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In real Hilbert spaces, let the CFPP indicate a common fixed-point problem of asymptotically nonexpansive operator and
countably many nonexpansive operators, and suppose that the HVI and VIP represent a hierarchical variational inequality and
a variational inequality problem, respectively. We put forward Mann hybrid deepest-descent extragradient approach for solving
the HVI with the CFPP and VIP constraints. The proposed algorithms are on the basis of Mann’s iterative technique, viscosity
approximation method, subgradient extragradient rule with linear-search process, and hybrid deepest-descent rule. Under
suitable restrictions, it is shown that the sequences constructed by the algorithms converge strongly to a solution of the HVI with

the CFPP and VIP constraints.

1. Introduction

Suppose that P is the nearest point projection from H onto
C, where H is a real Hilbert space with the inner product
{++y and induced norm | - ||, and C is a convex closed set
with @+#C c H. Let Fix(T) be the fixed-point set of an
operator T: C— H and R be the real-number set. We use
the notations — and—to denote the weak convergence and
strong one in H, respectively. A self-mapping T on C is said
to be of asymptotical nonexpansivity iff 3{6,} ¢ [0, +00] s.t.
lim_ , 6, =0 and

(1+ 6l — vl = | T*u - T Vv e k=1 (1)

In case 8, =0 for each k, T is said to be of non-
expansivity. Given an operator A: H— H. We consider
problem of seeking x*eC such that
(Ax*,y—x*)>0,Vy € C, which is called the classical
variational inequality one (VIP). We denote by VI(C, A) the
solution set of the VIP. In particular, if the VIP is defined

over C which is the solution set of another problem, then the
VIP is called the hierarchical variational inequality (for
short, HVI) over the solution set C. It is well known that the
extragradient approach is one of the most effective methods
for settling the VIP, which is proposed in Korpelevich [1],
that is, for any starting p, € C, {p,} is fabricated below:

{ dk = Pc (P — 4APk)s

2
Pir1 = Pc(pr — #Aqi), Yk 20, @
where p € (0,1/L) and L is the Lipschitzian coefficient of A.
In case VI (C, A) is nonempty, {p,} converges weakly to an
element in VI(C, A). At present, the vast literature on
Korpelevich’s extragradient technique reveals that numer-
ous scholars have given wide attention to it and improved it
in different manners (refer to [1-28]).
In 2018, Thong and Van Hieu [20] first invented the
inertial-type subgradient extragradient rule, i.e., for any
starting po, p; € H, {pi} is fabricated below:
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Wy = px + % (P — Pr-1)s

v = Pe (wy — pAwy), (3)
Ci ={v € H: {wy — pAwy — v, v, — v) >0},

Prs1 = Po (wy — pAvy), Yk 2 1,

where y € (0,1/L) and L is the Lipschitzian coefficient of A.
Via mild assumptions, they showed that {p,} converges
weakly to a pointin VI(C, A). Besides, due to the importance
and applicability of inertial technique, some new inertial
iterative algorithms were recently introduced and analyzed
(see [29-32] for more details). Recently, the hybrid inertial-
type subgradient extragradient rule with linear-search
process in [23] was proposed for settling the VIP with the
operator A satisfying both pseudomonotonicity and Lip-
schitz continuity and the common fixed-point problem
(CFPP) of finite nonexpansive operators {T;}., and as-
ymptotically nonexpansive operator T in H. Let f: H— H
be a contractive map with coefficient & € [0,1], and
F: H—H be an operator satisfying both #-strong
monotonicity and k-Lipschitz continuity, such that § < 7: =
1-~1-pQ2n-px?) for 0<p<2n/x*. Suppose that
{o} < [0,1] and {Bi}, {yi} € (0,1) s.t. By +yi <1,Vk. Be-
sides, one writes T: =T, . 45 for each k>1 with the
mod function taking values in {1,2,...,N}, i.e, in case k =
jN + g for some j>0 and 0<g<N, one has that T = Ty
forq=0and T, =T, for 0<g<N.

Under suitable assumptions, they proved the strong
convergence of the sequence {x;} to a point in
Q = VI(C, A)n (N, Fix(T;)) where Ty: = T. On the other
hand, Reich et al. [25] put forth the modified projection-type
rule for handling the VIP with the operator A satisfying both
pseudomonotonicity and uniform continuity. Let
{o} € (0,1) and suppose that f: C—C is a contractive
map with coefficient § € [0, 1].

Under mild assumptions, they proved strong conver-
gence of the sequence {x;} to an element of VI(C, A).

In real Hilbert spaces, let the CFPP stand for a common
fixed-point problem of asymptotically nonexpansive oper-
ator and countably many nonexpansive operators. Let the
HVI indicate a hierarchical variational inequality. We put
forward Mann hybrid deepest-descent extragradient ap-
proach for solving the HVI with the CFPP and VIP con-
straints. The proposed algorithms are on the basis of Mann’s
iterative technique, viscosity approximation method, sub-
gradient extragradient rule with linear-search process, and
hybrid deepest-descent rule. Under suitable restrictions, it is
shown that the sequences constructed by the algorithms
converge strongly to a solution of the HVI with the CFPP
and VIP constraints.

The structure of the article is arranged as follows. Basic
notions and tools are given in Section 2. The convergence
analysis of the suggested algorithms is discussed in Section 3.
Section 4 provides an illustrated instance to demonstrate the
applicability and implementability of our suggested algo-
rithms. It is worth pointing out that the theorems in this
article enhance and develop those associated results with
[21, 23, 25] because our algorithms involve solving the VIP
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with the operator satisfying both pseudomonotonicity and
uniform continuity and the CFPP of asymptotically non-
expansive operator and countably many nonexpansive
operators.

2. Basic Concepts and Tools

Assume @ #C C H, where C is convex and closed in a real
Hilbert space H. For given sequence {u,} ¢ H, the notations
u,—u and u,— u indicate the weak convergence and
strong convergence of {u,} to u, respectively. For each
y,z € C, a mapping T: C— H is said to be

(1) x-Lipschitzian (or of «-Lipschitz continuity) iff
Fk>0s.t Ty -Tzll<xly -zl
(2) Of monotonicity iff (Ty —-Tz,y —z) >0

(3) Of pseudomonotonicity iff <(Ty,z-y)>0=

(Tz,z-y)=>0
(4) Of p-strong monotonicity
(Ty-Tz,y-zyzaly - z|?

it Iy>0 st

(5) Of sequentially weak continuity iff for each {y,} in C,
one has that y,—y=Ty, =Ty

Note that the class of pseudomonotone operators
properly includes the class of monotone operators. Given
any y in H, we know that 3| (nearest point) z € C, written as
z =Poy, st |ly —z[| <lly — x| for each x in C. P, is called
a nearest point (or metric) projection from H onto C.
According to [33], for each y,z € H, the statements below
are valid:

(1) {y =2, Pcy - Pcz) 2||Pcy - Pzl

(2) {y =Pcy,x—Pry)y<0,¥x e C

() lly = xI>>lly = Peyll® + llx = Peyl’,Vx € C
@) Iy —zl” = Iyl* = lzl* - 2¢y - z,2)

(5) Iy + (1= Vzl® = Ayl* + (1= V2l -
A(1=Dlly -2l VA € [0,1]

Definition 1 (see [34]). Let {£,}72, ¢ [0, 1] and suppose that
{T,}.2, is a sequence of nonexpansive operators of C into
itself. For each n, the operator W,: C— C is constructed
below:

Un,rH—l =1,
Un,n = fnTnUn,nJrl + (1 - 5n)I’
Un,n—l = En—lTn—lUn,n + (1 - 5,1_1)[,

1 (4)
Ui =§T U, + 1-&)1,

Upp = 6T,U, 5 + (1-&)1,
Wn = Un,l = flTlUn,Z + (1 - El)I

Such an operator W, is nonexpansive and is known as
the W-mapping constructed by T,...,T, and &,...,§, ;.
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Iterations: Compute x;,; below:

T e {p,ptpe?, .. ) st Tl Aw, -
Step 2. Calculate zi = Pc, (wy -

Avi |l < pllwg — vl

Again set k: =k +1 and go to Step 1.

Initialization: Given any starting x,,x, € H. Let y € (0,1),Z € (0,1),y>0.
Step 1. Put wk =Tixp + o (Tex — Trx_,) and calculate v, = Pe(wy — 1, Awy), with 7, being picked to be the largest

1. Av) with Ci: = {v € H: {wy — 1, Aw; -
Step 3. Calculate x;,, = ﬂkf (%) + Yexe + (1 = p)I = BepF)Trz,..

Vi Vi — v) 2 0}

ALGORITHM 1: Hybrid inertial subgradient extragradient rule (see [23]).

Iterations: Compute x;,, below:

Step 1. Calculate v, = P (x; —AAx) and ry (x;): = x;
goes to Step 2.

Step 2. Calculate wy = x; — 747y (x,), with 7
(Ax — A(x = 1) (%)), 1y (%)) <pl2]lry (xp)l.

Step 3. Calculate x;,; = o f () + (1 — o) P, (%), with Cy:
Again set k: =k + 1 and go to Step 1.

= ffk

Initialization: Given any starting x;, € C. Let A € (0,1/u),¢ € (0,1),u>0.
— v In case ry (x;) = 0, one stops; x; lies in VI(C, A). In case ry (x;) # 0, one
and j, is the

={veC: h (v)<0} and Ay (v) =

smallest nonnegative integer j satisfying

(Awg, v — x) + 7./2A ||y, (xk)||2.

ALGORITHM 2: Modifed projection-type rule (see [25]).

Proposition 1 (see [34]). Let [{,}r2, € 0,1] and suppose
that {T,} >, is a sequence of nonexpansive operators of C into
itself such that N2, Fix(T,)+ &. Then,

(a) W, is of nonexpansivity and Fix(W,)= N2,
Fix(T;),Vn

(b) lim, U, u exists for allu € C and i>1

(c) The mapping W defined by Wu: =lim,_, W, u=
lim, _, U, ,u,Vu € C is nonexpansive operator such
that Fix(W) = N2, Fix(T,), and W is known as the
W-operator constructed by T,,T,,... and &,&,,...

Proposition 2 (see [35]). Let {£,},2, c (0,¢) for certain
¢ € (0,1) and suppose {T,,}°, is a sequence of nonexpansive
operators of C into itself such that N2 Fix(T,)# . Then,
lim,_, sup,cpllW,u—Wul =0,V (bounded) D c C.

In what follows, one always assumes that {£,}2, < (0,¢)
for certain ¢ € (0,1). Using the subdifferential inequality of
|- 11?72, we have the relation below:

Iy + 2l < |yI* + 2¢z. y + 2), ¥y, 2z € H. (5)

Later, we will exploit the lemmas below to derive our
main theorems.

Lemma 1 (see [26]). Let H, and H, be two real Hilbert
spaces. Suppose that A: H, — H, is uniformly continuous
on bounded subsets of H, and M is a bounded subset of H,.
Then, A(M) is bounded.

Lemma 2 (see [36]). Let h be a real-valued function on H
and define K: = {x € C: h(x) <0}. IfK is nonempty and h is
Lipschitz continuous on C with modulus 0>0, then
dist (x, K) >0 ! max {h(x),0},Vx € C, where dist(x,K) de-
notes the distance of x to K.

Lemma 3. Suppose that A: C— H is of both pseudomo-
notonicity and continuity. Given a point z* € C. Then,
(Az*,y—z")=20Vy e Ce&(Ay,y—z")=0Vy € C.

Proof. It is easy to check that the conclusion is valid. O

uch that
b both
c [0,1]

or

Lemma 4 (see [8]). Suppose that {a,} c [0,00] su
Ay < (1=0)a, + (b, Vn=>1, with {{,} and {E
being real sequences satisfying the conditions: (i) {(,, }
and YR (, =00, and (ii) limsup, b,<
> 1{,b,| < c0. Then, lim,__,  a, = 0.

Lemma 5 (see [37]). Suppose that @+ C c X where C is
convex and closed in a Banach space X admitting a weakly
continuous duality mapping. Let the operator T: C— C be of
asymptotical nonexpansivity such that Fix(T) # &. Then, I - T
is of demiclosedness at zero, that is, for each {u,} c C with
u,—u € C, the relation holds: (I - T)u,— 0= (I - T)u =0,
with I being the identity mapping of X.

Lemma 6 (see [38]). Suppose that {I,,} is a real sequence
which does not decrease at infinity in the sense that

H{ij} c{r,} st 1, < Vjz 1 Let {n(m)} be

m=my
formulated by n(m) = max {]<m I, <F]+1} with my>1

st.{m<mgy: I, <T,.}# 3. Then, the statements below are
valid:

(i) n(my) <n(my+1)<---
(11) Fr’(m) SF”(M)Jrl and Fm

and 1 (m) — oo

r/(m +1’VM>m0

Lemma 7 (see [7, Lemma 8]). Suppose that A lies in (0,1],T
is a nonexpansive self-mapping on C, and T*: C— H is the
mapping formulated by T'x: = (I - \pF)Tx,Vx € C, with
F: C— H being of both x-Lipschitz continuity and n-strong



monotonicity. Then, T is a contractive map for
p € (0,27/K%), e, [T'y - T'z|| < (1 - AD)|ly - 2|, Vy,z € C,

with T=1-+/1-pQ2y-px?) € (0,1).
3. Algorithms and Convergence Analysis

Let @ #C c H, with the feasible set C being convex and
closed in a real Hilbert space H.

Condition 1. The following conditions are valid.

(C1) {T,},2, is a sequence of nonexpansive oper-
ators of C into itself and T: C— C is asymptotical
nonexpansivity operator with {6,}.

(C2) w,
T.,...,T, and &,,.
certain ¢ € (0, 1).

is the W-mapping constructed by
> &, with {172, < [0,¢] for

(C3) A: H—H is of both pseudomonotonicity
and  uniform  continuity on C, st
[|Az| <liminf, [lAu,| for each {u,} c C with
U, —z.
(C4) f: C—H is a contractive map with co-
efficient § € [0,1], and F: C—H 1is of both
n-strong monotonicity and «-Lipschitz continuity
s.t. 70 =1-+/1-p(2y—-px?)>4 with
0<p<2n/Kt.
(C5) Q=VI(C,A)N (N2 Fix(T,)+@ where
Ty: =T.
(C6) {yu}>{B,} c (0,1) and {o,} c [0,1] s.t.

() 1>, +f, and 52,6, = co.

(ii) B,—0 and 0,/f,— 0 as n—> 0.

(iii) 1>limsup,_,0,2liminf, o, >0.

(iv) 1>limsup, .y, =liminf, _yp,>0.

Lemma 8. The Armijo-type search process (Algorithm 1) is
formulated — well, and the relation is  valid:
lIry (W )I? <A Aw,,, 1) (w,)).

Proof. Using the uniformly continuity of A on C, from
le€ (0,1), one has limj_mo(Awn -A(w, —Vry(w,)), 1
(w,)) = 0.In case ry (w,) = 0, it is clear that j, = 0. In case

[~ T2 < o = Sl + s -
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ry (w,) #0, there exists j, >0 meeting (Algorithm 1). Since
P. is firmly nonexpansive, we obtain that
u—Pevyu—v) =|u-— PCV||2,VM € C,v € H. Settingu = w,,
and v=w,-AAw,,  one gets A{Aw, w,— P,
(w, - Aw,)) = |w, — Pc(w,, - )LAwn)IIZ, which attains the
desired result. O

Lemma 9. Let p € Q and h, be formulated as in (Algo-
rithm 1). Then, h,(p)<0 and h,(w,) = 1,/2A|r, (W,
Particularly, in case 1y (w,) #0, one has h,(w,) > 0.

Proof. It is clear that h,(w,) = 7,/2A|r, (wn)llz. In what
follows, we claim h, (p) <0. Indeed, in terms of Lemma 3,
one gets (At,,t, — py > 0. Hence, one has h,, (p) = (At,,t, -
w,) + (At p—t,) +1,/2A Iy (WI* < = 7,{At,, 7,
(w,)) +1,/2A|r, (wn)llz. Using (Algorithm 1) and Lemma 8,
one gets (At,,r,(w,)) = Aw,, 1 (w,)) —u/2|r, (w)*=
(/A = ul2)|Ir,, (wn)llz, which hence arrives at
h,(p)< —1,/2(1/A = wlr, (wn)llz. Therefore, the claim is

valid. O
Lemma 10. Suppose that the sequences {z,},
{y.} {x,} {w,} fabricated in Algorithm 3, are of bound-
edness. Assume  that x,.,—x,—0,x,—-w,—0,

n+1 n
y,-w,—0,z,—-w,— 0 and T"'x,-T"x,—0.

Then, w, ({x,}) cQ, with
w, ({x,}) = {z € H: x,, —z for certain {xnk} c {x,}}.
Proof. Take a fixed ze€ w,({x,}) arbitrarily. Then,

El{xnk} C {x,} st. x, —z € H. Owing to x,, — w,—0, one
knows that El{wnk} € {w,} s.t. w, —z € H. In what follows,
we claim zeQ. In  fact, observe  that
x, —w, = 0,(x, - W,x,),Vn. Thus, lx, —w,ll = o,
lx,, — W, x,|. Using the assumptions liminf, o, >0 and
x, —w,— 0, we have
Jim [, =W, | = 0 (6)
Putting v,: =B,f(x,) +y,.x, + ((I-y,)I-B,pF)T"

z,, by Algorithm 3 we obtain that x,,, = Pov, and

n

v,—T"z, = B.f (x,) +y,(x,—T"z,) — B,pFT"z,, which
immediately yields
T"z,| < || %, - -T"
2l <[ = xna | +v = T2 -

=< %0 = Xaur [+ BallE k)| + vallxa = T4 + Bo [P FT 2,

Hence, one gets ||x,,,; — x,| + B, (I f (x,)I+ |pFT"z,,[I) >
(1=yIT"z,,— x,l. Since x,,,; —x,—0,8 —0,
lim inf (1-v,)>0and {x,},{z,} are of boundedness,

one gets lim, |, [T"z,-x,]=0. We claim that
lim,_, lx, — Tx,| = 0. Indeed, since T is of asymptotical
nonexpansivity, we obtain
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Initial Step: Given any starting x; € C. Let u>0,A € (0,1/u),1 € (0, 1).
Iterations: Given the current iterate x,, calculate x,,,, below:
Step 1. Compute w, = (1 -0,)x, + 0,W,x,, ¥, = Pc (w, — AAw,) and ) (w,): =w, — y,,.
Step 2. Compute t,, = w, — 7,7} (W,), where 7,,: = I» and the integer j, is the smallest nonnegative one j
s.tul2lr, (w)I? = <A (w, — Ury (w,)) - Aw,, y, — w,>
Step 3. Calculate
Xps1 = PC [ﬁnf (xn) T VnXn t+ ((1 - yn)I - ﬁon)T”Zn]
with z, = P¢ (w,), C,: = {u € C: h,(u)<0} and h, (1) = (At,,u—w,) +1,/2AIr, (W)
Set n: =n+1 and go to Step 1.
ALGORITHM 3: The 1st Mann hybrid deepest-descent extragradient rule.
I, = Tx,| |0 = T2, || +|T"2, = T"x,| +|T"x, = T x| +[ T %, = T2, |
+|T" 2, - Tx, | ®
< (24 0)|x, = T2, + (2 + 6, + 0,1 |2 — x| +[|T"x, = T" ' x,.|
1
<(2+6)|x, =Tz, ||+ (2+6,+6,, (“zn - w,| +|w, - xn") +|T"x, = T" ' x,|.
Ay, ,x =y, ) +6; >0Vk>m (12)
Noticing x, —w,—0, z, - w,—0, and " nk /
x, = T"z,—0, we obtain Noticing the fact that {cj} is decreasing, we can readily
lim "xn - Txn" =0. (9) see that {mj} is increasing. From Aymj;EO, Vj (owing to
n—oo

Also, we claim lim, ,[|Wx, —x,|| =0. In fact, it is

clear that lx, —w,ll = o,lx, = W,x,l. Since
liminf, 0,>0 and x,-w,—0, one has
lim, | IW,x, —x,ll = 0. Note that [|[Wx, — x| <[Wx, -

Xl + IW,x, = x| < supeplWu = Woull +IW,,x,— x,[l,

where D = {x,;: n>1}. Using Proposition 2, we obtain

Jim W, x| = o (10)

Now, we claim z € VI(C, A). Indeed, because C is of
both convexity and closedness, using {w,} ¢ C and w, —z,
one has that z lies in C. In case Az = 0, it is easily known that
z € VI(C, A) due to (Az,x —z) >0,Vx € C. In case Az+0,
combining w, - y,—0 and w, —z yields y, —z as
k—00. By the condition imposed on A, one gets
0<||Az| <lim infk_,oollAynkII. So, we may presume
||Aynk|| #0, Vk. In addition, using y, = P (w, — AAw,), one
has {w, - AAw, - y,,x - ¥,> <0,¥x € C, and hence

<Awn, X = wn> 2 <Awn’ Yn— wn>

(11)
1
+X<wn
Since A is uniformly continuous on C, {Aw,} is of
boundedness (owing to Lemma 1). Note that {y,} is
bounded as well. Thus, wusing (11), one gets
lim 1nf<Aw X —w, »>0,Vx € C. Itis clear that (Ay,, x
Py (Ayn Awn,x w,) + (Aw,, x —w,)+ {Ay,w
y,». Thus, using y, —w,—0, one gets Aw, —Ayn—>0
and hence attains lim inf koo SAY > X = ¥, 2 20,Vx € C.

In what follows, one picks {g}c (0,1) s.t
¢;10 (j—>00). For any j>1, one writes by m; the smallest
natural number s.t.

— Y X— Y0, Vx €C.

{Aymj} C {Aynj}), one puts 7, = Aymj/IIAyijIZ, and one
has (Aym,vm> =1,Yj. Thus,
(Aym 2 X+ GV = Y, >>0,Vj. Also, since A is pseudo-
monotone, one has (A(x + GV, ), x + SiVm, = Y, ) =0,Vj,

using (12), one gets

which hence yields

(Ax,x—ymj>2(Ax— <x+c] ) X+ GV,

- c]-(Ax, vml_).

=V

(13)

Let us show lim

m, = 0.1In fact, using w, —z € C
and y, -

obtains y, —z. oticing
J

deduces that

j—005m
w,—0, one
{ym}} C {yn]} and chO, one
O<limsup; ., ||Cijj|| = lim supcj/IIAyijI <

j—o00
|4y, [l =0
GjVm,—0as j—00. So, it follows that the right-hand side

lim sup; E:cj/liminf o Hence, we get

of (13) tends to zero by the uniform continuity of A and the

boundedness of {ym}, {vm,}, and hmjﬁooc] =0.
J ]

Therefore,

(Ax,x —z) =liminf. , (Ax,x - ymj> >0,Vx € C. Using

Lemma 3, one has z € VI(C, A). Last, we claim z € Q. In

fact, using x,, — w, — 0 and w, =2, one gets x,, —z. Note

that (9) guarantees x,, — Tx,, — 0. By Lemma 5, one knows
7 J

that I — T is of demiclosedness at zero. Thus, using Xp =2

one gets (I —T)z =0, that is, z € Fix(T). Besides, we claim
z € Fix(W) = N2, Fix(T,). Actually, noticing Xy =2 and

- Wx, —0 (due to (10)), from Proposition 1 and



Lemma 5, we obtain that I — W is demiclosed at zero. This
hence yields z € Fix(W) = N2, Fix(T;). Consequently,
z € VI(C,A)n (N2, Fix(T))) = Q. O

Lemma 11. Let {w,} be the sequence fabricated in Algo-
rithm 3. Then,

7,r1 (w,)|f — 0= 3, — w,—0. (14)

Proof. Assume limsup, |y, - w,|=a>0. Picking
{m}  {n}, one has lim__ w, -y, |l =a>0. Note that
limk_mrnkllm (wnk)ll2 =0. Consider two cases. If
liminf, 7, >0, one may presume that 3d>0 s.t.
7, 2d>0,Vk. So, one knows that |w, — ynkll2 =1/1, 7,
lw, -y, I°<  Vd-7,llw, -y, *=1/d-7, lIr, (w,)I*
which  immediately 0<a®=lim,_ .,
lw,, =y, I* <lim__ {1/d -7, lry(w,)I’} = 0. This rea-
ches a contradiction.

Ifliminf, 7, =0, there exists a subsequence of {Tnk},

leads to

still denoted by {Tnk}, s.t. limg_,7, =0. We now put
Q= Ul y, + (1= Ut w, =w, -1, (W, —,).

Then, from limkﬁmrnkurl (wnk)ll2 =0, we deduce that
limy__, I, —w, I* =lim;__ 1/P7, -7, |y, —w,|*=0.
Using (6), one obtains
(Aw, - Aq,,w, =y, >p2|w, - ynkllz. Since A is uni-
formly continuous on bounded subsets of C, this ensures
that lim,_[|Aw, —Aq, [l =0, which hence yields
limg__lly, —w, Il =0. This reaches a contradiction.
Therefore, y, —w,— 0 as n— oo. O
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Theorem 1. Let {x,} be the sequence fabricated in Algo-
rithm 3. Assume T"'x, — T"x,— 0. Then, {x,} converges
strongly to x* € Q, which is only a solution to the VIP:
(f —pF)x*,x—x*)<0,Vx € Q.

Proof. Thanksto 1>limsup, . 0,>liminf, _ o,>0and

6,/B,— 0, one may presume that (0,1) > [a,b] > {0,} and
B, (r1-08)/2>0,YVn. It is easy to check that
Po(I-pF+ f):C—C is a contractive map. Thus,
Jlx* € C s.t. x* = P (I - pF + f)x*. Hence, 3|x* € Q sat-
isfying the VIP:

((f-pF)x",x—x")<0,Vx € Q. (15)

Next in the rest of the proof, we divide it into
a few steps. O

Step 1. One claims that {x,} is of boundedness. Indeed,
choose any p € Q = VI(C, A)n (N R, Fix(T})). Then, Tp =
pand W, p = p,Vn. Let us show the relation below:

—dist? (w,,, C,)) +|w, - p* = |2 - p| . ¥p e Q. (16)

In fact, one has
Iz, — pl* = IPc w, - Pl <w, - pl* - dist’ (w,, C,),
which hence yields

lz. - p|| < |w, - p||, ¥n= 1. (17)

Using the formulation of w,, one gets
lw, - pl< (1 -0,)lx, - pll + 0,IW,x, - pll <lx, - pl,
which together with (17) yields

Iz - 2l < |w, - p|| <|*. - p| ¥n> 1. (18)

Noticing 1>y, + 8,,, from (18) and Lemma 7, we obtain

[%ner = P < |Baf (x4) + v + ((1 = y)I = BpF)T"2,, - ]|
=B, (f (%) = £ (P)) + v (%, = ) + (1 = 7,)
[(I = B,/1 = y,pF)T"z, = (I - B,/1 = y,pF)p] + B, (f - pF)p|
<Bubl|xs = | + ¥ul s — 2 + (1 =72 (19)
X (1= B/ = y,7) (1 +6,)2, — || + Bull (f = Pl
< [Bu8 + ¥+ (1 =y, = Bu7) + 6], = | + Bull (f ~ pF)pI
<max {|x, - p|.21(f - pP)pli/z - 8}.

Using the induction, we get |x, — pll <max {llx; - pl,
21 (f = pF)pl/T - 8}, ¥n>1. Hence, {x,} is of boundedness.
Therefore, the sequences {w,},{y,} {z.}{f (x)}. {At,},
{W,x,},{T"z,} are of boundedness as well.

Step 2. One claims that |lv, - x,,lI>< - |, — pI*+
lx, - pI* + B,M, for certain M,>0. In fact, using
Lemma 7 and the convexity of g(s) = s%,Vs € R, we obtain
that
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e = 217 <170 = P =10 = nea | = 180 (F (x) = £ (P)) + ¥ (%, = ) + (1= 7,)

[(H%w)T (Ilﬁ—wF)P] #Buf = PP = v = 0|

< {ﬂn"f(xn) - f(P)“ + Yn"xn - P” + (1 - Yn)

(20)
2
X (1 1 [_;ny PF>T"Zn _(I_ 1 fgny pF)p } +2B,{(f =pF)p,v, — ) _""n —x,,+1||2
< "xn - P"2 + Yn”xn - p“2 + [ (1 VY~ ﬁnT) + 6n]“zn - p"2
+2B,((f = pPIP v = Y = [vu = xpa [
where v,: =B, f(x,) +y,x, + ((1-y,)I - B,pF)T"z, and Substituting (21) into (20), one gets
X,.1 = Pc(v,). Furthermore, according to Algorithm 3, we
obtain
lzw = ol lwn = 2 ~lwo ~ 2" = (1 = @)%~
+ 02||ann - p"2 -0,(1- on)"ann - anZ —“wn - zn"z.
(21)
“xn+1 - P"2 Sﬁn(S"xn - PH2 + Yn“‘xn - p“Z + [ (1 ~VYn— ﬁnT) + en] {len - P||2]
- n(l - an)|lwnxn - xn||2 _“wn - Zn“z} + 2ﬁn<(f - PF)P) Vi — P> _“Vn - xn+1”2
< [1 - ﬁn (T - 6)/2]"3(5,1 - p|l2 - [ (1 ~Vn _ﬁnT) + en]{an (1 - 0n)||ann - xnnz (22)
tw, = 2} +28.4CF = pPIprv, = P [ = %[
= "xn - p”2 - [ (1 = Vn _ﬁnT) + en]{an(l - 0n)||ann - xn"2
#w, =20} + BML == 2l
2 2 T, 27? 23
where sup,,.; 2l (f - pF)plllv, — pl <M, for some M, >0. |z = Pl <. - 2| - [m““ (w,)] ] : (23)

This immediately attains the claim.
Since the sequence {At,} is bounded, there exists L>0
Step 3. One claims that [(1-y,-p,7)+0,][r,/ such that |Af, <L, ¥n>1. This ensures that
2AL[ry (WP < lIx, = plI* = %01 — PIP + B,M,. In fact, |k, (u) - h,(v)| = |{At,,u - v)| < Llu - v|Vu,v € C,, which
let us show that 3L >0 s.t. hence implies that h,, (-) is L-Lipschitz continuous on C,,. By
Lemmas 2 and 9, we obtain
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. 1 T, 2 Combining (16) and (24), we get
dist (1, C) = pha () = yglra (- G g <, — plP ~ [, /20Ll (PP
From (18), (20), and (23), it follows that

“'xn+1 - p"z Sﬁrz"é\xn - P||2 + le”xn - p"2 + [(1 ~VYn— ﬁnT) + en”'zn - P”2
+2ﬁn<(f _pF)p’ Vau _p>

T, 2
B8l = oI+ yallxu = I +[(1 =7, = B7) +6,] {Ilwn - ol [l )l } (25)
+ 2ﬁn<(f —PF)P, V= p>
T, 2
< "xn - P"2 - [ (1 ~VYun— ﬁnT) + 911] [mnrl (wn)nz] + ﬁan'
This immediately yields the claim. Step 4. We show that
2<( _F) >V — > 971 M
"xn+1_p“23[1_ﬁn(T_8)]"xn_P||2+ﬁn(T_6)|: f i_{; P +E‘T—8 > (26)
for some M > 0. In fact, from (20), one obtains
"xn+1 - P"z < "Vn - p“z Sﬁnauxn - p"2 + yn”xn - p“2 + (1 “VYn— ﬁnT + en)
x|z = pII* +2B,<(f = PF)p, v, ~ P 27)
<( - F) > Vn - > en M
<[, (= 0Nl — ol + B, e~ 2L TP TP gl
where sup,., ||z, — pll* <M for some M > 0. Step 5. One claims that x, — x* € (), which is only a so-

lution of the VIP (15).
In fact, setting p = x* in (26), one obtains

2{(f-pF)x",v,-x")y 6, M 2

* 2 *
B, (t-98) 5 +E.T—(S +(1—ﬁn(r—8))||xn—x 2||xn+1—x (28)
Setting T, =[x, — x~ I, we demonstrate the conver- Case 1. Presume that In;>1 s.t. {T,,} is nonincreasing.
gence of {I',} to zero via the two cases below. Then, lim,,_, I, =h< +oc0andT,-T,,; —0(n—>00).
Setting p = x*, from Step 2 and {0,}  [a,b] C (0,1), we
obtain
2 2 2
[(1= 7= ) + 6,1 (L= Bhal, =W+l = w, P} 4, = 2 )

< "xn - 'x*"2 _Hxnﬂ -x" "2 + ﬁan = rn - 1—‘n-f—l + ﬁan,

Because liminf, . (1-y,)>0, 8,—0,5,—0, and

I, —T,—0, one has

n
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Initial Step: Given any starting x; € C. Let 4 >0,1 € (0,1/p),l € (0,1).

Iterations: Given the current iterate x,, calculate x,,,, below:

Step 1. Compute w,, = (1 -0,)x, + 0,W,x,,, ¥, = Pc (w, — AAw,) and r; (w,): =w, — y,.
Step 2. Compute

t, =w, - 7,7, (w,), with 7,: =U» and integer j, being the smallest nonnegative j
s.t.ul2llry (w)I? = (A (w, - Ury (w,)) - Aw,, ¥, — w,»

Step 3. Calculate

Xpel = pC [ﬁnf (xn) T VnWy + ((1 - Yn)I _ﬁnPF)Tnzn]

with z, = P¢ (w,), C,: = {u € C: h,(u) <0} and h, (u) = (At,,u —w,) + 7,/2A|r, (w,)|.
Put n: =n+1 and return to Step 1.

It is worthy to mention that Lemmas 8-11 remain true for Algorithm 4.

ALGorITHM 4: The 2nd Mann hybrid deepest-descent extragradient rule.

lim |x, - W,x,| = lim |z, -w,|= lim |Jv,-x,.|=0. (30)

n—aoo n— 00 n—aoo

Also, noticing f3,(f (x,) - pFT"z,) + (1-y,) (T"z, -
x*)+ y,(x, - x") =v, —x", one gets

||xn+1 - x*"2 = "xn+1 —VytV, - x" ’
= "Yn (xn - x*) + (1 - Yn) (Tnzn - x*) +ﬁn (f(xn) _pFTnZn) + Xy — Vn"2
"xn - x*"2 + (1 - Yn) [1 + (2 + en)en]"xn -x" 2 - (1 - yn))/n"Tnzn - xn"2

(31)
+ 24, (I Gl +1FT"2, ) + 61 = vallHlna - x7]
”xn - X* ’ + (2 + en)en"xn - x* ? - (1 - yn)}/nnTnZn - xn||2
+2{B,(Ilf el +1PFT"2,])) + %1 = Vil Hlwsr = %71
which immediately arrives at
Yn (1 - Yn)"xn - Tnznuz (32)
€T, =T 0,2+ 0,0, + 2{8, (1 ol T ]) s ~ w112
Because 1>liminf, y,>liminf, _y,>0, and (30) that
6,—0,8,—0,T,,, -T,—0, and v, — x,,,, —0, from lx, —w,l =o,lx, - W, x,l <lx, -W,x,| —0
the boundedness of {I"z,},{f(x,)}, one obtains (n—> 00), and
lim, , [IT"z, - x,|l = 0. So, we know from Algorithm 3

e = all < er = vall v =
= ”xn+l - Vn” +||/5nf (xn) + (1 - Vn) (Tnzn - xn) - ﬂonTnzn“ (33)
< s = vall #1772 = L+ BoIf (o) +[pFT "2, ) — 0 (r— 00).
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Setting p = x*, in terms of Step 3, one has [(1 -1y, -

B,7) +0,][7,/2AL|r) (w)I*]*< T,-T,,, +p,M,. Since
O<liminf, . (1-1y,), 0,—0,p3,—0, and
T, —T,—0, one gets lim, _ [7,/2ALllr) (w,)|*]* =

Hence, by Lemma 11, we deduce that
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lim ||yn —w ” = (34)

n—aoo

Since {x,} is bounded, we deduce that El{xnk} c {x,} s.t.

limsup{ (f - pF)x", x,, — x") = lim__ . ((f - pF)x", x,, —x"). (35)

00

According to the reflexivity of H and boundedness of
{x,}, one may presume that x,, —X. Hence, by (35), one gets

limsup{(f - pF)x",x, —x") ={(f - pF)x", X = x").

(36)

So, we know from x,, —X and x,, — w, — 0 that w, —X.

Because X —%X,—0,x, —w,—0,y,— wy,

limsup{ (f - pF)x", v, —x")

n—00

=limsup[{(f - pF)x",v, — x

Note that 8, (7 - 6) € [0,1]Vn, Y2, B, (T — 8) = 0o, and
limsup, . [2{(f -pF)x*,v,—x*YIt-6 +6,/3, M/t
-0] <0. So, using Lemma 4 to (28), we have
lim x, - x*>=0

n—>oo"

n+l + Xnt1

0,z, - w,—0, and T"'x, - T"x,— 0, from Lemma 10,
we infer that X lies in Q. Consequently, using (15) and (36),
we obtain

limsup{ (f - pF)x",x,, —x") ={(f - pF)x", X — x") <0.

n—00

(37)
This along with (30)-(33) arrives at

(38)
—x,) +{(f - pF)x",x, - x")] <0.

Case 2. Suppose that EI{ c{l,}st. T, <L, ., Vk e,
with /" being the set of all natural numbers. Let nN—N

be defined as #(n): = max {] <n:T;< l"j+1}. Using Lemma
6, one obtains that I',<T,,,, and T, <T,,,,. Putting
p =x*, from Step 2, we have

2
[(1 “Vum ~ ﬁﬂ(n) ) + 911(" ]{(1 - b)a"xn(n) - W'v(n)xﬂ(n)
2 2
+'|Zn<n) ~ Wy } +||Vn<n) ~ Xy (39)
< ||x11(n) - ” _||x11(n)+1 - X H + ﬁq(n)Ml < I‘11(11) - rn(n)ﬂ +ﬂ11(n)M
This hence leads to lim, ., llx, ) =W, X, mll =
hl’nn_“x)llzq(n) - wq(n)” = limn_>oo”‘l/,1(n) ,1(” " =0.
Setting p = x*, in terms of Step 3, one gets
[(1 LI0) _ﬁn(n) ) + 611(n ][2/1]4 1(n) “ ] (n)+1 +ﬁq(n)M1’ (40)
02 limsup{ (f — pF)x", v,y — X"). (41)

which hence leads to lim,_, [1,7(”)/2)LL||1’)L (w,1(n))||2]2 =
Using the same inferences as in the proof of Case 1, one
obtains that lim Wyl = lim
l|lx Wy () | = lim | =0, and

n—»oo”yq(n) -
llx

n—- 00

n(m) = Xy(m+l

n—> 00

n(m) —

00

Furthermore, using (28), one has
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/5?1(71) (r- 6)rt7(n) S 1—‘11(n) - 1—‘r7(n)+1 + ﬁq(n) (r- 6)|:

11

2<(f—pF)x*,V71(n)—X*> +6f1(n) M ]

-6 By T-9
(42)
2{(f = pP)x",v, (y—X"> 0 M
—<B i (T-0) P 1 (n) iGN )
7n) -0 By T—9
which hence arrives at
2{(f - pP)X vy —x") O M
limsup T, < limsup f-r n(n) ntm <0. (43)
7—00 7—00 ) ﬁﬂ(n) -0
Thus, lim,, T, () = 0. Also, observe that
12
”xn(n)ﬂ —-X
2 * *
= Hxn(n)ﬂ =Xy 21 = Xy X ) — XD +|'x,1(n) -x (44)
2 . 2
< '|x}1(n)+1 - x,,l(n) + Z“Xrl(n)+1 - Xrl(n) +||x’1(n) - X || +||x,1(n) - X
Owing to T, <T', (,,1, we get
*|2 *|?
“xn X " < ||xr/(n)+1 -x
5 5 (45)
< ||xr/(n>+1 Xl T 2'|xr/<n)+1 X |xf1(n) -x ” +||xf1(n) -X " —0 (n—00).

Consequently, lim, _, |lx, — x*||* = 0.

w, =(1-0,)x, +0,W,x,,
Yn = PC (wn - /‘Awn)’

tn = (1 - Tn)wn T TV

Theorem 2. Suppose that T is a nonexpansive self-mapping
on C and {x,} is fabricated by the modification of Algo-
rithm 3, i.e., for any starting x, € C,

(46)

xn+1 = PC [ﬁnf ('xn) + ynxn + ((1 - Yn)I _/';nPF)TPCn (wn)]’vn2 1’

where for any n, C,, and t,, are picked as in Algorithm 3. Then,
{x,} converges strongly to x* € Q, which is only a solution to

the VIP: {(f — pF)x*,x —x") <0,Vx € Q.

Proof. We write z,;: = P¢ (w,), and divide the proof into
a few steps.
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Step 1. One claims that {x,} is of boundedness. In fact,
via the similar inferences to those in Step 1 of the proof
of Theorem 1, one attains the claim.

(1= yu =B (1= 0 )0ullx, = W, [+l = w, '+ = 5
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Step 2. One claims that

(47)
2 2
< "xn _p” _||xn+l _p" + 2ﬁn<(f_pF)p’vn _p>’
where v, =f,f(x,) +v,x,+ (1 =y, -B,pF)Tz,. Step 3. One claims that
In fact, via the similar inferences to those in Step 2 of
the proof of Theorem 1, one attains the claim.
T, 21? 2 2
(1=~ B0 grglrs @] <l = £l =l =PI + 28,4 F = pPIpv, = 3, (48)
In fact, via the similar inferences to those in Step 3 of Step 4. One claims that
the proof of Theorem 1, one attains the claim.
2{(f =pF)p:v, — P>
e = ol < 11, (= O, + 8, (- 8y 2L ZLORLa P2, (49)
In fact, via the similar inferences to those in Step 4 of =~ Proof. Because 1> limsupo, > liminfo, >0 and

the proof of Theorem 1, one attains the claim.

Step 5. One claims that x, — x* € Q, which is only
a solution of the VIP (15). In fact, via the similar in-
ferences to those in Step 3 of the proof of Theorem 1,
one attains the claim.

Next, we introduce modified hybrid deepest-descent
extragradient approach. O

Theorem 3. Let {x,} be the sequence fabricated in Algo-
rithm 4. Assume T"'x, — T"x,— 0. Then, {x,} converges
strongly to x* € Q, which is only a solution to the VIP:
(f —pF)x*, x—x*)<0,Vx € Q.

6,/B,— 0, one may presmhat (0,1) > [a,b] > {0,} and
B, (r—=08)/2>0,YVn. It is easy to verify that
Po(I-pF+ f): C—C 1is a contractive map. Hence,
F|x* e Cst x* =Py(I-pF+ f)x*. Thus, J|x* € Q sat-
isfying the VIP (15).

In what follows, in the rest of the proof, we divide it into
some steps.

Step 1. One claims that {x,} is of boundedness. In fact,
using the similar inferences to those in Step 1 of the
proof of Theorem 1, we obtain that relations (16)-(30)
hold. Thus, using (30) and 1 > y,, + 8,,, one deduces that

||xn+1 _p" = "ﬁn (f(xn) _f(p)) + Yn(wn _P) +(1 _Vn)

X[(I_ﬁn/l _yon)Tnzn_(I_ﬁn/l _anF)P] +/5n(f_pF)p"

< [Bud+ ¥, + (1 =y, = Bu) +6,]|x, — | + Bl (f = pP)pll

Smax{"xn— o, 1S =pDpI|

T—0

Using the induction, one obtains
I, — pll < max {llx, - pll, 2 (f - pF)pl/7 - 6}, Vn.

(50)

Hence, {x,} is bounded, and so are the sequences

{wah b {zuh A e b {AL ] (W} T2,
Step 2. One claims that
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[(1 “VYn— ﬁnT) + en]{ (1 - an)an"xn - ann"2+||zn - wn||2} +||Vn - xn+1"2

) 5 (51)
=< =[x =P+ = P+ BuM;
for certain M, >0, where v, = f,,f (x,,) + y,w, + ((1 -
) — B.pF)T"z, and x,,, = P-v,. To prove this, we
first note that
"xn+1 _p”zgﬁn(f(xn) _f(p)) + Yn(wn _p) + (1 - YH)
x [ (I - ﬂn/l - YnPF)TnZn - (I _/311/1 - YnPF)p] +ﬁn (f - PF)p”2 _“Vn - xn+1“2 (52)
Sﬁn(S”xn - pnz + YH“‘xi’l - p"2 + [ (1 “Vn— ﬁnT) + en]"zn - pn2
+2B,4(f = pF)p.v = p) = [ = x|
Furthermore, via the similar reasoning to that in (21),
we get
A I L A N A e s AN (53)
Substituting (38) into (37), one gets
"xn+1 - P"Z Sﬁna"xn - pl'z + Vn”xn - P"2 + [ (1 “Vn— ﬁnT) + Gn]{“xn - p"Z
- (1 - On)an||xn - ann||2 _"Zn - wn"2} + Zﬁn< (f - PF)P’ Vi — P> _"Vn - xn+1||2 (54)
< "xn - puz - [ (1 ~Vn _ﬁnT) + Gn]{ (1 - Un)0n||xn - annnz +||Zn - wn”z} + ﬁan
_"Vn - xn+1n2'
with sup,.; 2|l (pF — f)plllv, — pll <M, for certain Step 3. One claims that
M, >0. This immediately arrives at the claim.
2
[(1= 9= o)+ 8,] [ r/2ALs ()| < = £l = s = £ + B, (55)
2
In fact, via the similar inferences to those in (27), one "zn - p||2 < “wn - p"2 - [TH/ZAL“U (wn)nz] . (56)

obtains that for certain L >0,
From (39), (30), and (43) we know that
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||xn+1 - P”2 Sﬁnénxn - P||2 + ynnxn - P||2 + [ (1 “Vn— /SnT) + en]"‘zn - P"2 + ﬁan
<B. 01— oI + vallwa = P +100= v, = 1) + 6,1, - pIf

2 (57)
_ [TH/ZAL 2 (wn)"Z] ]» + B,M,
2 272
which hence yields the claim. B, (1=8)[2{(f - pF)p,v,— p)IT-6+0,/B, - M/T-
Step 4 One claims that 6] for some M > 0. In fact, using Lemma 7 and (30), one

1%, — pI* < [1 = B, (z = ]lx, — pl* + has

lwes = I < v = 21 = Ba (f () = £ (P) + 7w, = p) + (1= 7,)
(1= Bo/1 = yp )T 2, = (1= By/1 = y, pF)p] + B, (£ = pFp?
~<Bodla ~ b + vl — Bl + (L -y = BT+ 6,) (58)
= x|z =PI + 2B, (F - pPIp,v, ~ P
—<[1-Ba(r=O)|xa —p| +Ba (x = O[2¢(F = pP)p, v,y — pY/7 = 8 + 6,8, - M/7 - 8],
where sup,,., llx,, — plI* <M for certain M > 0. Step 5. One claims that x, — x* € Q which is only

a solution of the VIP (15). In fact, setting p = x*, in
terms of Step 4, one deduces that

[0 = %" P < [1= B, (r = O]|x, = x*I? + B, (x = O) [2{(f - pF)x", v, = x" Y7 = 8+ 6,1, - M/7 - ]. (59)

Setting T, = ||lx, — x*||>, one demonstrates the con- Case 3. Presume that 3n;>1 st. {I,} is nonincreasing.

vergence of {I,} to zero via the two cases below. O  Then, lim I, =h< +00 and I, -T,,;—0 (n—>00).
Setting"p = x*, from Step 2 and {o,} ¢ [a,b] c (0,1), we
obtain

[(1= 9.~ Bur) + 0,{ (1 = Dhalx, =W+, =, } v = 5,0

~< 1=y Bar) + 0,1 (1= 0o = Woxal s = wall |+ = 0 (60)
- SI-‘n - 1—‘nJrl + ﬁan’
which hence yields
lim len - ann” = lim ”zn - wnn = lim ||vn - xnﬂn =0. (61)

n—aoo n—aoo n—aoo
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Putting p = x*, from Step 3, we obtain [(1 -y, — 8,7) +
0,17, /2AL |ry (w)I**<T, ~T,,, + B,M,, which imme-
diately leads to lim,_,  [7,/2AL|lry (w,)[*]* = 0. Using the
similar reasoning to that in Case 1 of the proof of Theorem 1,
one  deduces  that lim, ., llw, - y,l=1lim,_
lw, — x|l =lim,_, lx,.; —x,l =0, and
limsup,_{(f —pF)x",v,—x*) <0. Accordingly, using
Lemma 4 to (59), we attain lim llx, — x*|*=o0.

n— oo

Case 4. Presume that EI{I‘nj} c {T,} s.t. L, <L, Vjed,
with 4/ being the set of all natural numbers. Let : /' — A

w, =(1-0,)x, +0,W,x,,

Yn= PC (wn - AAwn)’
tn = (1 - Tn)wn T TV
X1 = Pe [ﬁnf (xn) T YWy + ((1

where for any n, C, and t,, are picked as in Algorithm 4. Then,
{x,} converges strongly to x* € Q, which is only a solution to
the VIP: {(f — pF)x*,x —x*)<0,Vx € Q.

Proof. One writes z,: = P (w,) and divides the proof of
the theorem into a few steps.

(1 “VYn— ﬁnr){ (1 - Un)0n||xn - ann||2 +”Zn - wn”Z} +||Vn - xrﬁ-l"2
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be defined as #(n): = max {an: I <1“j+1}. Using Lemma

6, one gets I, ,) <T) (41 and I, <T, (5, In the rest of the

n(n)+
proof, applying the similar reasoning to that in Case 2 of the

proof of Theorem 1, one obtains the claim.
Theorem 4. Suppose that T is a nonexpansive self-mapping

on C and {x,} is fabricated by the modification of Algo-
rithm 4, i.e., for each starting x, € C,

(62)

~ ) = B.pF)T P, (w,)]. Vn>1,

Step 1. One claims that {x,} is of boundedness. In fact,
via the similar inferences to those in Step 1 of the proof
of Theorem 3, one obtains the claim.

Step 2. One claims that

(63)

<[ = pI* =% =PI + 2B, (F = PF)p. v, — P,

with v, = B, f (x,) + y,w, + ((1 =y, ) - B,pF)Tz,. In
fact, via the similar inferences to those in Step 2 of the
proof of Theorem 3, one obtains the claim.

2
(1 =10~ B.0) 2Ly ) | <%, = oI =[%001 = 2 + 28,4 = pPIpu v = ).

In fact, via the similar inferences to those in Step 3 of
the proof of Theorem 3, one obtains the claim.

Step 4. One claims that |x,,, - pII2 <[1-p,
(= 0lx, - pI*+ B, (t=8)-2{(f - pF)p,v, - py/
7 — §. Indeed, via the similar inferences to those in Step
4 of the proof of Theorem 3, one obtains the claim.

Step 5. One claims that x, — x* € Q which is only
a solution of the VIP (15). In fact, via the similar

Step 3. One claims that

(64)

inferences to those in Step 5 of the proof of Theorem 3,
one obtains the claim. O

4. Applicability and Implementability

In this section, we provide an illustrated instance to dem-
onstrate the applicability and implementability of our
proposed algorithms. Put p=2A=l=yu=
1/2,0,=1/3,8,=1/3(n+1), and y, = 1/3(n + 1).
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We first provide an example of Lipschitz continuous and
pseudomonotone mapping A, asymptotically nonexpansive
mapping T, and countably many nonexpansive mappings
{T,}72, with Q=VI(C,A) N (N%,Fix(T;))#& where
Ty: =T.Put C = [-3,3] and H = R with the inner product
{a,b) = ab and induced norm || - || = | - |. The starting point
X is arbitrarily selected in C. Put
f(x)=F(x)=1/2x,Vx € C s..

[[Av — Aull <

Journal of Mathematics

6=1/2<T=1—ﬂ1—p(211—p1c2)=1.

Assume that A: H—H and T,T,: C—C are for-
mulated as Av: =1/1+|sinv|—1/1+|v|, Tv: =3/5sinv,
and T,,v = Sv =sinv,Vv € C,n>1. We now claim that A is
of both pseudomonotonicity and Lipschitz continuity. In-
deed, for each v,u € H, one has

(65)

[ vl =l ) | lsinv —[lsinu] |
L(L+lul) (L +IvIDE 1L+ lisinadl) (1 +lsin vi))]
(66)
[[v =yl [lsinv —sin ul|
-= ; - <2|v-ul.
(T +al) (T +lvl) -~ (1 +lsinul) (1 +[sin v]))
nonexpansivity with 0, = (3/5)",vVn, s.t.

Accordingly, A is of Lipschitz continuity. In what fol-
lows, one claims that A is of pseudomonotonicity. For any
v,u € H, it is clear that {(Av,u—v) = (1/1 + |sinv| — 1/1+
lul)(u—v)=20=>C(Au, u—v) = (1/1 + [sinu| = 1/1 + |u]) (u
—v) > 0. Moreover, it is easy to check that T is of asymptotical

[T, = T, < (315)"H|[TPx, = T, | = (3/5)"!

It is clear that Fix(T) = {0} and
lim, ,0,/B, =1im(3/5)"/1/3(n+1),_,., = 0. Addition-
ally, it is readily known that T,, = S is of nonexpansivity and
Fix(S) = {0}. Thus, Q= VI(C,A)NnFix(S)NFix(T) =
{0}#@. So, from W,=S and (1-y,)I-B,pF=
(1-n/3(n+1))I-1/ 3(n+1)2-1/21 =2/31, we reduce
Algorithm 3 to the following:

Xy = =——— =X, + an + %T”Pc (w,),Vn>1,
3(n+1) 2 3(n+1) 3 "

(68)
where for any n, C, and 7, are picked as in Algorithm 3.

Then, by Theorem 1, one deduces that {x,} converges to
0 € Q = VI(C, A) N Fix(S) N Fix (7).

IT"x, — T x, | — 0 as n—> 00. In fact, one observes that
n n

1T — Tl <3/5|T" v = T | < --- < (3/5)" |lv—-ul|<
(1+6,)lv-ul, and

3. . 3\"

Ssin (Tx,) - 3/5sinx, §2<§) —0. (67)

Particularly, noticing the fact that Tu: = 3/5sinu is of
nonexpansivity, we also present the modification of Algo-
rithm 3, ie,

n 2
S Ly - Vn>1,
T 1) 2 3 1) 3 c, (wy), ¥n

(69)

where for any n, C,, and 1, are picked as above. Then, by
Theorem 2, one infers that {x,} converges to
0 € Q = VI(C, A) NFix(S) N Fix (T).

5. Concluding Remarks

Compared with the associated theorems of Kraikaew and
Saejung [21], Ceng and Shang [23], and Reich et al. [25], our
theorems enhance, extend, and develop them in the fol-
lowing ways.
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(i) The issue of seeking a point of VI(C, A) in [21] is
developed into our issue of seeking a point of
VI(C, A)n (N2 Fix(T;)) with T, being of non-
expansivity for any n and T,=T being of
asymptotical nonexpansivity. The Halpern sub-
gradient extragradient rule for settling the VIP in
[21] is developed into our Mann hybrid deepest-
descent extragradient approach for handling
a HVI with the CFPP and VIP constraints, which
is on the basis of Mann’s iterative technique,
viscosity approximation method, subgradient
extragradient rule with linear-search process, and
hybrid deepest-descent rule.

(ii) The issue of seeking a point of VI(C, A) in [25] is
developed into our issue of seeking a point of
VI(C,A)n (NP Fix(T;)) with T, being of non-
expansivity for any n and T, = T being of asymp-
totical nonexpansivity. The modified projection-
type rule with linear-search process for settling
the VIP in [25] is developed into Mann hybrid
deepest-descent extragradient approach for settling
a HVI with the CFPP and VIP constraints, which is
on the basis of Mann’s iterative technique, viscosity
approximation method, subgradient extragradient
rule with linear-search process, and hybrid deepest-
descent rule.

(iii) The  issue of  seeking a  point of
VI(C, A)n (N2 Fix(T;)) with Lipschitz continuity
and sequentially weak continuity mapping A in [23]
is developed into our issue of seeking a point of
VI(C,A)n (N2 Fix(T;)) with A being uniform
continuity mapping satisfying || Az| < h,ﬂigf |Ax,l

for any {x,} cC with x,—z e C. The hybrid
inertial-type subgradient extragradient rule with
linear-search process in [23] is developed into Mann
hybrid deepest-descent extragradient approach, e.g.,
the original inertial-type iteration
"w, =T,x, +a&,(T,x, —T,x, ,) is replaced by
Mann-type iteration "w, = (1 - 0,)x, + 0,W,x, »
and the original viscosity iteration
”xn+1 = ﬁnf (xn) T VnXn t ((1- Yn)I - ﬁon)TnZn”
is replaced by our hybrid viscosity iteration
“Xni1 = PelBuf (x,) +ypx, + ((L=p, )] = B,p

F)T"z,].” It is worthy to point out that the defi-
nition of z, in the former formula of x,,, is quite
different from the definition of z, in the latter

formula of x,,, ;.
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