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In this paper, we consider some properties of homogeneous Besov–Lorentz spaces. First, we get some relationship between
( _B

s,q

p0
, _B

s,q

p1
)θ,r and Besov–Lorentz spaces, and then, we obtain the scaling property of _B

s,q

p,r and _Fp,r

s,q.

1. Introduction

In [1], Yang-Cheng-Peng introduced Besov–Lorentz
spaces _B

s,q

p,r and Triebel–Lizorkin–Lorentz spaces _F
s,q

p,r by
Littlewood–Paley decomposition and proved that the real
interpolation spaces ( _F

s,q

p0
, _F

s,q

p1
)θ,r fall into the Trie-

bel–Lizorkin–Lorentz spaces _F
s,q

p,r.
For the real interpolation of homogeneous Besov spaces

_B
s,q

p , it is well known that when the index p is
fxed,( _B

s0 ,q0
p , _B

s1 ,q1
p )θ,r are still Besov spaces. If p0 ≠p1, gen-

erally speaking, ( _B
s,q

p0
, _B

s,q

p1
)θ,r will fall outside of the scale of

Besov spaces. Tere are many works which considered the
real interpolation, see [1–12]. But does ( _B

s,q

p0
, _B

s,q

p1
)θ,r be the

Besov–Lorentz space _B
s,q

p,r which is given in [1]? In this paper,
we partly answer this question and get some relationship
between ( _B

s,q

p0
, _B

s,q

p1
)θ,r and _B

s,q

p,r. Since the properties of
function spaces are signifcant for PDE, furthermore, we
consider the scaling property of _F

s,q

p,r and _B
s,q

p,r.
For homogeneous Besov spaces and Triebel–Lizorkin

spaces, we use the characterization based on the homoge-
neous Littlewood–Paley decomposition, see [11]. Given
a nonnegative function 􏽢φ(ξ) ∈ D(Rn) such that supp􏽢φ �

ξ ∈ Rn: |ξ|≤ 2{ } and 􏽢φ(ξ) � 1 if |ξ|≤ (1/2). Defne

ψ(x) � 2nφ(2x) − φ(x),

ψu(x) � 2nuψ 2u
x( 􏼁.

(1)

Ten ψu(x)􏼈 􏼉u∈Z, x ∈ Rn be a family of function
satisfying

supp􏽢ψu � ξ ∈ Rn
,
1
2
≤ 2− u

|ξ|≤ 2􏼚 􏼛;

􏽢ψu(ξ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥C> 0, if
1
2
<C1 ≤ 2

− u
|ξ|≤C2 < 2;

z
k 􏽢ψu(ξ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤Ck2
− u|k|

, for any k ∈ Nn;

􏽘

+∞

u�− ∞
􏽢ψu(ξ) � 1, for all ξ ∈ Rn∖ 0{ }.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

Defne fu � ψu ∗f, the fu is called the u− th dyadic
block of the Littlewood–Paley decomposition of f. Let S be
the space of all Schwartz functions on Rn. Te space of all
tempered distributions on Rn equipped with the weak-∗
topology is denoted by S′(Rn). Let P(Rn) be the space of all
polynomials on Rn, and let S′(Rn)∖P(Rn) denote by the
space of all tempered distributions modulated polynomials
equipped with the weak-∗ topology. For any
f ∈ S′(Rn)∖P(Rn), we recollect the defnition of _B

s,q

p and
_F
s,q

p .

Defnition 1. Let f ∈ S′(Rn)∖P(Rn), 0< q≤∞, s ∈ R and
u ∈ Z. Ten,
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(i) for 0<p<∞, f ∈ _F
s,q

p , if ‖[􏽐
u

2usq|fu|q]1/q‖Lp <∞,

(ii) for 0<p≤∞, f ∈ _B
s,q

p , if [􏽐
u

2usq‖fu‖
q

Lp ]1/q <∞.

When q �∞, it should be replaced by the supremum.

Based on the homogeneous Littlewood–Paley de-
composition fu􏼈 􏼉u∈Z, we recall the defnition of Trie-
bel–Lizorkin–Lorentz spaces and Besov–Lorentz spaces
which have been studied in [1]. Let E ⊂ Rn, we denote by |E|

the Lebesgue measure of E.

Defnition 2. We assume that f ∈ S′(Rn)∖P(Rn),
0<p<∞, 0< q, r≤∞, s ∈ R and u, v ∈ Z. Ten,

(i) f ∈ _F
s,q

p,r, if (􏽐
v

2vr| 􏽐
u

2qus|fu(x)|q > 2qv􏼨 􏼩|r/p)1/r

<∞,

(ii) f ∈ _B
s,q

p,r, if [􏽐
u

2uqs(􏽐
v

2rv| |fu(x)|> 2v􏼈 􏼉|r/p)q/r]1/q

<∞.

As q �∞ or r �∞, it should be modifed by supremum.

Te defnition of the above spaces are independent of the
choice of ψu, see [1, 4, 11, 13, 14].

First, we consider some relationship between
( _B

s,q

p0
, _B

s,q

p1
)θ,r and _B

s,q

p,r. Ten, we get the scaling property of
_F
s,q

p,r and _B
s,q

p,r. Tese properties are important in Cauchy

problem for nonlinear PDE, such as Navier–Stokes
equations.

Tis paper is organized as follows. In Section 2, we list
some background that shall be used in this paper. In Section
3, we give some relationship between ( _B

s,q

p0
, _B

s,q

p1
)θ,r and _B

s,q

p,r.
In Section 4, we prove that _Fp,r

s,q and _B
s,q

p,r have scaling
property.

In this paper, we denote by A≲B an estimate of the form
A≤CB with some constant C which is independent of the
main parameters, but it may vary from line to line, A ∼ B

means A≲B and B≲A.

2. Preliminaries

2.1. Real Interpolation. We recall that if A0, A1 is a pair of
quasi-normed spaces which are continuously embedded in
a Hausdorf space X, then the K − functional

K f, t, A0, A1( 􏼁 ≔ inf
f�f0+f1

f0
����

����A0
+ t‖f‖A1

􏼚 􏼛, (3)

is defned for all f ∈ A0 + A1 with f0 ∈ A0 and f1 ∈ A1.

Defnition 3. Let 0< θ< 1 and 0< q<∞, then

A0, A1( 􏼁θ,q,K � f: f ∈ A0 + A1, ‖f‖ A0 ,A1( )θ,q,K
� 􏽚
∞

0
t
− θ

K t, f, A0, A1( 􏼁􏽨 􏽩
qdt

t
􏼨 􏼩

1/q

<∞
⎧⎨

⎩

⎫⎬

⎭. (4)

If q �∞, then

A0, A1( 􏼁θ,∞,K � f: f ∈ A0 + A1, ‖f‖ A0 ,A1( )θ,∞,K
� sup

t

t
− θ

K t, f, A0, A1( 􏼁<∞􏼨 􏼩. (5)

In this subsection, we shall replace the continuous t by
a discrete variable j. Te relationship between t and j is
t � 2j. Tis discretization turns out to be a very helpful
technical tool. Assume that fj � K(f, 2j, A0, A1). Let us
denote by λθ,q the sequences fj􏼈 􏼉j∈Z such that

f
j

􏽮 􏽯
�����

�����λθ,q � 􏽘
j

2− jθ
f

j
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
q

⎡⎢⎢⎣ ⎤⎥⎥⎦

1/q

<∞. (6)

Te following result implies a discrete representation of
the spaces (A0, A1)θ,q,K. It was proved in [4].

Lemma 1. Let A0 + A1 � f: f � f0 + f1, f0 ∈ A0,􏼈

f1 ∈ A1}. If f ∈ A0 + A1, then f ∈ (A0, A1)θ,q if and only if
fj􏼈 􏼉j∈Z belong to λθ,q. Moreover, we have

2− θ log  2 f
j

����
����λθ,q ≤ ‖f‖ A0 ,A1( )θ,q,K

≤ 2 · log 2 f
j

����
����λθ,q . (7)

By Lemma 1, it is easy to see the following remark:

Remark 1

‖f‖ A0 ,A1( )θ,q,K
∼

􏽘
j

2− jqθ
K 2j

, f, A0, A1􏼐 􏼑
q⎡⎢⎢⎣ ⎤⎥⎥⎦

1/q

, 0< q<∞;

sup
j

2− jθ
K 2j

, f, A0, A1􏼐 􏼑, q �∞.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(8)
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Moreover, in this subsection we give some notations. We
assume that s is an arbitrary real number. We denote

_l
s

q � a: a � aj􏽮 􏽯, j ∈ Z, ‖a‖ _l
s

q
� 􏽘

j

2js
aj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
q

⎡⎢⎢⎣ ⎤⎥⎥⎦

1/q

<∞
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(9)

Let fu � ψu ∗f. Observe the form of Defnition 1, it is
easy to see that _F

s,q

p is a retract of Lp( _l
s

q) and _B
s,q

p is a retract of
_l
s

q(Lp). It is

‖f‖ _F
s,q

p
� fu􏼈 􏼉

����
����

Lp
_l
s

q􏼐 􏼑
,

‖f‖ _B
s,q

p
� fu􏼈 􏼉

����
���� _l

s

q Lp( 􏼁
.

(10)

2.2. Lorentz Spaces. In the following part, we review the
defnition of Lorentz spaces which are a generalization of
Lebesgue spaces. For x ∈ Rn, the distribution and rear-
rangement function given by the following formulas:

λf(t) � | x: |f(x)|≥ t􏼈 􏼉|and f∗(s) � inf t: λf(t)≤ s􏽮 􏽯.

(11)

Ten, for 1≤p<∞ and 0< r<∞, Lorentz spaces Lp,r

are defned in the following way

Lp,r � f: ‖f‖p,r �
r

p
􏽚
∞

0
t
1/p

f
∗
(t)􏼐 􏼑

rdt

t
􏼢 􏼣

1/r

<∞
⎧⎨

⎩

⎫⎬

⎭.

(12)

For r �∞,

Lp,∞ � f: ‖f‖p,∞ � supt t
1/p

f
∗
(t)<∞􏽮 􏽯. (13)

It is not difcult to see that Lp,p � Lp. When r �∞, Lp,∞
corresponds to the weak − Lp spaces. However, the previous
formula is not very useful because it depends on the rear-
rangement function f∗ and we will use an equivalent
characterization which has been studied in [1].

Defnition 4. Supposed that 1≤p<∞, 0< r<∞, and u ∈ Z.
Ten, f ∈ Lp,r, if

􏽘
u

2ru
|f(x)| > 2u

􏼈 􏼉
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
r/p⎛⎝ ⎞⎠

1/r

<∞, (14)

as r �∞, it should be replaced by the supremum.

Remark 2. Observe that (14) is a form of the value of
a function multiplied by the measure, then in comparison
with Defnition 4, we can discover the space _F

s,q

p,r is a retract
of Lp,r(

_l
s

q) and _B
s,q

p,r is a retract of _l
s

q(Lp,r). It can be written as

‖f‖ _Fp,r

s,q � fu􏼈 􏼉
����

����
Lp,r

_l
s

q􏼐 􏼑
,

‖f‖ _B
s,q

p,r
� fu􏼈 􏼉

����
���� _l

s

q Lp,r( 􏼁.

(15)

So, we can obtain that Triebel–Lizorkin–Lorentz spaces
_F
s,q

p,r and Besov–Lorentz spaces _B
s,q

p,r are the generalized Besov
spaces and Triebel–Lizorkin spaces based on the Lorentz
spaces Lp,r. Te following lemma is a classical result of real
interpolation of Lebesgue spaces, see [4].

Lemma 2. Given 0<p0 <p1 ≤∞, 0< r≤∞, 0< θ< 1 and
1/p � (1 − θ)/p0 + θ/p1. We have

Lp0
, Lp1

􏼐 􏼑θ,r
� Lp,r. (16)

Furthermore, we recall the vector valued version of
Minkowski’s inequality.

Lemma 3. Let k, j ∈ Z, pj, qk > 0, 1≤p<∞ and ajk ∈ R,
then

􏽘
k

qk 􏽘
j

pj ajk

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠

p

⎡⎢⎢⎣ ⎤⎥⎥⎦

1/p

≤ 􏽘
j

pj 􏽘
k

qk ajk

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
p

⎛⎝ ⎞⎠

1/p

.

(17)

2.3. Triebel–Lizorkin–Lorentz Spaces. Fixed the indices
s and q, the real interpolation spaces of Triebel–Lizorkin
spaces ( _F

s,q

p0
, _F

s,q

p1
)θ,r are Triebel–Lizorkin–Lorentz spaces.

Te following theorem has been proved in [1].

Theorem 1. Let 0<p0, p1 <∞, 0< q0, q1, r≤∞ and 0<
θ< 1. Ten,

(i) ( _F
s,q

p0
, _F

s,q

∞ )θ,r � _F
s,q

p,r, if 1/p � (1 − θ)/p0,

(ii) ( _F
s,q

p0 ,q0
, _F

s,q

p1 ,q1
)θ,r � _F

s,q

p,r, if 1/p � (1 − θ)/p0 + θ/p1.

By (10) and (15), we can rewrite Teorem 1 as given in
the following:

Remark 3

Lp0
_l
s

q􏼐 􏼑, Lp1
_l
s

q􏼐 􏼑􏼐 􏼑θ,r
� Lp,r

_l
s

q􏼐 􏼑, if
1
p

�
1 − θ

p0
+

θ
p1

. (18)

Especially, for Lp,p � Lp, we have

Corollary 1. Let 1/p � (1 − θ)/p0 + θ/p1. If p � r, then

Lp0
_l
s

q􏼐 􏼑, Lp1
_l
s

q􏼐 􏼑􏼐 􏼑θ,p
� Lp

_l
s

q􏼐 􏼑, (19)

or equivalently,

_F
s,q

p0
, _F

s,q

p1
􏼐 􏼑θ,p

� _F
s,q

p . (20)

3. Relationship between ( _B
s,q

p0
, _B

s,q

p1
)θ,r and _B

s,q

p,r

In this section, we give the relationship between the
real interpolation spaces ( _B

s,q

p0
, _B

s,q

p1
)θ,r and Besov–Lorentz

spaces _B
s,q

p,r.
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Theorem 2. Let θ ∈ (0, 1), s ∈ R, 0< q, r≤∞,
1≤p0 <p1 <∞ and 1/p � (1 − θ)/p0 + θ/p1. Ten,

(i) ( _B
s,q

p0
, _B

s,q

p1
)θ,r↪ _B

s,q

p,r, if 0< r≤ q≤∞,

(ii) _B
s,q

p,r↪ ( _B
s,q

p0
, _B

s,q

p1
)θ,r, if 0< q≤ r≤∞,

(iii) ( _B
s,q

p0
, _B

s,q

p1
)θ,q � _B

s,q

p,q, if 0< r � q≤∞.

Before the proof of Teorem 2, we frst list several useful
lemmas. Defne the functional Kp by

Kp � Kp t, f, A0, A1( 􏼁 � inf
f�f0+f1

f0
����

����
p

A0
+ t

p
f1

����
����

P

A1
􏼒 􏼓

1/p
, (21)

‖f‖ A0 ,A1( )θ,q,Kp

� 􏽚
∞

0
t
− θ

Kp t, f, A0, A1( 􏼁􏽨 􏽩
qdt

t
􏼢 􏼣

1/q

. (22)

First, we recall an important lemma about
Kp(t, f, A0, A1), see [8].

Lemma 4. Let A � (A0, A1) be a couple of quasi-normed
spaces. For any p> 0, we have

‖f‖ A0 ,A1( )θ,q,K
∼ ‖f‖ A0 ,A1( )θ,q,Kp

. (23)

We do not prove Teorem 2 directly. We prove the
following equivalent theorem:

Theorem 3. Let θ ∈ (0, 1), s ∈ R, 0< q, r≤∞ and
1≤p0 <p1 <∞. Ten,

(i) _l
s

q((Lp0
), _l

s

q(Lp1
))θ,r↪ _l

s

q((Lp0
, Lp1

)θ,r), if 0< r≤
q≤∞,

(ii) _l
s

q((Lp0
, Lp1

)θ,r)↪ ( _l
s

q(Lp0
), _l

s

q(Lp1
))θ,r, if

0< q≤ r≤∞,

(iii) ( _l
s

q(Lp0
), _l

s

q(Lp1
))θ,q � _l

s

q((Lp0
, Lp1

)θ,q), if 0< q �

r≤∞.

It is easy to see that Teorem 3 implies Teorem 2.

Remark 4. Denote 1/p � (1 − θ)/p0 + θ/p1. For function f

and u ∈ Z, denote fu � ψu ∗f. We have

‖f‖ _B
s,q

p0
� fu􏼈 􏼉

����
����

_l
s

q Lp0􏼐 􏼑

‖f‖ _B
s,q

p1
� fu􏼈 􏼉

����
����

_l
s

q Lp1􏼐 􏼑
,

‖f‖ _B
s,q

p,r
� fu􏼈 􏼉

����
���� _l

s

q Lp,r( 􏼁
� fu􏼈 􏼉

����
����

_l
s

q Lp0 ,Lp1􏼐 􏼑
θ,r

􏼒 􏼓.

(24)

Hence, Teorem 3 is equivalent to Teorem 2.

Since Lp,p � Lp, by Teorem 3, we can see that a part of
real interpolation spaces are still Besov spaces. In fact,
we have

Remark 5. Let 1/p � (1 − θ)/p0 + θ/p1. If q � p, then

_l
s

p Lp0
􏼐 􏼑, _l

s

p Lp1
􏼐 􏼑􏼐 􏼑θ,p

� _l
s

p Lp􏼐 􏼑. (25)

Consequently,

_B
s,p

p0
, _B

s,p

p1
􏼐 􏼑θ,p

� _B
s,p

p . (26)

Now, we come to prove Teorem 3.

Proof. Let a denote the sequence aj􏽮 􏽯
j∈Z, ‖f‖p ≔ ‖f‖Lp

and

‖f‖ A0 ,A1( )θ,q
≔ ‖f‖ A0 ,A1( )θ,q,K

. (27)

For j ∈ Z and 0< q<∞, we deduce

Kq(t, a) ≔ Kq t, a, _l
s

q Lp0
􏼐 􏼑, _l

s

q Lp1
􏼐 􏼑􏼐 􏼑 � 􏽘

j

2jsq inf
aj�a0

j
+a1

j

a
0
j

�����

�����
q

p0
+ t

q
a
1
j

�����

�����
q

p1
􏼒 􏼓⎡⎢⎢⎣ ⎤⎥⎥⎦

1/q

∼ 􏽘
j

2jsq inf
aj�a0

j
+a1

j

a
0
j

�����

�����p0
+ t a

1
j

�����

�����p1
􏼒 􏼓⎡⎣ ⎤⎦

q⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

1/q

.

(28)
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For q �∞, we have

K∞(t, a) � sup
j

2js inf
aj�a0

j
+a1

j

a
0
j

�����

�����p0
+ t a

1
j

�����

�����p1
􏼒 􏼓⎡⎣ ⎤⎦. (29)

As 0< r<∞, by (28), Lemma 4 and using a discrete
representation of the space ‖f‖(A0,A1)θ,q

which is described in
Lemma 1, we deduce that

‖a‖
_l
s

q Lp0􏼐 􏼑, _l
s

q Lp1􏼐 􏼑􏼐 􏼑
θ,r

∼ 􏽚
∞

0
t
− θ

Kq(t, a)􏽨 􏽩
rdt

t
􏼨 􏼩

1/r

∼ 􏽘
k

2− krθ
Kq 2k

, a􏼐 􏼑
r

⎡⎣ ⎤⎦
1/r

∼ 􏽘
k

2− krθ
􏽘

j

2jsq inf
aj�a0

j
+a1

j

a
0
j

�����

�����p0
+ 2k

a
1
j

�����

�����p1
􏼒 􏼓⎡⎣ ⎤⎦

q⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

r/q

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/r

.

(30)

If r �∞, by (29), then

‖a‖
_l
s

q Lp0􏼐 􏼑, _l
s

q Lp1􏼐 􏼑􏼐 􏼑
θ,∞

∼ sup
k

2− kθ
􏽘

j

2jsq inf
aj�a0

j
+a1

j

a
0
j

�����

�����p0
+ 2k

a
1
j

�����

�����p1
􏼒 􏼓⎡⎣ ⎤⎦

q⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

1/q

.

(31)

When q �∞,

‖a‖
_l
s

∞ Lp0􏼐 􏼑, _l
s

∞ Lp1􏼐 􏼑􏼐 􏼑
θ,r

∼ 􏽘
k

2− krθ sup
j

2js inf
aj�a0

j
+a1

j

a
0
j

�����

�����p0
+ 2k

a
1
j

�����

�����p1
􏼒 􏼓⎡⎣ ⎤⎦

⎧⎨

⎩

⎫⎬

⎭

r

⎛⎝ ⎞⎠

1/r

.

(32)

As 0< q<∞, applying a discrete representation of the
space ‖aj‖(Lp0 ,Lp1)θ,r

, we have

aj

�����

�����
Lp0 ,Lp1􏼐 􏼑

θ,r

∼ 􏽘
k

2− krθ inf
aj�a0

j
+a1

j

a
0
j

�����

�����p0
+ 2k

a
1
j

�����

�����p1
􏼒 􏼓⎡⎣ ⎤⎦

r
⎧⎨

⎩

⎫⎬

⎭

1/r

.

(33)

Applying (33), we know that

‖a‖
_l
s

q Lp0 ,Lp1􏼐 􏼑􏼐
θ,r

􏼓
� 􏽘

j

2jsq
‖aj‖

q

Lp0 ,Lp1
􏼐 􏼑

θ,r

⎛⎝ ⎞⎠

1/q

∼ 􏽘
j

2jsq
􏽘
k

2− krθ inf
aj�a0

j
+a1

j

a
0
j

�����

�����p0
+ 2k

a
1
j

�����

�����p1
􏼒 􏼓⎡⎣ ⎤⎦

r
⎧⎨

⎩

⎫⎬

⎭

q/r

⎛⎝ ⎞⎠

1/q

.

(34)

When q �∞,

‖a‖
_l
s

∞ Lp0 ,Lp1􏼐 􏼑􏼐
θ,r

􏼓

∼ sup
j

2js
􏽘
k

2− krθ inf
aj�a0

j
+a1

j

a
0
j

�����

�����p0
+ 2k

a
1
j

�����

�����p1
􏼒 􏼓⎡⎣ ⎤⎦

r
⎧⎨

⎩

⎫⎬

⎭

1/r

.

(35)

For r �∞,

‖a‖
_l
s

q Lp0 ,Lp1􏼐 􏼑􏼐
θ,∞

􏼓
∼ 􏽘

j

2sjq sup
k

2− kθ inf
aj�a0

j
+a1

j

a
0
j

�����

�����p0
+ 2k

a
1
j

�����

�����p1
􏼒 􏼓⎡⎣ ⎤⎦

⎧⎨

⎩

⎫⎬

⎭

q

⎛⎝ ⎞⎠

1/q

. (36)
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(i) If 0< r≤ q<∞, then q/r≥ 1. From (30), (34) and
Minkowski’s inequality (17), it follows that

‖a‖
_l
s

q Lp0 ,Lp1􏼐 􏼑􏼐
θ,r

􏼓
∼ 􏽘

j

2jsq
􏽘
k

2− krθ inf
aj�a0

j
+a1

j

a
0
j

�����

�����p0
+ 2k

a
1
j

�����

�����p1
􏼒 􏼓⎡⎣ ⎤⎦

r
⎧⎨

⎩

⎫⎬

⎭

q/r

⎛⎝ ⎞⎠

1/q

� 􏽘
j

2jsq
􏽘
k

2− krθ inf
aj�a0

j
+a1

j

a
0
j

�����

�����p0
+ 2k

a
1
j

�����

�����p1
􏼒 􏼓⎡⎣ ⎤⎦

r
⎧⎨

⎩

⎫⎬

⎭

q/r

⎛⎝ ⎞⎠

r/q
⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

1/r

≤ 􏽘
k

2− krθ
􏽘

j

2jsq inf
aj�a0

j
+a1

j

a
0
j

�����

�����p0
+ 2k

a
1
j

�����

�����p1
􏼒 􏼓⎡⎣ ⎤⎦

q⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

r/q

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/r

∼ ‖a‖
_l
s

q Lp0􏼐 􏼑, _l
s

q Lp1􏼐 􏼑􏼐 􏼑
θ,r

.

(37)

As q �∞, by (32) and (35), we obtain

‖a‖
_l
s

∞ Lp0 ,Lp1􏼐 􏼑􏼐
θ,r

􏼓
∼ sup

j

2js
􏽘
k

2− krθ inf
aj�a0

j
+a1

j

a
0
j

�����

�����p0
+ 2k

a
1
j

�����

�����p1
􏼒 􏼓⎡⎣ ⎤⎦

r
⎧⎨

⎩

⎫⎬

⎭

1/r

≤ 􏽘
k

2− krθ sup
j

2js inf
aj�a0

j
+a1

j

a
0
j

�����

�����p0
+ 2k

a
1
j

�����

�����p1
􏼒 􏼓⎡⎣ ⎤⎦

⎧⎨

⎩

⎫⎬

⎭

r

⎛⎝ ⎞⎠

1/r

∼ ‖a‖
_l
s

∞ Lp0􏼐 􏼑, _l
s

∞ Lp1􏼐 􏼑􏼐 􏼑
θ,r

.

(38)

So

_l
s

q Lp0
􏼐 􏼑, _l

s

q Lp1
􏼐 􏼑􏼑θ,r

↪ _l
s

q Lp0
, Lp1

􏼐 􏼑􏼐 θ,r
􏼒 􏼓, if  0< r≤ q≤∞.

(39)

(ii) Conversely, if 0< q≤ r<∞, then r/q≥ 1. In a sim-
ilar way, by (30), (34) with Minkowski’s inequality
(17), we obtain

‖a‖
_l
s

q Lp0􏼐 􏼑, _l
s

q Lp1􏼐 􏼑􏼐 􏼑
θ,r

∼ 􏽘
k

2− krθ
􏽘

j

2jsq inf
aj�a0

j
+a1

j

a
0
j

�����

�����p0
+ 2k

a
1
j

�����

�����p1
􏼒 􏼓⎡⎣ ⎤⎦

q⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

r/q

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/r

� 􏽘
k

2− krθ
􏽘

j

2jsq inf
aj�a0

j
+a1

j

a
0
j

�����

�����p0
+ 2k

a
1
j

�����

�����p1
􏼒 􏼓⎡⎣ ⎤⎦

q⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

r/q

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

q/r
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1/q

≤ 􏽘
j

2jsq
􏽘
k

2− krθ inf
aj�a0

j
+a1

j

a
0
j

�����

�����p0
+ 2k

a
1
j

�����

�����p1
􏼒 􏼓⎡⎣ ⎤⎦

r
⎧⎨

⎩

⎫⎬

⎭

q/r

⎛⎝ ⎞⎠

1/q

∼ ‖a‖
_l
s

q Lp0 ,Lp1􏼐 􏼑􏼐
θ,r

􏼓
.

(40)

When r �∞, by (31) and (36) and the same as we
did in (i), we omit the details. Hence,
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_l
s

q Lp0
, Lp1

􏼐 􏼑θ,r
􏼒 􏼓↪ _l

s

q Lp0
􏼐 􏼑, _l

s

q Lp1
􏼐 􏼑􏼐 􏼑θ,r

, if  0< q≤ r≤∞.

(41)

(iii) For 0< q � r≤∞, from (i) and (ii), it is easy to see
that

_l
s

q Lp0
􏼐 􏼑, _l

s

q Lp1
􏼐 􏼑􏼑θ,q

� _l
s

q Lp0
, Lp1

􏼐 􏼑􏼐 θ,q
􏼒 􏼓. (42)

We fnish the proof of Teorem 3. □

By Remark 3, as contrasted with the real interpolation of
Triebel–Lizorkin spaces, we conclude the following result:

Remark 6. Fixed the indices s and q, the real interpolation of
Triebel–Lizorkin spaces satisfy

Lp0
_l
s

q􏼐 􏼑, Lp1
_l
s

q􏼐 􏼑􏼐 􏼑θ,r
� Lp,r

_l
s

q􏼐 􏼑,with
1
p

�
1 − θ

p0
+

θ
p1

. (43)

Te real interpolation of Triebel–Lizorkin spaces for
index p can be directly interpolated as Lp,r, but the real
interpolation of Besov spaces for index p can not be directly
interpolated as Lp,r, the relationship ( _l

s

q(Lp0
), _l

s

q(Lp1
))θ,r

between _l
s

q(Lp,r) depends on whether q≤ r or q≥ r.

Moreover, we need to point out that for the in-
homogeneous spaces F

s,q
p and B

s,q
p , all the results of real

interpolation are also true.

4. Scaling Property

In this section, we get the scaling property of _Fp,r

s,q and _B
s,q

p,r.
Homogeneous spaces can be the critical spaces of many
nonlinear partial diferential equations. Critical spaces hold
an important status in nonlinear partial diferential equa-
tions. First, we recall the scaling property of Lorentz spaces,
see [15].

Lemma 5. Te Lorentz space Lp,r(R
n) is homogeneous, for

any strictly positive number Λ and any f belonging to
Lp,r(R

n):

‖f(Λ·)‖Lp,r
� Λ− n/p

‖f‖Lp,r
. (44)

Suppose that f is a tempered distribution, and consider
the tempered distribution fN defned by fN ≔ f(2N·),
then, we have the following proposition.

Proposition 1. We assumed that 1≤p<∞, 0< q, r<∞,
s ∈ R, x ∈ Rn, u ∈ Z, an integer N, and a distribution f of
S′(Rn)∖P(Rn), then, we have

fN

����
���� _F

s,q

p,r
� 2N(s− (n/p))

‖f‖ _F
s,q

p,r
,

fN

����
���� _B

s,q

p,r
� 2N(s− (n/p))

‖f‖ _B
s,q

p,r
.

(45)

Proof. Let us recall:

‖f‖ _F
s,q

p,r
� fu􏼈 􏼉

����
����

Lp,r
_l
s

q􏼐 􏼑
, ‖f‖ _B

s,q

p,r
� fu􏼈 􏼉

����
���� _l

s

q Lp,r( 􏼁
, (46)

and then by defnition of (fN)u and the change of variable
t � 2Nx, we obtain

fN( 􏼁u � fu 2N
·􏼐 􏼑 � ψu ∗fN

� 2un
􏽚
Rn
ψ 2u

(x − y)( 􏼁fN(y)dy

� 2un
􏽚
Rn
ψ 2u

(x − y)( 􏼁f 2N
y􏼐 􏼑dy

� 2(u− N)n
􏽚
Rn
ψ 2u

x − 2u− N
t􏼐 􏼑f(t)dt

� 2(u− N)n
􏽚
Rn
ψ 2j− N 2N

x − t􏼐 􏼑􏼐 􏼑f(t)dt

� fu− N 2N
x􏼐 􏼑.

(47)

By Lemma 5, we have

fN( 􏼁u

����
����Lp,r

� 2− N(n/p)
fu− N

����
����Lp,r

. (48)

Ten,

fN

����
���� _B

s,q

p,r
� f 2N

·􏼐 􏼑
�����

����� _B
s,q

p,r

� fu 2N
·􏼐 􏼑

�����

�����Lp,r

􏼚 􏼛
_l
s

q

� fN( 􏼁u

����
����Lp,r

􏼚 􏼛
_l
s

q

� 􏽘
u

2su2− Nn/p
fu− N

����
����Lp,r

􏼒 􏼓
q

⎡⎣ ⎤⎦
1/q

� 􏽘
u

2s(u− N)2N(s− n/p)
fu− N

����
����Lp,r

􏼒 􏼓
q

⎡⎣ ⎤⎦
1/q

� 2N(s− n/p)
􏽘

u− N

2s(u− N)
fu− N

����
����Lp,r

􏼒 􏼓
q

⎡⎣ ⎤⎦
1/q

� 2N(s− n/p)
‖f‖ _B

s,q

p,r
,

(49)

for the homogeneous Triebel–Lizorkin–Lorentz spaces, the
proof is similar, we omit the details, see [16]. □

More generally, there exists a constant C, depending
only on s, such that for all positive Λ, we have

C
− 1Λs− (n/p)

‖f‖ _B
s,q

p,r
≤ ‖f(Λ·)‖ _B

s,q

p,r
≤CΛs− (n/p)

‖f‖ _B
s,q

p,r
, (50)

and the similar for _F
s,q

p,r. Ten we have the following
corollary.

Corollary 2. Let 1≤p<∞, 0< q, r<∞, s ∈ R, x ∈ Rn and
a distribution f of S′, for any strictly positive number Λ, we
have

‖f(Λ·)‖ _F
s,q

p,r
∼ Λ(s− (n/p))

‖f‖ _F
s,q

p,r
, ‖f(Λ·)‖ _B

s,q

p,r
∼ Λ(s− (n/p))

‖f‖ _B
s,q

p,r
.

(51)

Remark 7. Tere have been a lot of results about the
properties of these two types spaces, such as the wavelet
decomposition characterization of _B

s,q

p,r and _F
s,q

p,r is already
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obtained, see [1], the boundedness of operators in the
generalized Besov-type was considered in [17], and so on.
Tese properties are important in Cauchy problem for
nonlinear PDE. For instance, based on these properties, we
can consider the well-posedness of the Navier–Stokes
equations in _B

s,q

p,r and _F
s,q

p,r.
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