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Te SIRDV (Susceptible, Infected, Recovered, Death, Vaccinated) compartmental model along with time-varying parameters is
used to model the spread of COVID-19 in the United States. Time-varying parameters account for changes in transmission rates,
people’s behaviors, safety precautions, government regulations, the rate of vaccinations, and also the probabilities of recovery and
death. By using a parameter estimation based on the simplex algorithm, the system of diferential equations is able to match real
COVID-19 data for infections, deaths, and vaccinations in the United States of America with relatively high precision.
Autoregression is used to forecast parameters in order to forecast solutions. Van den Driessche’s next-generation approach for
basic reproduction number agrees well across the entire time period. Analyses on sensitivity and elasticity are performed on the
reproduction number with respect to transmission, exit, and natural death rates in order to observe the changes from a small
change in parameter values. Model validation through the Akaike Information Criterion ensures that the model is suitable and
optimal for modeling the spread of COVID-19.

1. Introduction

Te Kermack–McKendrick SIR-type model and its variants
have become one of the most useful tools for modeling the
spread of infectious diseases. Much research has been done
on exploring the capabilities and extensions of SIR-type
models through applications in many infectious diseases [1].
Te SIR and SEIR model variants are commonly used to
analyze the spread of infectious diseases in population. Te
SIR model divides the population into three compartments:
Susceptible (S), iInfected (I), and Recovered (R). It assumes
that individuals can be categorized into one of these com-
partments, with recovered individuals gaining lifelong im-
munity. Te model tracks the transitions between
compartments, such as susceptible individuals becoming
infected and infected individuals recovering. Te SEIR
model expands on this by adding an Exposed (E)

compartment to represent individuals in the incubation
period. It accounts for the fact that individuals can transmit
the infection before showing symptoms [2]. Both models
help researchers understand disease dynamics, evaluate
interventions, and make predictions. While these models
simplify real-world complexities, they provide valuable in-
sights into how diseases spread and can inform public health
strategies.

Due to COVID-19, mathematical epidemiology, par-
ticularly the use of the SIR model, has gained popularity and
is used by many researchers throughout the world who are
interested in studying the topic [3–13]. Since COVID-19 is
a disease with a latent period, some include the exposed
compartment in the SIR model [2]. SEIR models are also
suitable and popular amongst epidemiologists to study the
outbreak of COVID-19 in diferent countries and regions
[8]. On December 31, 2020, WHO issues its frst emergency
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use validation for a COVID-19 vaccine [14]. Te vaccinated
compartment, along with other compartments such as
quarantined and death, is added to the SEIR or SIR model
[15]. However, while the models previously mentioned are
able to simulate and match real COVID-19 data for a rela-
tively short span of time of around a few weeks to months,
they fail to compare to the data over a long period of time
due to many factors changing and afecting the disease.
Tese models often assume constant, time-independent
parameters for transmission, death, and recovery rates,
which would be sufcient for a short time span; however, it is
not realistic due to the changes in safety regulations set by
the government, the behavior of people, the ability to cure
COVID-19 patients, and the rate at which people are getting
vaccinated.

Tere are several publications with similar interests in
modeling the spread of COVID-19 over a long period of
time using varying parameters. An example of a model using
time-varying parameters for a longer time span include
Nastasi’s use of nine diferent time-dependent transmission
frequency parameter values throughout the span of 400 days
in order to account for diferent policy measures in Great
Britain and Israel [16]. Similarly, Girardi and Gaetan apply
the concept of time-varying parameters to the transmission
rate, which is able to qualitatively describe the number of
cases over the span of several months in three diferent
countries [17]. Another research explores the same notion of
time-varying parameters in the sense of parameter esti-
mation through deep learning on the transmission rate and
deceased rate [18]. Furthermore, a study involving the es-
timation of the time-varying reproduction number has been
done based on various cities in China [19]. From these
works, it can be seen that the time-varying parameters are
what make SIR-type models capable of modeling COVID-19
over a longer period of time, accounting for changes that
afect the spread of the disease.

Te objective of this research is to use an SIRDV model
to match the United State’s real COVID-19 data with high
precision. Te compartments compared with real data are
infected (I), death (D), and vaccinated (V). In order to
achieve high precision, this model varies the transmission
rate β, death probability p, and vaccination rates σ on a daily
basis. Te method used for parameter estimation is de-
veloped based on MATLAB’s fminsearch function and the
simplex algorithm. Specifcally, the fminsearch function in
MATLAB utilizes the Nelder–Mead simplex algorithm,
a derivative-free optimization method, to fnd the minimum
value of a given function. It constructs a simplex in the
parameter space, iteratively updating its vertices based on
function evaluations, aiming to converge towards the
minimum. fminsearch is particularly useful for optimizing
functions without readily available derivative information or
in cases where computing derivatives is challenging. Since
the simplex algorithm is lightweight and fast, all three pa-
rameters with over 800 fnal values each after 10 attempts of
optimization are able to be obtained in under 6minutes. Te
solutions are plotted against real active cases data from
Worldometer [20], deaths, and fully vaccinated people on
Our World in Data [21].

Te parameters obtained by the method are used to
compute time-varying basic reproduction numbers and are
compared to reproduction rates presented by Our World in
Data [21]. Sensitivity analysis is performed by day since
diferent parameter values yield diferent values for sensi-
tivity. Elasticity values are calculated in order to observe the
basic reproduction numbers’ response to each parameter.
Error analysis is performed, and Akaike Information Cri-
terion (AIC) values are also computed on a daily basis in
order to show that the model is indeed valid when compared
to similar models [22].

2. Model

Te constructed SIRDV model is similar to a typical SIR-
type model, with the same compartments being susceptible
(S), infected (I), and recovered (R); however, with the
addition of deaths (D) due to COVID-19 and vaccinated
(V), the infected class has the same exit rate for recovery and
death, with the diference being the death probability p. It is
allowed for recovered people to become susceptible again at
the rate of α and for fully vaccinated people to become
infected, but with a probability factor of r. Te diagram and
the nonlinear diferential equation for the SIRDV model are
represented in Figure 1 and equations (1)–(5), respectively.

dS

dt
� μN −

βSI
N

− (σ + μ)S + αR, (1)

dI

dt
�
βSI
N

+ r
βVI
N

− (c + μ)I, (2)

dR

dt
� (1 − p)cI − (α + μ)R, (3)

dD

dt
� pcI. (4)

When the vaccinated compartment is considered, there
are two diferential equations used for vaccinations, (5) and
(6). When optimizing for compartments other than V,
equation (5) is used. Since the vaccination data are only
a count of who has received the vaccine (not accounting for
people who are infected or died after the vaccination),
equation (6) must be used for optimizing the vaccination
compartment. Equation (6) is a modifcation of equation (5),
where all negative terms denoting the population exiting the
vaccination compartment are omitted.

dV

dt
� − r

βVI
N

+ σS − μV, (5)

dV

dt
� σS. (6)

Te term N denotes the current population, in which
only the alive population takes into account, thus excluding
people in compartment D.

N � S + I + R + V. (7)
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3. Parameter Estimation

3.1. Parameters. Constant parameters are kept as a single
value throughout the simulation under the assumption that
there are no signifcant changes in the values over the entire
time span. It is assumed that the average exit rate from
infectious, recovery to susceptible, natural death rate, and
probability of infection from being vaccinated do not change
over the entire time span. Constant parameter values are
listed in Table 1; meanwhile, varying parameters will attain
many diferent values upon optimization, their values will
not be presented within Table 1.

3.2. Time-Varying Parameter Estimation. Constant param-
eter values are not realistic due to the changes in safety
regulations set by the government, behavior of people, ability
to cure COVID-19 patients, and vaccination rate; hence,
there are many previous studies implementing the time-
varying parameters in the models [16–19]. Terefore, the
time-varying parameter estimation is an essential technique
to optimize the parameter in the SIRDV model. Parameters
c, α, μ, and r are kept constant throughout all time steps, as
there are no reported signifcant changes in the rate at which
people recover, become susceptible again, die of other
causes, or change in the probability of being infected after
being fully vaccinated. Te transmission rate, probability of
death, and vaccination rate are expected to change
throughout the course of the pandemic, and will also have
the greatest impact when attempting to match the solutions
of themodel to the real data.Terefore, only parameters β, p,
and σ vary with time and undergo the parameter estimation
method.

MATLAB’s built-infminsearch function which is based
on the simplex algorithm is used to minimize the sum of
squared errors (SSE) of the solution computed by MAT-
LAB’s ode45 based on the Runge–Kutta numerical scheme
and the real data in time steps of a single day by one pa-
rameter at a time. In MATLAB, ode45 is a numerical in-
tegration algorithm used to solve ODEs. It employs
a variable step-size, Runge–Kutta method of order 4(5),
meaning it combines the fourth and ffth-order Run-
ge–Kutta methods to achieve higher accuracy. ode45 sub-
divides the integration interval into smaller intervals and
approximates the solution by iteratively computing in-
termediate values using the Runge–Kutta formulae. It

dynamically adjusts the step-size based on the estimated
error, aiming to maintain accuracy while efciently in-
tegrating the ODE. ode45 is a popular choice for solving
a wide range of ODE problems due to its balance between
accuracy and computational efciency.

Te fminsearch function in MATLAB is a numerical
optimization algorithm that aims to fnd the minimum value
of a given function without requiring derivative information.
It utilizes the Nelder–Mead simplex algorithm, which
constructs a geometric fgure called a simplex in the pa-
rameter space.Te algorithm iteratively adjusts the simplex’s
vertices based on function evaluations, such as refecting,
expanding, contracting, or shrinking, in order to converge
towards the minimum. By iteratively updating the simplex,
fminsearch searches for the optimal solution within the
parameter space, making it useful for optimizing functions
where derivatives are not readily available or difcult to
compute.

In the parameter estimation method in Figure 2, the
initial parameter value guesses are improved upon via the
simplex algorithm, leading to the optimal parameter values
by minimizing the error between the real data and the
numerical solution. Te parameters can be estimated in any
order and will yield the same results; however, choosing the
order from left to right in the model results in less time and
optimization attempts are needed. After performing the
optimization algorithm for one time step, the optimized
parameter value and its corresponding solution value are
then stored in the parameters and solution arrays, re-
spectively. Te process is then repeated by taking the
endpoint of the solution array as the initial condition for
when the dynamical system is to be solved and optimized
again, and the next initial guess for the parameter is reset
to 0.

Te fminsearch function is highly efcient, however
unconstrained; therefore, it may return values that are in-
valid for being less than 0 or greater than 1 for certain
parameters. In order to avoid negative parameters, a lower
bound condition is placed such that the dynamical system is
solved with the assumption that the parameter is 0 if the
optimal parameter returned by the algorithm is negative. An
upper bound condition is also in place for p and σ, since
those parameters must be strictly less than 1. Since fmin-
search operates by searching for a local minimum in the
neighborhood of the initial guess, the initial guess for every
parameter is 0. Te optimization procedure is applied
multiple times to yield the best results for all classes.

3.3.Results ofEstimatedParameters. Te values of β, p, and σ
obtained from the parameter estimation technique are
plotted starting from January 1st, 2020, in Figure 3, in order
to demonstrate the change in people’s behavior over the time
span, as well as to observe any trends that may be present.

Te estimated parameter values appear to generally
follow a nonlinear trend with very few outliers, which lead to
the ability to analyze people’s behavior over the course of the
pandemic. Te transmission rate β appears to take a drop
signifcantly during the months of COVID-19 lockdown,

rβ

β

α

(1-p)γ

pγσ

Figure 1: Diagram of the SIRDV model.

Journal of Mathematics 3



Table 1: Parameter interpretation and values.

Parameters Description Values (da y− 1) Types
β Transmission rate — Varying
c Infectious exit rate 1/14 Constant
α Recovery to susceptible rate 1/30 Constant
p Probability of death — Varying
σ Vaccination rate — Varying
μ Natural death rate 0.0000248 Constant
r Probability of infection after vaccinated 0.01 Constant
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Figure 2: Parameter estimation fowchart.
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Figure 3: Plots of parameters used in order to attain optimized solutions.
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which is around late March to late May of 2020 (dates of
lockdown vary by state). Te parameter β steadily increases
between March 2021 and February 2022, then rapidly in-
creases after, which corresponds well to the real behavior of
people practicing strict safety precautions during lockdown,
then gradually increasing transmission, and currently having
little to no safety precautions after month 25. Te death
probability p was initially high in the frst few days of
COVID-19, then quickly dropped to less than 0.05 and
eventually converged to 0 aroundMay 2020.Te vaccination
rate increases rapidly from around January until May 2021,
which was when vaccines were frst issued to the public in
the United States.

Te frst peak in the vaccination rate likely corresponds
to when the COVID-19 vaccines were frst released to the
public, where large numbers of people were receiving the
vaccines at around the same time. Following that frst peak,
there are smaller peaks that follow, which suggests that there
are people who became vaccinated in the months following
the period in which the vaccines were frst rolled out. Te
vaccination rate in later months was signifcantly lower than
the vaccines that were frst available, suggesting that ev-
eryone who wanted the vaccine had received it. Te pa-
rameter values yielded from the parameter estimation
method correlate well with people’s behavior over the course
of the pandemic.

4. Basic Reproduction Number

Te basic reproduction number denoted by R0 is the ex-
pected number of cases from one infected case. Since the
parameters are functions of time, the basic reproduction
number is also computed as a function of time. Here, R0 is
computed using two diferent methods, one based on the
transmission rate and mean infectious time, while the other
uses Van den Driessche’s next-generation approach [23]. It
is able to be observed that the next-generation approach
yields better results when compared to the reproduction rate
data [21].

4.1. Computing Basic Reproduction Number with Trans-
mission Rate and Infectious Period. Te basic reproduction
number R0 is often approximated using the simple def-
nition of the transmission rate multiplied by the exit rate
from the infectious compartment.

R0 � βτ, (8)

where

τ � (c + μ)
− 1

. (9)

Te R0 values obtained from the transmission rate and
mean infectious time agree with the reproduction rate data
up until around month 15 in Figure 4. Its inability to match
the trend of the data throughout the entire time span
suggests another method may be able to yield results closer
to the data.

4.2. Basic Reproduction Number (Van den Driessche and
WatmoughNextGeneration). In the attempt to obtain better
results for R0, Van den Driessche’s next-generation ap-
proach is used [23]. Let F denote the terms entering the
infected compartment and V be the exiting terms from the
infected compartment.

F �
βSI
N

+ r
βVI
N

,

V � (c + μ)I.

(10)

Let F and V be partial derivatives with respect to the
active infected cases I at initial value x0.

F �
zF x0( 􏼁

zI
�
βS0

N
+ r

βV0

N
,

V �
zV x0( 􏼁

zI
� (c + μ),

(11)

whereR0 is defned as FV − 1. Terefore, substituting F and
V yields

R0 � FV− 1
�
β S0 + rV0( 􏼁

N(c + μ)
. (12)

Te R0 values obtained from the transmission rate and
mean infectious time in Figure 5 are able to agree with the
reproduction rate data for only around the frst year. Te
next-generation approach, however, agrees well with the
reproduction rate data throughout the entire two years. Te
dynamical system is solved repeatedly with diferent pa-
rameters at each time step; the initial values S0 and V0 are
considered to be the endpoints of the previous solution
values. Since the R0 values from the next-generation
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Figure 4: Plot of basic reproduction number obtained by the
transmission rate and the mean infectious time.
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approach agree well with the data, it can be stated that the
estimated values of the time-varying parameter β and the
chosen constant parameters r, c, and μ are suitable.

5. Results and Discussion

5.1. Numerical Solutions and Data Comparison. Te data for
active infected cases, deaths from COVID-19, and vacci-
nations are available by day; therefore, numerical results of
compartments I, D, and V are able to be compared to
real data.

After obtaining the solutions for active infected cases,
deaths, and vaccinations, each class is plotted against their
respective real data for visual comparison (Figure 6). Te
solutions for all three compartments seem to agree well with
the real data across the entire time span. Te major ad-
vantage of varying parameter values by day is the ability to
capture every detail such as small and large peaks in active
infected cases and to account for sudden increases or de-
creases. It can also be seen that the plots for vaccinations and
deaths are able to capture changes in rates despite being
monotonically increasing solutions. Te plot of vaccinations
here is the count for the number of vaccinations, which
neglects the population that has exited the compartment and
has become infected or died (from reasons other than
COVID-19) after vaccinations.

5.2.Numerical Solutions forAllCompartments. Te solutions
for all compartments are plotted in the same fgure in order
to compare the populations in each compartment and the
magnitude of each trajectory relative to one another.

Te numerical solutions shown in the plot of all solu-
tions (Figure 7) are representative of the population cur-
rently in each class. It should be noted that the solution curve
for the vaccinated class V here represents the number of
vaccinated people who have not become infected after
vaccination, not to be confused with the vaccinated plot
previously shown (Figure 6), which is the count of the
number of people who are fully vaccinated. Similarly, the
solution curve for the recovered class R represents the
number of people who have recently recovered and are not
yet susceptible to reinfection.

Te rapid decline of the solutions to the susceptible class
S suggests that the number of susceptible people will soon
approach 0, which suggests the number of COVID-19 in-
fections would likely also reach 0 at around the same time.
Although the vaccinated class V is similar to the susceptible
class S in the way that people in both compartments are able
to become infected, the plots show that signifcantly more
people are protected by the vaccine, since at the moment the
solution for V is signifcantly higher than the solution for S.

Despite the high number of deaths, the magnitude of the
solution curve for deaths is relatively low throughout the
entire time span when compared to solutions of the other
compartments. Te curve of recovered class R follows the
same trends as the curve of infected class I, confrming the
fact that most people who are infected with COVID-19 do
indeed recover, keeping in mind that R is continuously
losing its population to S at the rate of α.

6. Forecasting Parameters and Solutions

6.1. Forecasting Parameters. An autoregressive (AR) model
based on MATLAB’s ar function is used on the parameters
β, p, and σ in order to predict the future parameter values for
the next 365 days based on all past respective parameter
values. Previous research utilizing the AR model used the
method directly on the solutions of the dynamical system
[24]. Meanwhile, in this research, it is applied to the pa-
rameters, which are then used when solving the dynamical
system. White noise is then added to the forecasted pa-
rameters in order to simulate the noise present in the pa-
rameter values obtained through the parameter estimation
method.

6.2. Forecasting Solutions. Past parameter values and fore-
casted parameter values are shown together on the same
plots in Figure 8. Te forecasted parameter values are then
used in the model in order to forecast the solutions for I, D,
and V. Te prediction shows that all parameter values will
eventually converge rapidly to 0.

Additional data corresponding to these compartments
are added in order to evaluate the performance of the
forecasting method in Figure 9. From the plot of active
infected cases, it is able to be observed that the solution using
the forecasted parameters follows the same trend as the real
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Figure 5: Plot of the basic reproduction number obtained by Van
den Driessche’s next-generation approach.
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data, except the real data decrease at a slightly faster rate.Te
predictions for deaths and vaccinations suggest that both
classes will no longer increase due to the parameter values
for p and σ being 0 in the forecast.

7. Sensitivity and Elasticity Analysis

7.1. Sensitivity. Te objective of the sensitivity analysis is to
determine which parameters are most infuential on the
solution of the model. Sensitivity is defned as follows:

S �
zQ

zP
. (13)

In which the sensitivity of quantity Q is being analyzed
with respect to the parameter P. Te reproduction number
R0 obtained by the next-generation method is the quantity
whose sensitivity is chosen to be analyzed. Let the disease-
free equilibrium be E � (S∗, I∗, R∗, D∗, V∗) � (N, 0, 0, 0, 0).
Te reproduction number at disease-free equilibrium is

R0 �
β

c + μ
. (14)

Taking the partial derivative of R0 with respect to each
parameter yields

S
c

R0
�

zR0

zc
� −

β
(c + μ)

2 , (15)

S
μ
R0

�
zR0

zμ
� −

β
(c + μ)

2 , (16)

S
β
R0

�
zR0

zβ
�

1
c + μ

. (17)

SinceSR0
β only depends on constant parameters, it may

be easily computed as a constant scalar value.

S
β
R0

� 0.9998. (18)

However, SR0
c and SR0

μ depend on β, which is
a variable parameter which can be a wide range of values.
Many diferent values of sensitivity will arise from this
simple formula. Terefore, a range of sensitivity values may
be observed.

maxβS
c

R0
≤Sc

R0
≤minβS

c

R0
,

maxβS
μ
R0
≤Sμ

R0
≤minβS

μ
R0

.
(19)

Since SR0
c � SR0

μ, upon substituting with appropriate
values for sensitivity formulae (15) or (16), yields the sen-
sitivity range

− 473.2930≤Sc

R0
,S

μ
R0
≤ 0. (20)

Te average values of SR0
c and SR0

μ are obtained by
letting β be the mean value of all the β values.

S
c

R0
,S

μ
R0

� − 18.6214. (21)

In order for the model to match the data towards the
beginning of the pandemic, the transmission rate β had to be
signifcantly higher due to the small initial infected pop-
ulation I0. Terefore, when computing SR0

c and SR0
μ

which depend on β, the sensitivity spikes all the way to
− 473.2930. To demonstrate the sensitivity of each parameter,
a perturbation of +0.001 is applied to one parameter (β, c, or
μ), while the other parameters, both variables and constants,
are kept at their original values after optimization. Te
solutions using the perturbed parameter values are then
plotted in Figure 10 against the real data for all three classes
in order to observe the efects of the perturbation.

Te active cases and deaths are greatly afected by the
small changes in parameter values. Vaccinations, however,
experience slight changes throughout perturbations of all
three parameters, although they are still visually observable.
As expected, the solutions exhibit the same characteristics as
the original parameter values, although they increase and
decrease at diferent rates.
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7.2. Elasticity. Since the sensitivity analysis is local, it does
not take into account the range of values that can be input as
parameters [2]. Terefore, the more useful concept elasticity
is computed, where elasticity is defned as follows:

E
P
Q �

zQ

zP

P

Q
. (22)

Using the results previously obtained from the section on
sensitivity, elasticity may be computed. Since formulae
obtained for elasticity are dependent only on constant pa-
rameters, singular scalar values for elasticities may be
obtained.

E
c

R0
�

zR0

zc

c

R0
� −

β
(c + μ)

2
c

R0
� −

c

c + μ
� − 0.9998,

E
μ
R0

�
zR0

zμ
μ
R0

� −
β

(c + μ)
2

μ
R0

� −
μ

c + μ
� − 2.4794 × 10− 4

,

E
β
R0

�
zR0

zβ
β
R0

�
1

(c + μ)

β
R0

� 1.

(23)

Te value obtained for ER0
β is 1, which is expected. Te

R0 observes a 0.9998% decrease after a 1% increase in c.
Similarly, R0 decreases by 2.4794 × 10− 4% after a 1% in-
crease in μ. Te impacts of β and c are very similar,
meanwhile μ has a signifcantly less signifcance (Figure 11).

8. Model Validation

Model validation is used in order to check accuracy and
performance of a certain model. Since the nature of this
research is able to be interpreted as a model solved separately
over small time steps or as one large model covering a long
period of time, the validation process is performed using
both interpretations.

8.1. Error Analysis. In order to measure the error between
the solution and the data, some basic regression analysis
techniques are used [25]. Te sum of squared errors (SSE)

and the sum of squared total (SST) are computed. Points
where there are no data present are excluded from the
computation of SSE. Let xi denote the value of the class at
time step i and 􏽢xi denote corresponding data at the same
time step. Furthermore, let x be the mean of the corre-
sponding data. Te time step i is a single day.

SSE � 􏽘
N

i�1
xi − 􏽢xi( 􏼁

2
,

SST � 􏽘
N

i�1
xi − x( 􏼁

2
,

FVU �
SSE
SST

,

R
2

� 1 − FVU.

(24)

Table 2 shows the SSE, SST, R2, and FVU of infected,
deaths, and vaccinated compartments. Te SSE values
computed for each class are notably high for infected and
vaccinated classes, which is contributed by several diferent
factors. Temodel handles very large populations; therefore,
relatively small errors between the solutions and the real data
are in reality quite large when compared to models that work
with smaller populations.Te model covers a long time span
and therefore contains more data, which are prone to having
higher SSE values. Te parameter estimation also has lim-
itations, as the optimized solution is the best possible so-
lution obtained by fminsearch, which is inferior to more
sophisticated optimization techniques in machine learning.
Te R2 values, however, are approximately 1 for all classes,
with the fraction of variance unexplained (FVU) being
insignifcantly small.

8.2. Single Time StepAIC. Te Akaike Information Criterion
(AIC) is applied to the model and data in order to determine
the validity of the model. Since the model is solved multiple
times in small time steps, the SSE and AIC values are cal-
culated for every time step j. Let m denote the number of
data points and k denote the number of parameters. For
a single time step, m � 2 and k � 7.

AICj � m log
SSEj

m
􏼠 􏼡 + 2k. (25)

From the plot of AIC values (Figure 12), the range of AIC
values from where the spread of COVID-19 started in the
United States appears to be in the typical range of AIC values
for SIR-type models [2].
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Figure 10: Plot of the sensitivity of R0 with respect to c or μ.
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Figure 11: Solutions after perturbing each parameter value by +0.001: (a) perturbation of β, (b) perturbation of c, and (c) perturbation of μ.

Table 2: Error.

Class SSE SST R2 FVU
Infected 3.3845 × 1011 3.7574 × 1016 1.0000 9.2507 × 10− 6

Deaths 6.3502 × 107 7.1267 × 1013 1.0000 8.9103 × 10− 7

Vaccinated 6.5550 × 1012 9.1546 × 1018 1.0000 7.1663 × 10− 7
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8.3. Total AIC. Te total AIC is calculated using the SSE
between the solutions and respective data over the entire
time span previously calculated in Section 7.1, along with the
total number of parameters used, which account for every
single value for each varying parameter. For total AIC, m �

805 and k � 3(805) + 4 � 2410 (3 sets of varying parameters
and 4 constant parameters).

Te total AIC values are similar to those calculated based
on the study of dynamic epidemic models via iterated fl-
tering [26]. Te AIC values for all three in Table 3 are
signifcantly high due to the large sample size and number of
parameters used in total.

9. Conclusion

By allowing the parameters to vary, the numbers of in-
fections, deaths, and vaccinations are able to be matched
relatively well to the real data on a daily basis for over two
years by a very simple model and optimization technique. A
major advantage of using the simplex algorithm for opti-
mization of many thousand parameter values is its ability to
yield satisfactory results within merely a few minutes on
a personal machine. Te basic reproduction number cal-
culated based on the parameter values obtained by the
parameter estimation method agrees well with the re-
production rate data. However, the model may be vulnerable
to data overftting, as the solutions depend heavily on the
parameter values, where future parameter values may not be

precisely determined, possibly leading to the future solutions
being inaccurate.

Performing the sensitivity analysis shows that there is
a wide range of sensitivity due to the many values of the
transmission rate β. Elasticity may be computed as singular
scalar values due to not depending on any variable pa-
rameters. Te SSE along with the AIC values falls within the
typical range for models of similar nature. From the results,
it can be concluded that the model along with the parameter
estimation algorithm is able to handle the United States’
COVID-19 data well and therefore should be able to handle
simulating the spread of other infectious diseases with more
intricate behavior, in which models with constant param-
eters are unable to. A limitation worth mentioning is that the
model is designed around COVID-19 data in the
United States, which makes the use of this model applicable
only to similar types of data.Temodel may be modifed and
adjusted accordingly in order to be applied to other in-
fectious diseases that are similar in nature.
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