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Tis paper is devoted to present a numerical scheme based on operational matrices to compute approximate solutions to
fractional-order boundary value problems. For the mentioned operational matrices, we utilize fractional-order Bernoulli
polynomials. Since fractional-order problems are usually difcult to treat for their corresponding analytical or exact solutions,
therefore, we need sophisticated methods to fnd their best numerical solutions.Te presented numerical scheme has the ability to
reduce the proposed problem to the corresponding algebraic equations.Te obtained algebraic equations are then solved by using
the computational software MATLAB for the corresponding numerical results. Te used method has the ability to save much
more time and also is reliable to secure the proper amount of memory. Several examples are solved by using the considered
method. Also, the solutions are compared with their exact solution graphically. In addition, the absolute errors for diferent scale
values are presented graphically. In addition, we compare our results with the results of the shifted Legendre polynomials spectral
method.

1. Introduction

Newton and Leibnitz in the seventeenth century established
the theory of calculus. Te notations of derivatives and
integrals we use today have been introduced by Leibnitz.
Later on, the concept of derivative and integral was extended
from integer to any real order. First time in 1819, Lacroix
gave the concept of noninteger order derivative [1]. Te very
frst application was investigated by Abel in 1823 [1].
Terefore, Fourier, Liouville, Riemann, Grünwald, and
Letnikov [2, 3] gave tremendous attention to the said area.
Arbitrary order diferentiation and integration provide
a generalization to the classical order but fractional-order
diferentiation and integration do have not unique defni-
tions. Terefore, various researchers have introduced vari-
ous defnitions of arbitrary order derivatives and
integrations. Among all these, the defnitions of Caputo and
Riemann–Liouville are extensively applicable.

Te researchers have investigated that almost every
model of physics and biology consists of arbitrary order
derivatives. Fractional-order diferential equations (FODEs)
are widely used in various felds of science and technology
[4–6] and [7]. Furthermore, various properties of numerous
materials such as hereditary properties are described by
FODEs. Terefore, the signifcance of FODEs has appealed
to researchers for further development in the theory. Tere
are many areas in the theory of FODEs, one of them being
the study of the numerical approach of fractional-order
initial value problems (FOIVPs) and fractional-order
boundary value problems (FOBVPs). It has been observed
that the initial and boundary value problems with ordinary
derivatives have been greatly worked on by the researchers
but FOIVPs and FOBVPs are in their beginning stages and
need proper further exploration. Here, we remark that the
aforementioned area has signifcant applications in various
other areas. For instance, the author of [8] studied nonlocal
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kinetics using fractional calculus applications. In addition,
researchers [9] investigated a blood therapy model using the
concept of new fractional diferential operators very re-
cently. Te mentioned operators have been used to evaluate
the difusion process in [10]. Recently, two diferent dy-
namical systems of prey-predator and infectious diseases
were studied using FODEs in [11].

Te analytical solutions of most of the FODEs cannot be
found because of the complexity of fractional order.
Terefore, approximate analytical or numerical solutions are
obtained for the said area. For this purpose, various ana-
lytical and numerical methods have emerged, for instance,
eigenvector procedure [12], perturbation tools [13], iteration
techniques [14], and transform methods [15]. Authors
studied numerically discrete-time prey-predator model and
SIR-type model by using concepts of fractional calculus in
[16] and [17]. Authors [18] used the diferential transform
method to study some systems of FODEs. Authors used
decomposition schemes to compute approximate solutions
of some problems in [19]. Te fnite diference method has
been applied in [20]. Also, the Tau method has been applied
in [21] and [22]. Collocation techniques have also been
utilized in [23]. Wavelet analysis [24] has been used for
numerical results increasingly. Recently, authors studied the
time-fractional model of generalized Couette fow of couple
stress nanofuid with heat and mass transfer in [25]. Authors
[26] studied fractional-order Caudrey–Dodd–Gibbon
equations by using an integral transform. In addition, re-
searchers [27] computed the approximate solution to wave-
like equations. Additionally, authors [28] computed an
approximate solution of the Noyes-feld model for the time-
fractional Belousov–Zhabotinsky reaction. In the same way,

authors [29] have used the transform method to study
fractional-order Swift–Hohenberg equations.

Here, we remark that spectral methods based on the
operational matrices (OMs) for various orthogonal poly-
nomials such as Jacobi, Legendre, and Laguerre have been
developed for solving FODEs numerically [30]. Te said
OMs have been constructed from the mentioned poly-
nomials by the techniques of discretization which occupies
extra memory and consumes much time. Furthermore, the
aforesaid methods have been applied to FOIVPs in a variety
of cases. However, FOBVPs are very rarely investigated. To
deal with boundary value problems, some extra operations
are needed. For this purpose, we establish a numerical al-
gorithm based on OMs for Bernoulli functions which are not
orthogonal. We construct the said OMs through Bernoulli
functions without discretization to save memory and time.
By using these OMs, we establish a numerical algorithm to
fnd the numerical solution for the considered problems. A
new operational matrix corresponding to boundary con-
ditions has also been obtained.

Inspired by the above discussion, we consider the given
class of FOBVPs [31] under the fractional order described by
1< ]≤ 2, 0< ]1 ≤ 1 as

D]
U(x) � k1D

]1U(x) + k2U(x)+f(x), k1, k2∈ R, x ∈ [0, 1],

U(x)|x�0 � u0, U(x)|x�1 � u1, u0, u1∈ R,


(1)

where k1, k2 are real constants and f ∈ C(I, R) is a source
function with I � [0, 1].

In addition, we also extend the aforementioned scheme
for the coupled system of FOBVPs as described by

D]
U(x) � k1D

]1U(x) + k2D
]2V(x) + k3U(x) + k4V(x) + f(x), x ∈ [0, 1],

Dω
V(x) � m1D

ω1U(x) + m2D
ω2V(x) + m3U(x) + m4V(x) + g(x), x ∈ [0, 1],

 (2)

with BCs given by

U(x)|x�0 � u0, U(x)|x�1 � u1,

V(x)|x�0 � v0, V(x)|x�1 � v1.
(3)

where the fractional orders are described by 1< ],

ω≤ 2, 0< ]1, ]2,ω1,ω2 ≤ 1. Furthermore, f, g: [0, 1]⟶ R

are linear continuous source functions, and u0, u1, v0, v1∈ R,
ki, mi(i � 1, 2) are any real constants. Here, we frst establish
the mentioned operational matrices by using Bernoulli
polynomials. By using these OMs, we convert the considered
system of FODEs to Sylvester-type equations given by

A1X + XB1 � C1,

A2X + XB2 � C2,
(4)

where the notions A1, A2, B1, B2, C1, C2 represent matrices
and X is an unknown matrix to be computed. We solve the
obtained equation (4) for unknown matrix X by using
computational software like MATLAB.

Here, we demonstrate some novelty of our work.
Boundary value problems (BVPs) constitute a very impor-
tant branch of applied analysis because many engineering
and physical problems to understand real-world procedures
or phenomena are devoted to BVPs. Te concerned branch
when studied under the fractional-order derivatives and
integrals sense further enhances this feld of study, as many
real-world processes involve short or long nature memory
efects which cannot be detected through applications of
ordinary derivatives. Hence, with the help of fractional-
order derivatives, we can explain long- and short-memory
efects more clearly for best use in the area of engineering
and physical sciences. Furthermore, fnding the exact so-
lutions to fractional-order boundary value problems is a very
tedious job and cannot be achieved in a simple way.
Terefore, various numerical techniques have been de-
veloped to treat such problems. Among the available nu-
merical methods, spectral numerical schemes based on OMs
are powerful techniques. However, the operational matrices
when established by using the discretization technique
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utilize more memory and time-consuming process. Tere-
fore, omitting the discretization and obtaining the required
matrices are our goal. In this work, we have utilized Ber-
noulli polynomials a powerful tool to establish operational
matrices of fractional-order integration and diferentiation.
Te concerned matrices convert the considered FODE to an
algebraic equation of Sylvester-type matrix equation. Te
obtained matrix equation is then solved by the use of the
Gauss elimination procedure using computational software
like MATLAB or Mathematica. In this way, we obtain the
numerical scheme which needs no discretization as earlier
used in research. Furthermore, the proposed polynomials
have the ability to produce more accurate results than
wavelet and other diferent methods. Here, it is interesting
that in the last few years, spectral methods have been used
very well for diferent problems of FODEs. For some more
frequent works, we refer to [32–36] and [37]. Here, re-
searchers have used optimal control and Bernstein and
Legendre polynomials to study various problems of FODEs.
Result devoted to stability has also been deduced by fol-
lowing the methodology of [38].

Te rest of the work of this article is organized as follows.
In Section 2, we provide some necessary defnitions from the
fundamental theory of calculus and FOBPs required in the
subsequent development. Te function approximation
procedure and the OMs of fractional integration and dif-
ferentiation are given in Section 3. Also, in the same Section
3, we give new OM corresponding to BCs. Section 4 is
devoted to the establishment of numerical algorithms for the
solutions of FOBVPS and coupled system FOBVPS. Part 5 is
related to investigating the convergency of the proposed
method. In Section 6, the proposed method is applied to
various examples, and the concerned numerical results are
presented through graphs. Also, the exact and numerical
solutions are compared in the same Section 6. Te last
Section 7 is devoted to the conclusion of this article 7.

2. Preliminaries

Here, we give some important defnitions from the basic
fractional calculus theory and Bernoulli polynomials nec-
essary for the subsequent development.

Defnition 1. Te Riemann–Liouville’s arbitrary order in-
tegral operator is defned by [32].

I]y(t) �
1
Γ(])


t

0
(t − s)

]−1
y(s)ds, t> 0. (5)

For k1, k2 ∈ R and any arbitrary order ], ]1, ]2 and
α> − 1, the following properties are satisfed [32, 33]:

(i) I](k1y1(t) + k2y2(t)) � k1I]y1(t) + k2I]y2(t)

(ii) I]1I]2 � I]1+]2y(t)

(iii) I]1I]2y(t) � I]2I]1y(t)

(iv) I]tα � Γ(α + 1)/Γ(α + 1 + ])tα+]

Defnition 2. Te Caputo’s arbitrary order derivative is
defned by [32]

D]
y(t) �

1
Γ(n − ])


t

0

y
(n)

(s)

(t − s)
]−n+1 ds, n − 1< ]≤ n, t> 0,

where n � ]⌈ ⌉ + 1.

(6)

Te given properties are satisfed by Caputo’s arbitrary
order derivative (details can be seen in [32, 33]).

(i) D]I]y(t) � y(t)

(ii) I]D]y(t) � y(t) − 
m−1
i�0 y(i)(0)ti/i!

(iii) D]tα � 0, α< ],

Γ(α + 1)/Γ(α + 1 − ])t
α− ]

, elsewhere

(iv) D]c � 0
(v) D](k1y1(t) + k2y2(t)) � k1D]y1(t) + k2D]y2(t)

where c, k1, k2 are constants.

2.1. Te Fractional-Order Bernoulli Polynomials. In this
section, we defne FOBPs and provide some of their
properties.

Te FOBPs Bα
n(x) are defned on [0, 1] in [35] as

B
α
n(x) � 

n

j�0

n

j
 B

α
n−jx

jα
, x ∈ [0, 1], (7)

where Bα
j � Bα

j (0) � Bj, j � 0, 1, 2, . . . , n are Bernoulli
constants. Tus, the frst four FOBPs are

B
α
0(x) � 1,

B
α
1(x) � x

α
−
1
2
,

B
α
2(x) � x

2α
− x

α
+
1
6
,

B
α
3(x) � x

3α
−
3
2
x
2α

+
1
2
x
α
.

(8)

Te fractional-order Bernoulli polynomials of order nα
in the determinant form are defned by
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B
α
0(x) � 1,

B
α
n(x) �

(−1)
n

(n − 1)!

1 x
α

x
2α

x
3α

· · · x
(n−1)α

x
nα

1
1
2

1
3

1
4

· · ·
1
n

1
n + 1

0 1 1 1 · · · 1 1

0 0 2 3 · · · n − 1 n

0 0 0

3

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ · · ·

n − 1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 0 · · ·

n − 1

n − 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n

n − 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠





, (9)

for each n � 1, 2, 3, . . ..
According to [30], FOBPs constitute a complete basis on

[0, 1]. Also, FOBPs have the following property [35]:


1

0
B
α
n(x)B

α
m(x)x

α− 1dx �
1
α

(−1)
n− 1 m!n!

(m + n)!
Bm+n, m, n≥ 1.

(10)

3. Function Approximation

In this section, we give the procedure for how to approxi-
mate a function in terms of FOBPs. Here, we defne I �

y: 0≤y≤ 1  and L2(I) � g: I⟶ Rg ismeasurable,

and ‖g‖2 <∞}, where

‖g‖2 � 
1

0
|g(x)|

2dx 

1/2

. (11)

Now, suppose that

B
α
0(x), B

α
1(x), B

α
2(x), · · · , B

α
m(x)  ⊂ L

2
(I), m ∈W, (12)

is the set of FOBPs and

Zm � Span B
α
0(x), B

α
1(x), B

α
2(x), · · · , B

α
m(x) . (13)

Here, Zm is fnite-dimensional and closed vector space.
So, every element g of L2(I) has a unique best approxi-
mation g0 out of Zm, such that

∀z ∈Zm, g − g0
����

����≤ ‖g − z‖, (14)

which can be written as

<g − g0, z> � 0, ∀z ∈Zm, (15)

where 〈, 〉 stands for inner product. Now, as g0 ∈ Zm, the
unique coefcients c0, c1, c2, . . . , cm are exist such that

f(x)≃f0(x) � 
m

i�0
ciB

α
i (x) � C

T
M×1B

α
M×1(x), (16)

where M � m + 1, CM×1 is the coefcients matrix and
Bα

M×1(x) is fractional-order Bernoulli functions vector given
by

CM×1 �

c0

c1

⋮

cm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B
α
M×1(x) �

B
α
0(x)

B
α
1(x)

⋮

B
α
m(x)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(17)

For evaluating CM×1, consider

fj � <f, B
α
j> � 

1

0
f(x)B

α
j (x)x

α−1dx. (18)

Using (11), we get
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fj � 
m

i�0
ci 

1

0
B
α
i (x)B

α
j (x)x

α−1dx

� 
m

i�0
cid

α
ij, j � 0, 1, 2, . . . , m,

(19)

where

d
α
ij � 

1

0
B
α
i (x)B

α
j (x)x

α− 1dx, i � j � 0, 1, 2, . . . , m. (20)

Tis implies that

fj � C
T
M×1 d

α
0j, d

α
1j, d

α
2j, . . . , d

α
mj 

T
, j � 0, 1, 2, . . . , m,

(21)

which gives

F
T
M×1 � C

T
M×1D

α
M×M, (22)

where

F
T
M×1 �

f0

f1

⋮

fm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

D
α
M×M � d

α
ij  �

d
α
00 d

α
01 · · · d

α
0m

d
α
10 d

α
11 · · · d

α
1m

⋮ ⋮ · · · ⋮

d
α
m0 d

α
m1 · · · d

α
mm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(23)

where

d
α
ij � 

1

0
B
α
i (x)B

α
j (x)x

α− 1dx

�
1
α

(−1)
i− 1 j!i!

(j + i)!
Bj+i, i, j≥ 1.

(24)

3.1. Derivation of OMs. Here, in this section, we derive
Bernoulli-type OMs of fractional-order integration and
diferentiation. Moreover, we construct a new OM corre-
sponding to some boundary value.

Theorem 3. Let Bα
M×1(x) be the fractional-order Bernoulli

functions vector, then

I]Bα
M×1(x) � P

(],α)
M×MB

α
M×1(x), (25)

where P
(],α)
M×M is given by

P
(],α)
M×M �

ω(],α)
0,0,0 ω(],α)

0,1,0 · · · ω(],α)
0,m,0



1

r�0
ω(],α)
1,0,r 

1

r�0
ω(],α)
1,1,r · · · 

1

r�0
ω(],α)
1,m,r

⋮ ⋮ · · · ⋮



m

r�0
ω(],α)

m,0,r 

m

r�0
ω(],α)

m,1,r · · · 
m

r�0
ω(],α)

m,m,r

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (26)

Proof. Consider

I]Bα
i (x) � I

]


i

r�0

i

r
 B

α
i−rx

αr⎛⎝ ⎞⎠. (27)

Using the properties of the Riemann–Liouville fractional
integral operator, we have

I]Bα
i (x) � 

i

r�0

i

r

⎛⎝ ⎞⎠B
α
i−rI

]
x
αr

� 
i

r�0

i

r

⎛⎝ ⎞⎠B
α
i−r

Γ(αr + 1)

Γ(αr + 1 + ])
x
αr+]

� 
i

r�0
μ(],α)

i,r x
αr+]

, i � 0, 1, 2, . . . , m,

(28)

where

μ(],α)
i,r �

i

r

⎛⎝ ⎞⎠
Γ(αr + 1)

Γ(αr + 1 + ])
B
α
i−r. (29)

Now, we approximate xαr+] as

x
αr+]≃

m

j�0
θ(],α)

r,j B
α
j (x). (30)

Using (30) in (27), we get

I]Bα
i (x)≃

i

r�0
μ(],α)

i,r 

m

j�0
θ(],α)

r,j B
α
j (x) � 

m

j�0


i

r�0
ω(],α)

i,j,r
⎛⎝ ⎞⎠B

α
j (x),

(31)

where

ω(],α)
i,j,r � μ(],α)

i,r θ(],α)
r,j . (32)

(31) implies that

I]Bα
i (x)≃ 

i

r�0
ω(],α)

i,0,r , 
i

r�0
ω(],α)

i,1,r , . . . , 
i

r�0
ω(],α)

i,m,r
⎡⎣ ⎤⎦B

α
M×1(x), i � 0, 1, 2, . . . , m. (33)

Hence, we have
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P
(],α)
M×M �

ω(],α)
0,0,0 ω(],α)

0,1,0 · · · ω(],α)
0,m,0



1

r�0
ω(],α)
1,0,r 

1

r�0
ω(],α)
1,1,r · · · 

1

r�0
ω(],α)
1,m,r

⋮ ⋮ · · · ⋮



m

r�0
ω(],α)

m,0,r 

m

r�0
ω(],α)

m,1,r · · · 
m

r�0
ω(],α)

m,m,r

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (34)

□

Lemma 4. Let Bα
i (x) be the FOBP, then

Dω
B
α
i (x) � 0, i � 0, 1, . . . ,

ω
α

 −1,ω> 0. (35)

Proof. By applying the properties (iii − v) of Caputo arbi-
trary order diferential operator in (11), one can easily prove
the lemma. □

Theorem 5. Let Bα
M×1(x) be the FOBPs vector, then

D]
B
α
M×1(x) � D

(],α)
M×MB

α
M×1(x), (36)

where D
(],α)
M×M is given by

D
(],α)
M×M �

0 0 · · · 0

⋮ ⋮ · · · ⋮

0 0 · · · 0



⌈]/α⌉

r�⌈]/α⌉

Ω(],α)
⌈]/α⌉,0,r 

⌈]/α⌉

r�⌈]/α⌉

Ω(],α)
⌈]/α⌉,1,r · · · 

⌈]/α⌉

r�⌈]/α⌉

Ω(],α)
⌈]/α⌉,m,r

⋮ ⋮ · · · ⋮



i

r�⌈]/α⌉

Ω(],α)
i,0,r 

i

r�⌈]/α⌉

Ω(],α)
i,1,r · · · 

i

r�⌈]/α⌉

Ω(],α)
i,m,r

⋮ ⋮ · · · ⋮



m

r�⌈]/α⌉

Ω(],α)
m,0,r 

i

r�⌈]/α⌉

Ω(],α)
m,1,r · · · 

i

r�⌈]/α⌉

Ω(],α)
m,m,r

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (37)

Proof. Consider

D]
B
α
i (x) � D

]


i

r�0

i

r
 B

α
i−rx

αr⎛⎝ ⎞⎠. (38)

By applying the properties of Caputo arbitrary order
diferential operator, we have

D]
B
α
i (x) � 

i

r�0

i

r

⎛⎝ ⎞⎠B
α
i−rD

]
x
αr

� 
i

r�⌈]/α⌉

i

r

⎛⎝ ⎞⎠B
α
i−r

Γ(αr + 1)

Γ(αr + 1 − ])
x
αr− ]

� 
i

r�0
η(],α)

i,r x
αr− ]

, i �
]
α

 , . . . , m,

(39)

where

η(],α)
i,r �

i

r

⎛⎝ ⎞⎠
Γ(αr + 1)

Γ(αr + 1 − ])
B
α
i−r. (40)

Now, we approximate xαr− ] by

x
αr− ]≃

m

j�0
ϕ(],α)

r,j B
α
j (x). (41)

Using (41) in (38), we have

D]
B
α
i (x)≃ 

i

r�⌈]/α⌉

η(],α)
i,r 

m

j�0
ϕ(],α)

r,j B
α
j (x) � 

m

j�0


i

r�⌈]/α⌉

Ω(],α)
i,j,r

⎛⎝ ⎞⎠B
α
j (x), (42)

6 Journal of Mathematics



where

Ω(],α)
i,j,r � η(],α)

i,r ϕ(],α)
r,j . (43)

Equation (42) implies that

D]
B
α
i (x)≃ 

i

r�⌈]/α⌉

Ω(],α)
i,0,r , 

i

r�⌈]/α⌉

Ω(],α)
i,1,r , . . . , 

i

r�⌈]/α⌉

Ω(],α)
i,m,r

⎡⎢⎢⎣ ⎤⎥⎥⎦B
α
M×1(x), i �

]
α

 , . . . , m. (44)

Also, using Lemma 4, we get from (44)

D]
B
α
i (x) � [0, 0, 0, . . . , 0]B

α
M×1(x), i � 0, 1, . . . ,

]
α

 −1.

(45)

Hence, from (44) and (45), we have

D
(],α)
M×M �

0 0 · · · 0

⋮ ⋮ · · · ⋮

0 0 · · · 0



⌈]/α⌉

r�⌈]/α⌉

Ω(],α)
⌈]/α⌉,0,r 

⌈]/α⌉

r�⌈]/α⌉

Ω(],α)
⌈]/α⌉,1,r · · · 

⌈]/α⌉

r�⌈]/α⌉

Ω(],α)
⌈]/α⌉,m,r

⋮ ⋮ · · · ⋮



i

r�⌈]/α⌉

Ω(],α)
i,0,r 

i

r�⌈]/α⌉

Ω(],α)
i,1,r · · · 

i

r�⌈]/α⌉

Ω(],α)
i,m,r

⋮ ⋮ · · · ⋮



m

r�⌈]/α⌉

Ω(],α)
m,0,r 

i

r�⌈]/α⌉

Ω(],α)
m,1,r · · · 

i

r�⌈]/α⌉

Ω(],α)
m,m,r

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (46)

□
Theorem 6. Let Bα

M×1(x) be a FOBPs matrix and let ϕ(x) be
any function given ϕ(x) � lxn, l � 0, 1, 2, . . . , l ∈ R and
U(x) � CT

M×1B
α
M×1(x), then

ϕ(x)0I
α
1U(x) � C

T
M×1Q

(α,ϕ)

M×MB
α
M×1(x), (47)

where Q
(α,ϕ)

M×M is given by

Q
(α,ϕ)

M×M �

Φ0,0 Φ0,1 · · · Φ0,j · · · Φ0,m

Φ1,0 Φ1,1 · · · Φ1,j · · · Φ1,m

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Φi,0 Φi,1 · · · Φi,j · · · Φi,m

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Φm,0 Φm,1 · · · Φm,j · · · Φm,m

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (48)

where Φ can be calculated by using equation (38).

Proof. Consider

0I
α
1B

]
i (x) �

1
Γ(α)


1

0
(1 − t)

α−1
B
]
i (t)dt

�
1
Γ(α)


1

0
(1 − t)

α− 1


m

i�0

m

i

⎛⎝ ⎞⎠B
]
m−it

i]dt

�
1
Γ(α)



m

i�0

m

i

⎛⎝ ⎞⎠B
]
m−i 

1

0
(1 − t)

α−1
t
i]dt.

(49)

Using the well-known property of the Beta function
given by

β(a, b) � 
1

0
y

a− 1
(1 − y)

b− 1dy �
Γ(a)Γ(b)

Γ(a + b)
, (50)

in equation (47), we have
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0I
α
1B

]
i (x) � 

m

i�0

m

i

⎛⎝ ⎞⎠B
]
m−i

Γ(i] + 1)

Γ(i] + 1 + α)
� ∆i, (51)

which implies

ϕ(x)0I
α
1B

α
i (x) � ∆iϕ(x), (52)

which can be approximated in FOBPs as

∆iϕ(x) � 
m

j�0
Φi,jB

α
i (x). (53)

Hence, we have the required result. □

4. Numerical Algorithms

Here, we show the fundamental importance of OMs de-
veloped in the previous section by applying them to various
FOBVPs. For this purpose, we consider the following
two steps.

4.1. Numerical Scheme for Scaler Problem (1). Here, we de-
velop a numerical scheme for a single problem given in (1).
To obtain the solution in terms of FOBPs, we assume that

D]
U(x) � C

T
M×1B

α
M×1(x). (54)

Applying I] and property (ii) for the Caputo diferential
operator, we get from (54)

U(x) � C
T
M×1P

(],α)
M×MB

α
M×1(x) + c0 + c1x. (55)

Using the given boundary conditions, we have c0 � u0
and

c1 � u1 − u0 − C
T
M×1P

(],α)
M×MB

α
M×1(1). (56)

Putting the values of c0 and c1 in (55), one can get

U(x) � C
T
M×1P

(],α)
M×MB

α
M×1(1) + u0 + u1 − u0( x − xC

T
M×1P

(],α)
M×MB

α
M×1(1). (57)

Using the afore-established OMs, and after simplifca-
tion, we get from (57)

U(x) � C
T
M×1 P

(],α)
M×M − Q

(],ϕ)

M×M B
α
M×1(x) + F

T
M×1B

α
M×1(x),

(58)

where FT
M×1B

α
M×1(1) � u0 + (u1 − u0)x andϕ � x. Now by

applying D]1 to (58), we have

D]1U(x) � C
T
M×1 P

(],α)
M×M − Q

(],ϕ)

M×M D
]1 ,α( )

M×M B
α
M×1(x) + F

T
M×1D

]1 ,α( )
M×M B

α
M×1(x). (59)

Putting (54), (58), and (59) in (1) yields

C
T
M×1B

α
M×1(x) � k1C

T
M×1 P

(],α)
M×M − Q

(],ϕ)

M×M D
]1 ,α( )

M×M B
α
M×1(x) + k1F

T
M×1B

α
M×1(x)

+ k2C
T
M×1 P

(],α)
M×M − Q

(],ϕ)

M×M B
α
M×1(x) + k2F

T
M×1B

α
M×1(x) + G

T
M×1B

α
M×1(x),

(60)

where GT
M×1B

α
M×1(x) � f(x). After simplifcation, we obtain

C
T
M×1 − C

T
M×1 P

(],α)
M×M − Q

(],ϕ)

M×M  k1D
]1,α( )

M×M + k2IM×M  − LM×M B
α
M×1(x) � 0, (61)

where k1F
T
M×1D

(]1 ,α)
M×M + k2F

T
M×1 + GT

M×1B
α
M×1(x) � LM×M.

Equation (61) implies that
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C
T
M×1 − C

T
M×1 P

(],α)
M×M − Q

(],ϕ)

M×M  k1D
]1 ,α( )

M×M + k2IM×M 

− LM×M � 0.

(62)

Tis is a Sylvester-type equation. Calculating CM×1 from
(23) and substituting back in (20), one can have the desired
approximate solution of the given FOBVP.

4.2. Numerical Scheme for Coupled System (2) with BCs (3).
Here, we develop a numerical scheme for the computation of
an approximate solution for a coupled system (2) with BCs
(3). In this regard, we assume that

D]
U(x) � C

T
M×1B

α
M×1(x),

Dω
V(x) � E

T
M×1B

α
M×1(x).

(63)

Applying I], Iω and property (ii) for the Caputo dif-
ferential operator, we get

U(x) � C
T
M×1P

(],α)
M×MB

α
M×1(x) + c0 + c1x,

V(x) � E
T
M×1P

(ω,α)
M×MB

α
M×1(x) + d0 + d1x.

(64)

Using the given BCs, we have

c0 � u0, c1 � u1 − u0 − C
T
M×1P

(],α)
M×MB

α
M×1(1),

d0 � v0, d1 � v1 − v0 − E
T
M×1P

(ω,α)
M×MB

α
M×1(x).

(65)

Inserting (65) in (64), we obtain

U(x) � C
T
M×1P

(],α)
M×MB

α
M×1(x) + u0 + u1 − u0( x − xC

T
M×1P

(],α)
M×MB

α
M×1(1),

V(x) � E
T
M×1P

(ω,α)
M×MB

α
M×1(x) + v0 + v1 − v0( x − xE

T
M×1P

(ω,α)
M×MB

α
M×1(1).

(66)

After simplifcation of (66), we get

U(x) � C
T
M×1 P

(],α)
M×M − Q

(],ϕ)

M×M B
α
M×1(x) + F

T
M×1B

α
M×1(x),

V(x) � E
T
M×1 P

(ω,α)
M×M − Q

(ω,ϕ)

M×M B
α
M×1(x) + J

T
M×1B

α
M×1(x),

(67)

where FT
M×1B

α
M×1(x) � u0 + (u1 − u0)x, JT

M×1B
α
M×1(x) � v0 +

(v1 − v0)x andϕ � x. Now, by applying D]1 ,D]2 ,Dω1 , and
Dω2 to (67), we have

D]1U(x) � C
T
M×1 P

(],α)
M×M − Q

(],ϕ)

M×M D
]1 ,α( )

M×M B
α
M×1(x) + F

T
M×1D

]1 ,α( )
M×M B

α
M×1(x),

D]2V(x) � E
T
M×1 P

(ω,α)
M×M − Q

(ω,ϕ)

M×M D
]2 ,α( )

M×M B
α
M×1(x) + J

T
M×1D

]2 ,α( )
M×M B

α
M×1(x),

Dω1U(x) � C
T
M×1 P

(],α)
M×M − Q

(],ϕ)

M×M D
ω1 ,α( )

M×M B
α
M×1(x) + F

T
M×1D

ω1,α( )
M×M B

α
M×1(x),

Dω2V(x) � E
T
M×1 P

(ω,α)
M×M − Q

(ω,ϕ)

M×M D
ω2 ,α( )

M×M B
α
M×1(x) + J

T
M×1D

ω2 ,α( )
M×M B

α
M×1(x).

(68)

Putting (63), (66), and (68) in coupled system (2) yields

C
T
M×1B

α
M×1(x)

E
T
M×1B

α
M×1(x)

⎡⎢⎣ ⎤⎥⎦ �
k1C

T
M×1H

]1 ,α( )
M×M B

α
M×1(x)

m2E
T
M×1H

ω2 ,α( )
M×M B

α
M×1(x)

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦ +

k2E
T
M×1H

]2,α( )
M×M B

α
M×1(x)

m1C
T
M×1H

ω1 ,α( )
M×M B

α
M×1(x)

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦ +

k3C
T
M×1M

(],α)
M×MB

α
M×1(x)

m4E
T
M×1M

(ω,α)
M×MB

α
M×1(x)

⎡⎢⎢⎣ ⎤⎥⎥⎦

+
k4E

T
M×1M

(ω,α)
M×MB

α
M×1(x)

m3C
T
M×1M

(],α)
M×MB

α
M×1(x)

⎡⎢⎢⎣ ⎤⎥⎥⎦ +
F
1
M×1

√√
B
α
M×1(x)

F
2
M×1

√√
B
α
M×1(x)

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦,

(69)

where
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H
]i ,α( )

M×M � P
(],α)
M×M − Q

(],ϕ)

M×M D
]i ,α( )

M×M ; i � 1, 2,

H
ωi ,α( )

M×M � P
(ω,α)
M×M − Q

(ω,ϕ)

M×M D
ωi ,α( )

M×M ; i � 1, 2,

M
(],α)
M×M � P

(],α)
M×M − Q

(],ϕ)

M×M,

M
(ω,α)
M×M � P

(ω,α)
M×M − Q

(ω,ϕ)

M×M,

F
1
M×1

√√
� k1F

T
M×1D

]1 ,α( )
M×M + k2J

T
M×1D

]2 ,α( )
M×M + k3F

T
M×1 + k4J

T
M×1 + W

T
M×1,

F
2
M×1

√√
� m1F

T
M×1P

ω1 ,α( )
M×M + m2J

T
M×1D

ω2,α( )
M×M + m3F

T
M×1 + m4J

T
M×1 + N

T
M×1,

W
T
M×1B

α
M×1(x) � f(x),

N
T
M×1B

α
M×1(x) � g(x).

(70)

By taking transpose and rearranging the terms of (69),
we have

C
T
M×1 E

T
M×1 

B
α
M×1(x) OM

OM B
α
M×1(x)

⎡⎣ ⎤⎦

� C
T
M×1 E

T
M×1 

k1H
]1 ,α( )

M×M OM×M

OM×M m2H
ω2,α( )

M×M

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

B
α
M×1(x) OM

OM B
α
M×1(x)

⎡⎣ ⎤⎦

+ C
T
M×1 E

T
M×1 

OM×M m1H
ω1 ,α( )

M×M

k2H
]2 ,α( )

M×M OM×M

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

B
α
M×1(x) OM

OM B
α
M×1(x)

⎡⎣ ⎤⎦

+ C
T
M×1 E

T
M×1 

k3M
(],α)
M×M OM×M

OM×M m4M
(ω,α)
M×M

⎡⎢⎢⎣ ⎤⎥⎥⎦
B
α
M×1(x) OM

OM B
α
M×1(x)

⎡⎣ ⎤⎦

+ C
T
M×1 E

T
M×1 

OM×M m3M
(],α)
M×M

k4M
(ω,α)
M×M OM×M

⎡⎢⎢⎣ ⎤⎥⎥⎦
B
α
M×1(x) OM

OM B
α
M×1(x)

⎡⎣ ⎤⎦

+ F
1
M×1

√√
F
2
M×1

√√
 

B
α
M×1(x) OM

OM B
α
M×1(x)

⎡⎣ ⎤⎦,

(71)

where OM×M and OM are zero matrix and zero vector, re-
spectively. By simplifcation, (71) can be written as

C
T
M×1 E

T
M×1  − C

T
M×1 E

T
M×1 

k1H
]1 ,α( )

M×M + k3M
(],α)
M×M m1H

ω1 ,α( )
M×M + m3M

]1 ,α( )
M×M

k2H
]2 ,α( )

M×M + k4M
(ω,α)
M×M m2H

ω2 ,α( )
M×M + m4M

(],α)
M×M

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦ − F

1
M×1

√√
F
2
M×1

√√
  � 0. (72)

Tis is a system of Sylvester-type equations. Calculating
the matrices CT

M×1 and ET
M×1 from (72) and substituting back

in (67), one can obtain the desired solution.
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5. Convergence Analysis

Here, we discuss the convergence of the proposed method
developed above. For this purpose, we provide the following
theorems to show that the error matrices E(],α)

I and E(],α)
D

getting smaller and smaller as we increase the number of
FOBPs.

Theorem 7. Let V⊆H be a closed subspace of H.space H
with fnite dimension and S � v1, v2, v3, . . . , vn  form basis
for V. Let h ∈ H and h have the unique best approximation v∗

in V.

Ten,

h − v
∗����
����
2
2 �

G h, v1, v2, . . . , vn( 

G v1, v2, v3, . . . , vn( 
, (73)

where

G h, v1, v2, . . . , vn(  �

<h, h> <h, v1> · · · <h, vn>

<v1, h> <v1, v1> · · · <v1, vn>

⋮ ⋮ · · · ⋮

<vn, h> <vn, v1> · · · <vn, vn>





.

(74)

Proof. Te proof is given in [30]. □

Theorem 8. Let Dlαg be a continuous real-valued function
defned on [0, 1], where l � 0, 1, 2, . . . , n and Zn � Span
Bα
0(x), Bα

1(x), . . . , Bα
n(x) . Let g is approximated by gn ∈ Zn

as

g(x)≃gn(x) � 
n

i�0
ciB

α
i (x) � C

T
M×1B

α
M×1(x),

Kn(g) � 
1

0
g(x) − gn(x) 

2dx
.

(75)

Ten, we have

lim
n⟶∞

Kn(g) � 0. (76)

Proof. Te proof is given in [35]. □

Theorem 9. Te error matrix E(],α)
I of OM P(],α) defned by

E(],α)
I � P

(],α)
B
α
M×1(x) − I]Bα

M×1(x),E(],α)
I �

e(],α)
I0

e(],α)
I1

⋮

e(],α)
In

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(77)

is bounded by the following inequality:

e(],α)
Ii

�����

�����2
≤ 

i

r�0

i

r

⎛⎝ ⎞⎠
Γ(αr + 1)

Γ(αr + 1 + ])
B
α
i−r

G xαr+], Bα
0(x), Bα

1(x), . . . , Bα
n(x)( 

G Bα
0(x), Bα

1(x), . . . , Bα
n(x)( 

 

1/2

, 0≤ i≤ n, (78)

where

x
αr+]≃

m

j�0
θ(],α)

r,j B
α
j (x). (79)

Proof. It has been proved in [35]. □

Theorem 10. Te error matrix E(],α)
D of the OM D(],α) given

by

E(],α)
D � D

(],α)
B
α
M×1(x) − D]

B
α
M×1(x), E(],α)

D �

e(],α)
D0

e(],α)
D1

⋮

e(],α)
Dn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(80)

is bounded by the following inequality:

e(],α)
Di

�����

�����2
≤ 

i

r�⌈v/α⌉

i

r

⎛⎝ ⎞⎠
Γ(αr + 1)

Γ(αr + 1 − ])
B
α
i−r

G xαr− ], Bα
0(x), Bα

1(x), . . . , Bα
n(x)( 

G Bα
0(x), Bα

1(x), . . . , Bα
n(x)( 

 

1/2

,
]
α

 ≤ i≤ n, (81)

where
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x
αr− ]≃

m

j�0
θ(],α)

r,j B
α
j (x),

e(],α)
Di

�����

�����2
� 0, 0≤ i≤

]
α

 −1.

(82)

Proof. It has been proved in [35].
From the above theorems, we come to the conclusion

that as we increase the number of FOBPs, the error matrices
E(],α)
I and E(],α)

D approach to zero.
Furthermore, here, we deduce some results regarding

stability following [38]. Let U(x) ∈ C[0, 1] be exact solution,
and UM(x) be the approximate solution of the proposed
problem, then the error bounded is computed as

E(U) � U(x) − UM(x)
����

����≤
B
2
MUM

(Γ(M + 1))
2 � ε, (83)

where BM, UM are the maximum values of Bα
M(x), UM(x) in

[0, 1], respectively. Also, if M⟶∞, then ε⟶ 0. Fur-
thermore, the given remark holds. □

Remark 11. For K> 0, the relation

U B
α
M(x)( 

T ≤KU(x), for allx ∈ [0, 1], (84)

holds.

Theorem 1 . Let U(x) be the exact solution to the problem
under our consideration, and UM(x) � U(Bα

M(x))T be the
approximate solution of the proposed problem, where U is the
Bernoulli coefcient matrix that is determined by solving the
algebraic equation (62), then using Remark 11, the method is
stable if K< 1.

Proof. Consider the exact solution as U(x) and U(x) be any
approximate solution to the proposed problem, we have
using the above remark

|U(x) − U(x)| � U(x) − UM(x) + UM(x) − U(x)




≤ U(x) − UM(x)


 + UM(x) − U(x)




≤ ε + U B
α
M(x)( 

T
− U(x)





≤ ε + K|U(x) − U(x)|.

(85)

Taking maxima over [0, 1] of both sides and rearranging
the terms, (85) implies that

‖U(x) − U(x)‖≤
ε

1 − K
. (86)

Hence, the solution is stable. Furthermore, if there exists
a nondecreasing function say φ: (0, 1)⟶ (0,∞), such that
φ(ε) � ε, where φ(0)� 0, then from relation (87), we con-
clude that

‖U(x) − U(x)‖≤
φ(ε)
1 − K

, (87)

which further yields that the solution of the proposed linear
problem of fractional order is generalized stable. □

6. Numerical Examples

Here, we solve some examples through the scheme we
developed in Section 4 and present the concerned numerical
results through graphs. Also, we compare the exact and
numerical solutions of the said examples.

Example 13. Consider the general FOBVP [36].

D]
U(x) � 4D]

1U(x) + 8U(x) + f(x),

U(0) � 1, U(1) � −8, k1, k2 ∈ R,
(88)

where 1< ]≤ 2, 0< ]1 ≤ 1.
Let us assume that the given problem has an exact so-

lution at α� 2 and β� 1 which is given by

U(x) �
x

(x − 3)
− 3 +

1
(1 − x)

− 4. (89)

Additionally, f(x) can be approximated as

f(x) � 2(x − 3) (x − 3)
2
(1 − 10x) + 3x 

+ 4(1 − x)
2 5 − 2x

2
 .

(90)

In Figure 1, we compare the actual and approximate
solutions at diferent fractional orders, and the corre-
sponding absolute errors are also presented graphically. We
see that as the fractional order approaches the corresponding
integer value 2, the concerned curve tends to the corre-
sponding integer order curve. Te concerned error also
reduces as the order increases. In Figure 2, we provide
a graphical presentation of numerical solutions at various
scale levels. Here, we see that as the value of M is increasing,
the corresponding absolute error also decreases. Hence, the
mentioned method is also scale-oriented.

Example 14. Here, we take another FOBVP given by

D]
U(x) � 5D]1U(x) + 6U(x) + f(x),

U(x)|x�0 � 1, U(x)|x�1 � 4,
(91)

where 1< ]≤ 2, 0< ]1 ≤ 1. We solve this problem for various
fractional orders. Let us assume that the given problem has
an exact solution at ]� 2 and ]1� 1 which is given by

U(x) � x
6

− x
5

+ x
4

+ x
3

+ x + 1, (92)

with the source term given by

f(x) � − 6x
6

− 24x
5

+ 49x
4

− 46x
3

− 3x
2

− 11. (93)

In Figure 3, we compare the exact and approximate
solutions at diferent fractional orders, and the corre-
sponding absolute errors are also presented graphically. We
see that as the fractional order approaches the corresponding
integer value 2, the concerned curve tends to the corre-
sponding integer order curve. Te concerned error also
reduces as the order increases. In Figure 4, we provide
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a graphical presentation of numerical solutions at various
scale levels. We provide a graphical presentation of nu-
merical solutions at various scale levels. Here, we see that as
the value of M is increasing, the corresponding absolute
error also decreases. Hence, the mentioned method is also
scale-oriented.

Example 15. Consider the system of FOBVPs [36]

D]
U(x) � 2D]1U(x) + 2D]2V(x) + 3U(x) + 5V(x) + f(x),

Dω
V(x) � 2Dω1U(x) + 2Dω2V(x) + 4U(x) + 5V(x) + g(x),

(94)

with BCs given by

U(x)|x�0 � 100, U(x)|x�1 � 100,

V(x)|x�0 � 50, V(x)|x�1 � 50.
(95)

We solve this problem under the set of parameters

S3 � ] � ω � 2, ]1 � ω1 � 1, ]2 � ω2 � 1 . (96)

Let us assume that this problem has the exact solution
given below under the given parameters
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Figure 1: Actual and numerical solutions comparison at M � 4 and ]1 � 0.8 and various values of α.
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Figure 2: Graphical presentation of approximate solutions at α � 1.8 and ]1 � 0.8 and diferent values of M.
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U(x) �
x
2

(1 − x)
2 + 100,

V(x) �
x

(1 − x)
− 3 + 50.

(97)

Ten, f(x) and g(x) are given by

f(x) �
4

(2x − 2)
− 1 x +

2
(x − 1)

− 2 x +
5

(x − 1)
− 3 x +

2
(x − 1)

− 2 + 2(x − 1)
3

− 2x
2
(2x − 2) −

3
(x − 1)

− 2x
2

+ 2x
2

− 550,

g(x) �
2

(x − 1)
− 2 x − 3x(2x − 2) +

5
(x − 1)

− 3 x −
6

(x − 1)
− 2 +

2
(x − 1)

− 3 −
2

(2x − 2)
− 1x

2
−

4
(x − 1)

− 2x
2

− 650.

(98)

0 0.2 0.4 0.6 0.8 1
−9
−8
−7
−6
−5
−4
−3
−2
−1

0
1

x

So
lu

tio
ns

0 0.2 0.4 0.6 0.8 1
0
2
4
6
8

10
12
14
16
18

x

Ab
so

lu
te

 er
ro

r

Solution at M = 6
Solution at M = 8
Solution at M = 10

×10−4

Absolute error at M = 6
Absolute error at M = 8
Absolute error at M = 10

Figure 3: Actual and numerical solutions comparison at M � 4 and ]1 � 0.8 and various values of α.

0 0.2 0.4 0.6 0.8 1

1

1.5

2

2.5

3

3.5

4

x

So
lu

tio
ns

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

x

Ab
so

lu
te

 er
ro

r

Absolute error at M = 6, 8
Absolute error at M = 10

×10−7

Solution at M = 6
Solution at M = 8
Solution at M = 10

Figure 4: Graphical presentation of approximate solutions at α � 1.8 and ]1 � 0.8 and diferent values of M.
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Here, we give a plot at M � 6 and diferent values of
fractional order ω, ]. In Figure 5, we compare the actual and
approximate solutions at diferent fractional orders, and the
corresponding absolute errors are also presented graphically.
We see that as the fractional order approaches the corre-
sponding integer value 2, the concerned curves tend to the
corresponding integer order curves. Te concerned error
also reduces as the order increases. In Figures 6 and 7, we
provide plots of approximate solutions at various scale levels.
Also, we provide a graphical presentation of numerical
solutions at various scale levels. Here, we see that as the value
of M is increasing, the corresponding absolute error also
decreases. Hence, the mentioned method is also scale-
oriented. In Figure 7, we provide plots of absolute errors
at diferent scale levels. Here, we compare the numerical

results for Example 15 with those given in [36] in Table 1.We
see that the existing method produces slightly good results
than the numerical results obtained in [36] for the given
problem by using the shifted Legendre polynomials spectral
method. In addition, here in Table 2, we compare the CPU
time of our proposed method with that of [36].

Example 16. Consider the system of FOBVPs

Dc
Y(x) � Dc1Y(x) + Dc2Z(x) + 3Y(x) − 2Z(x) + h(x),

Dη
Z(x) � 4Dη1Y(x) + 3Dη2Z(x) + 2Y(x) + Z(x) + k(x),

(99)

with BCs given by
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Figure 5: Graphical presentation of approximate solutions at diferent values of ],ω and ]i � 0.8,ωi � 0.8, i � 1, 2 for M � 6.

0 0.2 0.4 0.6 0.8 1

100

100.01

100.02

100.03

100.04

100.05

100.06

x

So
lu

tio
ns

 U

0 0.2 0.4 0.6 0.8 1

50

50.02

50.04

50.06

50.08

50.1

x

So
lu

tio
ns

 V

Solution at M = 6
Solution at M = 4 Solution at M = 8

Solution at M = 10Solution at M = 6
Solution at M = 4 Solution at M = 8

Solution at M = 10
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Y(x)|x�0 � 2, Y(x)|x�1 � 2,

Z(x)|x�0 � 1, Z(x)|x�1 � 1.
(100)

Let us assume that this problem has the following exact
solution under the set of parameters.

S4 � c � 1.8, c1 � 0.6, c2 � 0.5, η � 1.6, η1 � 0.6, η2 � 0.5 ,

Y(x) � x
6

− x
5

+ 2,

Z(x) � x
5

− x
4

+ 1.

(101)
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Figure 7: Graphical presentation of absolute errors at ] � ω � 2, ]i � 1 and various values of M.

Table 1: Comparison between numerical results of Example 15 by our proposed method and that used in [36].

Scale Fractional order Proposed method results Results of [36]
M ] � ω � 1.9, ]1 � ]2 � 0.9 ‖U‖e ‖V‖e ‖U‖e ‖V‖e

4 9.9 × 10− 3 1.9 × 10− 3 1.3 × 10− 2 2 × 10− 3

5 1.1 × 10− 3 1.0 × 10− 4 6.7 × 10− 3 1.53 × 10− 4

6 6.5 × 10− 4 2.5 × 10− 4 6.7 × 10− 4 7 × 10− 4

7 1.2 × 10− 5 2.8 × 10− 5 7.3 × 10− 5 9.27 × 10− 5

8 2.05 × 10− 5 1.1 × 10− 5 6.17 × 10− 5 6.23 × 10− 5

9 6.5 × 10− 6 1.7 × 10− 6 3.67 × 10− 6 8.28 × 10− 6

10 4.91 × 10− 7 1.5 × 10− 8 4.7 × 10− 7 6.3 × 10− 7

Table 2: Comparison of CPU time to compute solution in Example 15 by our proposedmethod and that used in [36] using Cori7 generation
HP machine of 1024GHz.

Scale Fractional order
CPU time using the proposed

method
CPU time using the method

of [36]
M ] � ω � 1.9, ]1 � ]2 � 0.9 Y (sec) Z (sec) Y (sec) Z (sec)

4 80 81 84 85
5 90 90.5 91 92
6 92 93 94 95
7 95 96 97 97.4
8 97 98 98 99.8
9 100 101 105 106
10 110 110 115 117
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Figure 8: Actual and numerical solutions comparison at M� 6.
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Figure 10: Graphical presentation of numerical solutions at various scale levels of M.
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Ten, h(x) and k(x) are given by

h(x) �
2229536516744740625x

(16/5)
(10x − 7) 

1008806316530991104
−

5081767996463981x
(7/2)

(10x − 9) 

22166154415964160

−
1982745796388234375x

(22/5)
(10x − 9) 

6632113401256476672
− 2x

4
+ 5x

5
− 3x

6
− 4,

k(x) �
89181460669789625x

(11/5)
(25x − 16) 

144115188075855872
−

1982745796388234375x
(22/5)

(10x − 9) 

1658028350314119168

−
5081767996463981x

(7/2)
(10x − 9) 

7388718138654720
+ x

4
+ x

5
− 2x

6
− 5.

(102)

Here, we compare the actual and numerical solutions and
the corresponding absolute errors in Figures 8 and 9, re-
spectively. We compare the actual and approximate solutions
at diferent fractional orders, and the corresponding absolute
errors are also presented graphically. We see that as the
fractional orders approach the corresponding integer value 2,
the concerned curves tend to the corresponding integer order
curves.Te concerned error also reduces as the order increases.
Furthermore, we provide a graphical presentation of ap-
proximate solutions at various scale levels and the corre-
sponding absolute errors in Figures 10 and 11, respectively. In
addition, we provide a graphical presentation of numerical
solutions at various scale levels. Here, we see that as the value of
M is increasing, the corresponding absolute error also de-
creases. Hence, the mentioned method is also scale-oriented.

7. Conclusion and Discussion

In this article, we have investigated diferent classes of
FODEs under boundary conditions for numerical solutions.
We have used FOBPs along with some important properties

to construct some operational matrices corresponding to
fractional-order derivative and integration. Based on these
matrices, we have converted the proposed problems to
a system of Sylvester-type operational matrices. Upon using
MATLAB, we solved several examples to demonstrate the
procedure. From the numerical investigation, we see that the
method is powerful and can be used to investigate various
FODEs for numerical solutions.Te efciency of the method
can be further improved by enlarging the scale level. Te
greater the scale level, the greater the accuracy, and vice
versa. Also, we have computed the maximum absolute error
by using diferent scale levels. In some examples, we have
also investigated the problem by using various fractional
orders to simulate the results. From the numerical results, we
see that the operational method based on FOBPs can also be
used as a powerful spectral method to handle FODEs for
numerical purposes. We have compared our numerical
results with those given in [36] by using the shifted Legendre
polynomials spectral method. Our results are good than
those given in the mentioned reference.Te CPU time of the
proposed method has been compared with the CPU time of
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Figure 11: Absolute errors at diferent scale levels of M.
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the shifted Legendre spectral method. Te CPU time of the
proposed method is better than the spectral numerical
method based on Legendre polynomials. In the future, we
will extend the mentioned OMs method to variable order
problems. Also, we will study FODEs involving nonsingular
type derivatives by using our proposed method.
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