 3
contains the analytical methods we used in solving the partial
diferential equation (the Homotopy Perturbation Method
and the New Iterative Method).Te purpose of Section 4 is to
make sure that the approximate solutions of the two methods
are accurate by fnding the residual error to the two methods.
Finally, the conclusion is given in Section 5.

2. Description of the Problem

Amin-max game is a two-person zero-sum gamewhere every
player plays against the other and the total earnings of one of
the both players are the losses of the other. Player 1 wants to
maximize his objective, while the other player wants to
minimize player 1’s objective. In [10], Youness et al. de-
termined the analytical and approximate solution to a min-
max diferential game with Cauchy initial value problem by
using the Picard method and a suggested method. In the
following subsection, we describe the problem.

Consider the domainΩ⊆R, with the initial time t0, and the
game starts at x0 (initial place), if player 1 succeeded in
spreading, then player 1 is the winner, so the gamewill continue
from another place and so on. Te winner will obtain u(xi, t)

and player 2 will obtain −u(xi, t), u: R × [0, T]⟶ R.
Now, consider the nonlinear elliptic partial diferential

equation as follows:

zu

zt
�

zu

zx
 

2
z
2
u

zx
2 , (1)

with the boundary conditions

u(0, t) � 0, u(100, t) � 3.7 × 10− 44
, t ∈ [0, 0.1], (2)

and the initial condition

u(x, 0) � e
− x

, 0≤x≤ 100, (3)

where u(x, t) refers to the disease spreading (the number of
people infected with the disease). Here, x is the area where
the disease wants to spread and also where people go to for

keeping themselves safe from infection. Te strategy in our
problem is choosing the right place for both the players. Te
units of the area and the time of spreading, respectively, are
Km2 and a decade for t � 1.

3. Analytical Methods for Solving the Problem

In this section, we discuss the homotopy pertubation method
and new iterative method for solving problems (1)–(3).

3.1. Homotopy Perturbation Method (HPM). To explain the
basic ideas of the homotopy perturbation method [11, 12],
we consider the following equation:

A(u) − f(r) � 0, r ∈ Ω, (4)

with the boundary condition

B u,
zu

zn
 , r ∈ Γ, (5)

where A is the general diferential operator, B is the boundary
operator, f(r) is the analytical function, and Γ is the
boundary of the domain Ω. Te operator A can be divided
into two parts, L andN, where L is the linear part andN is the
nonlinear part. Hence, (4) can be rewritten as follows:

L(u) + N(u) − f(r) � 0, r ∈ Ω. (6)

Te homotopy perturbation structure is shown as
follows:

H(υ, p) � (1 − p) L(υ) − L u0(   + p[A(υ) − f(r)] � 0.

(7)

In (7), p ∈ [0, 1] is an embedding parameter and is the
frst approximation that satisfes the boundary conditions.
We assume that the solution of (7) can be written as a power
series of p:

υ � υ0 + pυ1 + p
2υ2 + . . . , (8)

and the best approximation will be

u � lim
p⟶1

υ � υ0 + υ1 + υ2 + . . . . (9)

In [13], Hemeda found the exact solutions for linear
(nonlinear) ordinary (partial) diferential equations of frac-
tional order applied in fuid mechanics by using the modifed
homotopy perturbation method.

Consider the nonlinear homogeneous partial diferential
equation as follows:
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2 , (10)

with the boundary conditions

u(0, t) � 0, u(100, t) � 3.7 × 10− 44
, t ∈ [0, 0.1], (11)

and the initial condition
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u(x, 0) � e
− x

, 0≤ x≤ 100. (12) Suppose that u∗0 � u(x, 0) � e− x, by substituting (10)
into (7), we have
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3
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(13)

We have a system of (n + 1) equations which is si-
multaneously solved, and n is the order of p in (8). Assuming
n � 3, after comparing the coefcients of p to the previous
equation, the system will be written as follows:
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(14)

By solving these diferential equations, we have

u0(x, t) � e
− x

,

u1(x, t) � e
− 3x

t,

u2(x, t) �
15
2

e
− 5x

t
2
,

u3(x, t) �
217
2

e
− 7x

t
3
.

(15)

Te approximate solution of equations (10)–(12) can be
obtained by putting

u(x, t) � 
∞

n�0
un, (16)

so we have

u(x, t) � e
− x

+ e
− 3x

t +
15
2

e
− 5x

t
2

+
217
2

e
− 7x

t
3
, (17)

where u(x, t) is the spreading of Coronavirus at t ∈ [0, 0.1]

and x ∈ [0, 100].

To explain the efect of the spreading of Coronavirus on
the population with respect to the time and the area, we have
to show Figures 1–5.

In Figure 1, we show the relation between the spreading
of Coronavirus and the region where we study the spreading
of the disease in it. We found from the fgure that the
spreading decreases with increasing the region. Te larger
the area, the less crowding and gatherings, so the spreading
will decrease with the adoption of precautionary measures
such as wearing a mask, not being in crowded places, and
using disinfectant in a continuous way to reduce the
spreading of infection.

In Figure 2, we put x� 20 and drew the relation between
the spreading of the disease and the time of spreading, and we
found that the spreading is constant with passing the time.
Tis means that there are deaths, new cases resulting from the
infection, and cases whose immunity resists the disease.

In Figure 3, at x� 50, we show the relation between the
spreading of the disease and the time of spreading, and we
found that the spreading is constant with time. Tere is
a good chance in the graph that the spreading decreased
signifcantly with increasing the region; this means that the
deaths and the cases decreased.
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Te beneft of vaccines and their efect on the virus is
shown in Figure 4 because the spreading has almost van-
ished, as shown in the fgure. By increasing the area, the
spreading became very weak. Even in the existence of the
disease, the immunity became stronger to attack it and the
disease became like a normal fu.

In Figure 5, we show the relation between the spreading
of the disease, the area where the disease spreads, and the
time period of spreading. We found that the spreading
gradually decreases with passing time and increasing the
area, which means that precautionary measures and vac-
cinations have reduced the disease and its stability at

certain times due to vaccinations. Despite the presence of
the disease, there is no danger from it because it has become
like a normal fu.

Te results in Figures 2–4 are shown in Table 1 in details at
three values of x and diferent times. We found from Table 1
that the spreading of the disease decreased with increasing the
area x.

3.2. New Iterative Method (NIM). For the main idea of the
new iterative method [14–17], we consider the following
general functional equation:

u(x) � f(x) + N(u(x)), (18)

where N is a nonlinear operator from a Banach space
B⟶ B and f is a known function. We want to fnd
a solution of (10) using the series form

u(x) � 
∞

i�0
ui(x). (19)

Te nonlinear operator N can be written as follows:

N 
∞

i�0
ui

⎛⎝ ⎞⎠ � N u0(  + 
∞

i�1
N 

i

j�0
uj

⎛⎝ ⎞⎠ − N 
i−1

j�0
uj

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.

(20)
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Figure 1: Te relation between u and x.
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4 Journal of Mathematics



From (19) and (20), (18) is equivalent to



∞
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ui � f + N u0(  + 
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j�0
uj

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.

(21)

We can obtain the solution u(t) from the following
recurrence relation:

u0 � f,

u1 � N u0( ,

ur+1 � N 

r

i�0
ui

⎛⎝ ⎞⎠ − N 

r−1

i�0
ui

⎛⎝ ⎞⎠, r � 1, 2, . . . .

(22)

Te approximations will be written as follows:

u0 � f,

u1 � N u0( ,

u2 � N u0 + u1(  − N u0( ,

u3 � N u0 + u1 + u2(  − N u0 + u1( ,

⋮

(23)

and so on.
Ten, 

r+1
i�1 ui � N(

r
i�0ui), r � 0, 1, 2, . . ., and



∞

i�0
ui � f + N 

∞

i�0
ui . (24)

Te nth term approximate solution of (18) is given by


n−1
i�0 ui.
Te convergence of NIM has been proved in [16, 17].
Consider the nonlinear homogeneous partial diferential

equations (10)–(12).
According to equation (18), we found that equations

(10)–(12) are equivalent to the integral equation:

u(x, t) � u(x, 0) + 
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By applying NIM to equation (25), we obtain
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Table 1: Comparison table among Figures 2–4.

x � 20 x � 50 x � 100
t � 0.02 u � 2.06 × 10− 9 u � 1.93 × 10− 22 u � 3.72 × 10− 44

t � 0.04 u � 2.06 × 10− 9 u � 1.93 × 10− 22 u � 3.72 × 10− 44

t � 0.06 u � 2.06 × 10− 9 u � 1.93 × 10− 22 u � 3.72 × 10− 44

t � 0.08 u � 2.06 × 10− 9 u � 1.93 × 10− 22 u � 3.72 × 10− 44

t � 0.1 u � 2.06 × 10− 9 u � 1.93 × 10− 22 u � 3.72 × 10− 44
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Te 3-term approximate solution for equations (10)–(12)
is
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(27)

In Figure 6, we explain the relation between the spreading
of the Coronavirus u, the area where the disease spreads in x,
and the time period of spreading t. We found that the
spreading decreases with increasing the area and the time.

4. Results

In Figures 7 and 8, we show the residual error of the ap-
proximate solutions of the HPM and NIM.
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Figure 6: Te relation between u, x, and t.
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Figure 7: Residual error of the approximate solution of HPM.
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After calculating the residual error for the two methods
HPM and NIM, we found that it is too small and the residual
error for the two methods is the same as shown in Table 2.

In Table 2, we present the residual error for the two
approximate solutions solved by HPM and NIM.

 . Conclusion

In this paper, we were concerned with a zero-sum game
which is applied on Coronavirus, which is described by the
partial diferential equations, and we solved this problem
by using HPM and NIM. Also, we made a comparison
between the two methods with respect to the residual error,
and we found that the residual error is very small and this is
good for solution accuracy and this means that the two
methods are successful for fnding the solution. Finally, we
showed in the fgures the decreasing of spreading for
Coronavirus with increasing the area by passing the time.
Te graphs showed the importance of spacing between
people to reduce the chances of infection, as well as all
precautionary measures such as wearing a mask and
spraying sterilizers. Here, the important and main role of
vaccines comes, which is considered to be a very large
percentage that made the presence of the virus not scary
because it made the virus look like a normal fu, which
reduced the risk to most people.
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