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In this paper, we establish a correspondence between fuzzy hypergroupoids and certain types of hypergroupoids that possess map-
pointed properties. Specifcally, we introduce a new type of fuzzy hyperoperations, known as map-pointed fuzzy hyperoperations,
and show that this correspondence yields an adjunction.

1. Introduction and Preliminaries

Te concept of hyperstructures was introduced in 1934 by
Marty [1], and since then, researchers have explored fuzzy
algebraic structures, such as fuzzy subgroups of a group studied
by Rosenfeld in 1971 [2]. Corsini and Tofan [3] proposed a new
model for generalizing hyperstructures through fuzzy theory,
where hyperoperations are generalized to fuzzy hyper-
operations. Tis idea has been applied to semihypergroups in
[4] and further generalized to fuzzy hyperrings and fuzzy
hypermodules in [5, 6]. One interesting direction in the re-
search is the construction of fuzzy hyperoperations from
hyperoperations and vice versa. In [4], a possible way to obtain
a hyperoperation from a fuzzy hyperoperation is presented.
However, there is no fundamental approach to constructing
fuzzy hyperoperations from hyperoperations, except for
a trivial example using characteristic functions. In this paper,
we take a category-theoretic approach to explore the corre-
spondence between hyperoperations and fuzzy hyper-
operations. We demonstrate that the constructions based on
the notion of map-pointed fuzzy hyperoperation derived from
a map-pointed hypergroupoid are appropriate, as the corre-
sponding functors between the categories of map-pointed
hypergroupoids and fuzzy hypergroupoids defne an adjunc-
tion, and the restrictions of this correspond to equivalence on
certain subcategories.

Let us recall from [3, 4] some basic notions in hyper-
groupoids and fuzzy hypergroupoids needed in the sequel.

Let S be a nonempty set. A hyperoperation on S is a map
⋆ : S × S→P(S), where P(S) is the set of all subsets of S. For
A, B⊆ S, A⋆B is defned by

A⋆B � ∪
a∈A,b∈B

a⋆ b. (1)

Te notations x⋆A and A⋆x are used for x{ }⋆A and
A⋆ x{ }, respectively. Troughout, the symbol U stands for
S⋆S. A hypergroupoid is a structure (S,⋆) where ⋆ is
a hyperoperation on S. A hypergroupoid (S,⋆) is called
a semihypergroup if ⋆ is associative; that is, for all a, b, c ∈ S,
a⋆(b⋆c) � (a⋆b)⋆c.

Let (S1,⋆1) and (S2,⋆2) be two hypergroupoids. We say
that a map f: S1→ S2 is a homomorphism if

f x⋆1y( 􏼁⊆f(x)⋆2f(y) for all x, y ∈ S1, (2)

and a strong homomorphism if

f x⋆1y( 􏼁 � f(x)⋆2f(y) for allx, y ∈ S1. (3)

Let S be a nonempty set. A fuzzy subset of S is a map
α: S→ [0, 1]. A fuzzy hyperoperation on S is a map
∘ : S × S→F(S), where F(S) is the set of all fuzzy subsets
of S.
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Let α and β be two fuzzy subsets of a fuzzy hypergroupoid
(S, ∘ ). One can defne a new fuzzy subset α ∘ β of S by

(α ∘ β)(t) � ∨
r,s∈S

((r ∘ s)(t)∧ α(r)∧ β(s)), (4)

for all t ∈ S, where ∨ and ∧ are arbitrary supremum and
fnite infmum in the set of real numbers, respectively. Also,
for any x ∈ S and α ∈ F(S), x ∘ α is defned by

(x ∘ α)(t) � ∨
s∈S

((x ∘ s)(t)∧ α(s)), (5)

for all t ∈ S. A fuzzy hypergroupoid is a structure (S, ∘ ),
where ∘ is a fuzzy hyperoperation on S. A fuzzy hyper-
groupoid (S, ∘ ) is a fuzzy hypersemigroup if ∘ is associative;
that is, for all x, y, z ∈ S, x ∘ (y ∘ z) � (x ∘y) ∘ z.

We refer to [7] for the unexplained terminology from
category theory used in this paper.

2. Map-Pointed Hypergroupoids and
Fuzzy Hyperoperations

In this section, we introduce the notion of a map-pointed
fuzzy hyperoperation and give some equivalent conditions
to this basic concept which plays a key role in the next
section.

Let (S,⋆) be a hypergroupoid and α be a fuzzy subset of
S. We call the triple (S,⋆, α) a map-pointed hypergroupoid.

Defnition 1. Let (S,⋆, α) be a map-pointed hypergroupoid.
Ten,

(i) (S,⋆, α) is said to be coclosed if it satisfes the fol-
lowing condition:

z ∈ x⋆y⇒ α(z)≤ α(x), α(z)≤ α(y). (6)

(ii) Te fuzzy hyperoperation⋆
α
on S is given by

(x⋆
α
y)(s) � α(s)χx⋆y(s), (7)

which is called a map-pointed fuzzy hyperoperation.

Theorem 2. Let (S,⋆, α) be a map-pointed hypergroupoid
for which (S,⋆) is a semihypergroup. If (S,⋆, α) is coclosed,
then (S,⋆

α
) is a fuzzy hypersemigroup.

Proof. Let x, y, z ∈ S. For any s ∈ S, we have

(x⋆
α
(y⋆

α
z))(s) � ∨

t∈S
((x⋆

α
t)(s)∧ (y⋆

α
z)(t))

� ∨
t∈y⋆z

α(s)χx⋆t(s)∧ α(t)χy⋆z(t)􏼐 􏼑

� ∨
t∈y⋆z
s∈x⋆t

(α(s)∧ α(t)).

(8)

Since (S,⋆, α) is coclosed, α(s)≤ α(t) for any t ∈ S and
s ∈ x⋆t. Hence,

(x⋆
α
(y⋆

α
z))(s) � ∨

t∈y⋆z
s∈x⋆t

α(s)

� α(s)χx⋆(y⋆z)(s).

(9)

Similarly, one can show that for any s ∈ S,

((x⋆
α
y)⋆

α
(z))(s) � α(s)χ(x⋆y)⋆z(s). (10)

Since ⋆ is associative by the assumption, x⋆
α
(y⋆

α
z)

� (x⋆
α
y)⋆

α
z.

In the following, we present an equivalent condition for
a fuzzy hyperoperation to be map-pointed. □

Defnition 3. Let S be a nonempty set. A fuzzy hyper-
operation ° on S is called smooth if for every a, b, c, d, s ∈ S,
(a ∘ b)(s)> 0 and (c ∘d)(s)> 0 imply (a ∘ b)(s) � (c ∘d)(s).

Theorem 4. A fuzzy hyperoperation is map-pointed if and
only if it is smooth.

Proof. Consider a map-pointed fuzzy hyperoperation ⋆
α
on S

for a map-pointed hypergroupoid (S,⋆, α). We show that ⋆
α

is smooth. Let (a⋆
α
b)(s)> 0 and (c⋆

α
d)(s)> 0 for some

a, b, c, d, s ∈ S. We have 0< (a⋆
α
b)(s) � α(s)χa⋆b(s) and so,

χa⋆b(s) � 1. Similarly, χc⋆d(s) � 1. Terefore,

(a⋆
α
b)(s) � α(s)χa⋆b(s)

� α(s)

� α(s)χc⋆d(s)

� (c⋆
α
d)(s).

(11)

For the converse, let ∘ be a smooth fuzzy hyperoperation
on S. We defne ⋆ on S by

x⋆y � s ∈ S |(x ∘y)(s)> 0􏼈 􏼉, (12)

and α: S→ [0, 1] by

α(s) � ∨
x,y∈S

(x ∘y)(s), (13)

for every s ∈ S. We claim that ∘ � ⋆
α
. Let us frst assume that

s ∈ a⋆b. Ten, χa⋆b(s) � 1 and hence

(a⋆
α
b)(s) � α(s)χa⋆b(s)

� α(s)

� ∨
x,y∈S

(x ∘y)(s)

� ∨
s∈x⋆y

(x ∘y)(s)

� (a ∘ b)(s).

(14)

Te last equality follows from the smoothness of ∘ .
Indeed, for every x, y ∈ S with s ∈ x⋆y, we have
(x ∘y)(s)> 0; also, s ∈ a⋆b gives that (a ∘ b)(s)> 0 and so
(x ∘y)(s) � (a ∘ b)(s). Now, let s ∉ a⋆b. Ten,

(a⋆
α
b)(s) � α(s)χa⋆b(s)

� 0

� (a ∘ b)(s).

(15)

Terefore, a⋆
α
b � a ∘ b, which means that ∘ is map-

pointed. □
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Notation 5. Let °: S × S→ F(S) be a fuzzy hyperoperation.
We defne the fuzzy subset 􏽢°: S→ [0, 1] of S by

􏽢∘ (s) � ∨
x,y∈S

(x ∘y)(s), (16)

for every s ∈ S. Moreover, we use the symbol ⊗ for the
hyperoperation with respect to °, that is,

x⊗y � s ∈ S|(x ∘y)(s)> 0􏼈 􏼉, (17)

for all x, y ∈ S.
In view of the proof of Teorem 4, we get the following:

Corollary 6. Let ∘ : S × S→F(S) be a fuzzy hyperoperation.

Ten, ∘ is smooth if and only if ∘ � ⊗
􏽢°
.

Proposition 7. Let (S,⋆, α) be a map-pointed hyper-
groupoid. Ten,

(i) 􏽢⋆
α

� αχU.
(ii) 􏽢⋆

α
� α if and only if α(s) � 0 for all s ∉ U. In par-

ticular, if U � S, then 􏽢⋆
α

� α.
(iii) If (S,⋆, β) is a map-pointed hypergroupoid, then ⋆

α
�

⋆
β
if and only if α|U � β|U.

Proof

(i) For every s ∈ S, we have
􏽢⋆
α
(s) � ∨

x,y∈S
(x⋆

α
y)(s)

� ∨
x,y∈S

α(s)χx⋆y(s)􏼐 􏼑

�
α(s), s ∈ x⋆y for somex, y ∈ S,

0, otherwise,
􏼨

� α(s)χU(s).

(18)

(ii) (⇒ ) Suppose that
􏽢⋆
α
(s) � α. Ten, αχU � α.

Let s ∉ U. So, α(s) � α(s)χU(s) � α(s)0 � 0.
(⇐) Let s ∈ S. If s ∈ U, then

􏽢⋆
α
(s) � α(s)χU(s)

� α(s)1
� α(s).

(19)

If s ∉ U, then
􏽢⋆
α
(s) � α(s)χU(s) � 0 � α(s). (20)

Hence,
􏽢⋆
α

� α.
(iii) (⇒ ) Let

􏽢⋆
α

�
􏽢
⋆
β
. Ten, αχU � βχU by (i). Hence,

α|U � β|U.
(⇐) Suppose that α|U � β|U.Ten, let x, y, s ∈ S and
we have

(x⋆
α
y)(s) � α(s)χx⋆y(s)

� β(s)χx⋆y(s)

� (x⋆
β
y)(s).

(21)

Hence, ⋆
α

� ⋆
β
. □

Corollary 8. Let ∘ : S × S→F(S) be a fuzzy hyperoperation.
Ten, the following are equivalent:

(i) ∘ is smooth.
(ii) ∘ is map-pointed.

(iii) ∘ � ⊗
􏽢°
.

(iv) ∘ � ⋆
β
for a hyperoperation ⋆ and a unique map β

with β(s) � 0 for all s ∉ U.

Proof. Te equivalences of (i), (ii), and (iii) follow from
Teorem 4 and Corollary 6. For (ii) ⇒ (iv) defne
β: S→ [0, 1] by

β(s) �
α(s), s ∈ U,

0, s ∉ U.
􏼨 (22)

We have α|U � β|U and so ⋆
α

� ⋆
β
by Proposition 7. Tus,

∘ � ⋆
β
with β(s) � 0 for all s ∉ U. Also, β is unique by

Proposition 7 and (iv) ⇒ (ii) is trivial. □

Remark 9. 􏽢∘ is the unique map mentioned in Corollary 8
because 􏽢∘ (s) � 0 for all s ∉ U. Let s ∉ U, then s ∉ x⊗y for
all x, y ∈ S.Terefore, (x ∘y)(s) � 0 for allx, y ∈ S and hence

􏽢∘ (s) � ∨
x,y∈S

(x ∘y)(s)

� 0.

(23)

Proposition 10. Let ⋆ be a hyperoperation on S and
α: S→ [0, 1] be a map. If ⋆

α
is associative and α|U > 0, then ⋆

is associative.

Proof. It sufces to show that for all x, y ∈ S,

x⋆y � s ∈ S |(x⋆
α

y)(s)> 0􏼚 􏼛. (24)

To this end, let x, y, s ∈ S. Ten, we have

(x⋆
α
y)(s)> 0⇔ α(s)χx⋆y(s)> 0

⇔ α(s)> 0, s ∈ x⋆y

⇔ s ∈ x⋆y α|U > 0( 􏼁.

(25)

□

3. Adjoint Functors

In this section, two functors between the categories of map-
pointed hypergroupoids and fuzzy hypergroupoids are de-
fned. Tese functors give an adjunction whose restrictions
on certain subcategories form an equivalence.

Defnition 11. Let (S,⋆, α) and (P,□, β) be two map-
pointed hypergroupoids. A map f: S→P is said to be
a homomorphism if

(1) f(x⋆y) ⊆f(x)□f(y) for all x, y ∈ S.
(2) α(s)≤ β(f(s)) for all s ∈ S.
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Also, f is called a strong homomorphism if

(1) f(x⋆y) � f(x)□f(y) for all x, y ∈ S.
(2) α(s) � β(f(s)) for all s ∈ S.

Note that the classes of allmap-pointed hypergroupoids with
homomorphisms and strong homomorphisms between them
form categories denoted by mHgr and smHgr, respectively.

Defnition 12. Let (S, ∘ ) and (P,□) be two fuzzy hyper-
groupoids. A map f: S→P is said to be a homomorphism if
for every x, y ∈ S,

f(x ∘y)≤f(x)□f(y), (26)

in which f(x ∘y) is a fuzzy subset of P defned by

f(x ∘y)(p) � ∨
f(s)�p

(x ∘y)(s), (27)

for any p ∈ P (see [4]). Also, f is called a strong homo-
morphism if

f(x ∘y) � f(x)□f(y). (28)

Te categories of all fuzzy hypergroupoids with ho-
momorphisms and strong homomorphisms between them
are denoted by FHgr and FsHgr, respectively.

Lemma 1 . Let (S,⋆, α) and (P,□, β) be two map-pointed
hypergroupoids. If f: S→P is a (strong) homomorphism of
map-pointed hypergroupoids, then it is a (strong) homo-
morphism of fuzzy hypergroupoids with respect to (S,⋆

α
) and

(P,□
β

). Te converse also holds provided that α(s)≠ 0 for all
s ∈ x⋆y, x, y ∈ S.

Proof. We suppose that f is a homomorphism of map-
pointed hypergroupoids. Let x, y ∈ S. Ten, for any p ∈ P,
we have

f(x⋆
α
y)(p) � ∨

f(s)�p
(x⋆

α
y)(s)

� ∨
f(s)�p

α(s)χx⋆y(s).
(29)

Since f is a homomorphism of map-pointed hyper-
groupoids, we have

α(s)≤ β(f(s) and χx⋆y(s)≤ χf(x)□f(y)(f(s)). (30)

Ten,

f(x⋆
α
y)(p) � ∨

f(s)�p
α(s)χx⋆y(s)

≤ β(p)χf(x)□f(y)(p)

� (f(x)□
β

f(y))(p).

(31)

A similar argument is applied for the case of strong
homomorphism by replacing each ≤ with equality. Con-

versely, we suppose that f: (S,⋆
α
)→ (P,□

β
) is a homomor-

phism of fuzzy hypergroupoids where α(s)≠ 0 for all

s ∈ x⋆y, x, y ∈ S. Let s ∈ x⋆y for x, y ∈ S and let p � f(s).

Since f is a homomorphism, f(x⋆
α
y)(p)≤ (f(x)□

β

f(y))(p), hence

∨
f(t)�p

(x⋆
α
y)(t)≤ β(p)χf(x)□f(y)(p), (32)

and so since f(s) � p, (x⋆
α
y)(s)≤ β(p)χf(x)□f(y)(p).

Terefore, α(s)χx⋆y(s)≤ β(p)χf(x)□f(y)(p). Since χx⋆y(s) �

1 and α(s)≠ 0, χf(x)□f(y)(p)≠ 0 and β(p)≥ α(s). Hence,
f(s) ∈ f(x)□f(y) and α(s)≤ β(f(s)). □

Theorem 14. Te assignment defned by (S,⋆, α)⇝(S,⋆
α
) on

objects and f⇝f on morphisms gives us functors denoted by
F: mHgr→ FHgr and Fs: smHgr→ FsHgr.

Proof. Tis is proved by Lemma 13. □

Lemma 15. Let (S, ∘ ) and (P,□) be two fuzzy hyper-
groupoids. Let ⊗ and ⊠ be the hyperoperations with respect
to ∘ and□. If f: (S, ∘ )→ (P,□) is a homomorphism of fuzzy
hypergroupoids, then f: (S, ⊗ , 􏽢∘ )→ (P, ⊠ , 􏽢□) is a homo-
morphism of map-pointed hypergroupoids.

Proof. Let x, y ∈ S. First, we prove that
f(x⊗y)⊆f(x)⊠f(y). Let t ∈ x⊗y so that (x ∘y)(t)> 0.
Let p � f(t), then we have

(f(x)□f(y))(p)≥ (f(x ∘y))(p)

� ∨
f(s)�p

(x ∘y)(s)

≥ (x ∘y)(t)> 0.

(33)

Hence, f(t) � p ∈ f(x)⊠f(y). Tis means that
f(x⊗y) � f(x)⊠f(y). Now, we prove that
􏽢∘ (s)≤ 􏽢□(f(s)). Let p � f(s), then we have

􏽢□(f(s)) � 􏽢□(p) � ∨
w,z∈P

(w□z)(p)

≥ ∨
x,y∈S

(f(x)□f(y))(p)

≥ ∨
x,y∈S

(f(x ∘y))(p)

� ∨
x,y∈S
∨

f(s)�p
(x ∘y)(s)

≥ ∨
x,y∈S

(x ∘y)(s)

� 􏽢∘ (s).

(34)

□

Theorem 16. Te assignment defned by (S, ∘ )⇝(S, ⊗ , 􏽢∘ )
on objects and f⇝f on morphisms gives us a functor denoted
by G: FHgr→mHgr.

Proof. Tis follows from Lemma 15.
In the following, α ⊗ denotes the hyperoperation with

respect to the fuzzy hyperoperation ⋆
α
, that is,

xα ⊗y � s ∈ S ∣ (x⋆
α

y)(s)> 0􏼚 􏼛. (35)
□
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Proposition 17. Let (S,⋆, α) ∈ mHgr and (S, ∘ ) ∈ FHgr.
Ten,

(i) idS: GF(S,⋆, α)→ (S,⋆, α) is a morphism in mHgr.
(ii) idS: (S, ∘ )→ FG(S, ∘ ) is a morphism in FHgr.

Proof

(i) We have GF(S,⋆, α) � (S, α ⊗ ,
􏽢⋆
α
), and for any

x, y ∈ S,

x⊗
α

y � s ∈ S |(x⋆
α
y)(s)> 0􏼚 􏼛

� s ∈ S |α(s)χx⋆y(s)> 0􏽮 􏽯

� s ∈ x⋆y|α(s)> 0􏼈 􏼉

⊆x⋆y.

(36)

Also, for any s ∈ S,
􏽢⋆
α
(s) � ∨

x,y∈S
(x⋆

α
y)(s)

� ∨
x,y∈S

α(s)χx⋆y(s)

≤ α(s)

� α idS(s)( 􏼁.

(37)

(ii) Note that FG(S, ∘ ) � (S, ⊗
􏽢°

). Let x, y, s ∈ S. Ten,
we have

(x_° ⊗􏽢°y)(s) � 􏽢∘ (s)χx⊗y(s)

� ∨
w,z∈S

(w ∘ z)(s)χx⊗y(s)

≥ (x ∘y)(s)χx⊗y(s)

� (x ∘y)(s).

(38)

□
Defnition 18. A map-pointed hypergroupoid (S, ⋆, α) is
called super if

α(s)> 0⇔ s ∈ U. (39)

Theorem 19. Te following statements are equivalent:

(i) idS: GF(S,⋆, α)→ (S,⋆, α) is an isomorphism
in mHgr.

(ii) idS: (S,⋆, α)→GF(S,⋆, α) is a morphism in mHgr.
(iii) idS: GF(S,⋆, α)→ (S,⋆, α) is a morphism in smHgr.
(iv) (S,⋆, α) is a super map-pointed hypergroupoid.

Proof. Te implications (iii) ⇒ (i) ⇒ (ii) are trivial, and (ii)
⇒ (iii) follows from Proposition 17(i). For (iii) ⇒ (iv), we

have GF(S, ⋆ , α) � (S, ⊗
α

,
􏽢⋆
α

). So, idS: (S, α ⊗ ,
􏽢⋆
α

)→
(S, ⋆ , α) is a strong homomorphism by the assumption.

Ten, α ⊗ � ⋆ and
􏽢⋆
α

� α. Suppose that α(s)> 0 for s ∈ S.

Ten,
􏽢⋆
α

(s)> 0. So, α(s)χU(s)> 0 and s ∈ U. Now, let s ∈ U.
Ten, there exist x, y ∈ S with s ∈ x⋆y � x⊗

α
y. Hence,

0< (x⋆
α

y) (s) � α(s)χx⋆y(s) whence α(s)> 0. For (iv) ⇒
(iii), let (S, ⋆ , α) be super. It must be shown that α ⊗ � ⋆

and
􏽢⋆
α

� α. Let x, y ∈ S. Ten,

x⊗
α

y � s ∈ S |(x⋆
α

y)(s)> 0􏼚 􏼛

� s ∈ S |α(s)χx⋆y(s)> 0􏽮 􏽯

� s ∈ S |α(s)> 0, s ∈ x⋆y􏼈 􏼉

� s ∈ S |s ∈ U, s ∈ x⋆y􏼈 􏼉

� x⋆y.

(40)

Also, by Proposition 7 (ii),
􏽢⋆
α

� α. □

Theorem 20. Te following statements are equivalent:

(i) idS: (S, ∘ )→ FG(S, ∘ ) is an isomorphism in FHgr.
(ii) idS: FG(S, ∘ )→ (S, ∘ ) is a morphism in FHgr.
(iii) idS: (S, ∘ )→ FG(S, ∘ ) is a morphism in FsHgr.
(iv) (S, ∘ ) is a smooth fuzzy hypergroupoid.

Proof. Te implications (iii) ⇒ (i) ⇒ (ii) are trivial, and (ii)
⇒ (iii) follows from Proposition 17 (ii). For (iii) ⇔ (iv), we

have FG(S, ∘ ) � (S, ⊗
􏽢°

). So, idS: (S, ∘ )→ (S, ⊗
􏽢°

) is strong if

and only if ∘ � ⊗
􏽢° , which is equivalent to the smoothness of

∘ by Corollary 8. □

Notation 21. Te subcategory of all super map-pointed
hypergroupoids is denoted by C, and the subcategory of
all smooth fuzzy hypergroupoids is denoted by D.

Theorem 22. Te restriction of F onC and G onDmake an
equivalence between C and D. In other words, C ≈ D.

Proof. By Teorem 19, GF→
idS 1 is a natural isomorphism on

C. Also, by Teorem 20, 1→
idS FG is a natural isomorphism

on D.
Teorem 22 is in fact a part of a more general fact, as

follows: □

Theorem 2 . G is a left adjoint to F.

Proof. Let φ: (S, ∘ )→F(T,⋆, α) � (T,⋆
α
) be a morphism in

FHgr. We prove that φ: G(S, ∘ ) � (S, ⊗ , 􏽢∘ )→ (T,⋆, α) is
a morphism in mHgr. Let x, y ∈ S and s ∈ x⊗y. Also, let
t � φ(s), then we have

s ∈ x⊗y⇒ (x ∘y)(s)> 0

⇒φ(x ∘y)(t)> 0

⇒ (φ(x)⋆
α
φ(y))(t)> 0

⇒ α(t)χφ(x)⋆φ(y)(t)> 0

⇒ t ∈ φ(x)⋆φ(y).

(41)

Also, it must be shown that 􏽢∘ (s)≤ α(φ(s)), that is,
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􏽢∘ (s) � ∨
x,y∈S

(x ∘y)(s)

≤ ∨
x,y∈S

φ(x ∘y)(t)

≤ ∨
x,y∈S

(φ(x)⋆
α
φ(y))(t)

� ∨
x,y∈S

α(t)χφ(x)⋆φ(y)(t)

≤ α(t)

� α(φ(s)).

(42)

Moreover, it is clear that φ: G(S)→T is the unique
homomorphism which completes the following diagram:

S

φ

F (φ)=φ

idS
FG (S)

F (T)

(43)

To prove the other side of adjunction, let
ψ: G(T, ∘ )→ (S,⋆, α) be a morphism in mHgr. We prove
that ψ: (T, ∘ )→F(S,⋆, α) � (S,⋆

α
) is a morphism in FHgr.

Let x, y ∈ T. So, for every s ∈ S, we have

ψ(x ∘y)(s) � ∨
ψ(t)�s

(x ∘y)(t)

≤ 􏽢∘ (s)

≤ α(s).

(44)

If ψ(x ∘y)(s) � 0, then we have

ψ(x ∘y)(s)≤ (ψ(x)⋆
α
ψ(y))(s). (45)

Suppose that ψ(x ∘y)(s)> 0. So, there exists t ∈ T such
that (x ∘y)(t)> 0 and ψ(t) � s.

We have t ∈ x⊗y. Hence, s � ψ(t) ∈ ψ(x⊗y)⊆ψ
(x)⋆ψ(y). Terefore, χψ(x)⋆ψ(y)(s) � 1 and

ψ(x ∘y)(s)≤ α(s)

� α(s)χψ(x)⋆ψ(y)(s)

� (ψ(x)⋆
α
ψ(y))(s).

(46)

Hence, ψ is a fuzzy homomorphism. Tis means that
ψ: T→F(S) is the unique homomorphism such that the
following diagram commutes:

S GF (S)
idS

G (T)

ψ=G (ψ)

ψ (47)

□

4. Conclusion

In this paper, we establish a correspondence between map-
pointed hypergroupoids and fuzzy hypergroupoids. Spe-
cifcally, for every map-pointed hypergroupoid (S,⋆, α),
where ⋆ is a hyperoperation on S and α: S→ [0, 1] is a fuzzy
subset, a fuzzy hyperoperation denoted by ⋆

α
: S × S→F(S) is

defned. Tis new operation is called a map-pointed fuzzy
hyperoperation. We demonstrate that any fuzzy hyper-
operation represented as a map-pointed fuzzy hyper-
operation of the form ⋆

α
must possess a property known as

smoothness and vice versa. Conversely, for every fuzzy
hypergroupoid (S, ∘ ), a hyperoperation ⊗ on S and a fuzzy
subset on S, denoted by 􏽢∘ : S→ [0, 1], are defned.Tese two
assignments give us two functors that are inverse to each
other in the sense of adjunction in category theory.

Overall, this correspondence sheds light on the re-
lationship between hypergroupoids and fuzzy hyper-
groupoids, providing insight into how these structures can
be related through the lens of fuzzy set theory and category
theory.
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