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In this study, for graph Γ with r connected components (also for connected nonbipartite and connected bipartite graphs) and
a real number ε(≠ 0, 1), we found generalized and improved bounds for the sum of ε-th powers of Laplacian and signless
Laplacian eigenvalues of Γ. Consequently, we also generalized and improved results on incidence energy (IE) and Laplacian
energy-like invariant (LEL).

1. Introduction

Let Γ denote a fnite, simple, and undirected graph of order
n. Te edge and vertex sets of Γ are denoted by E(Γ) �

e1, e2, . . . , em􏼈 􏼉 and V(Γ) � v1, v2, . . . , vn􏼈 􏼉, respectively. If
the vertex vi is neighbour to vj, then write vi ∼ vj. Te degree
of the vertex vi ∈ V(Γ), symbolized by di, is the number of
vertices adjacent to vi.

Te adjacency matrix and the degree matrix of graph Γ
are denoted by A(Γ) and D(Γ), respectively. Let
μ1(Γ)≥ μ2(Γ)≥ · · · ≥ μn(Γ) � 0 be the eigenvalues of the
Laplacian matrix L(Γ) of Γwhere L(Γ) � D(Γ) − A(Γ) [1, 2].
Letq1(Γ)≥ q2(Γ)≥ · · · ≥ qn(Γ) be the eigenvalues of the
signless Laplacian matrix Q(Γ) of Γ where Q(Γ) � D(Γ) +

A(Γ) [3]. Since the matrices A(Γ), L(Γ), and Q(Γ) are real
and symmetric matrices, thus they have real eigenvalues. So,
we can write their eigenvalues such that
λ1(Γ)≥ λ2(Γ)≥ · · · ≥ λn(Γ), μ1(Γ)≥ μ2(Γ)≥ · · · ≥ μn(Γ), and
q1(Γ)≥ q2(Γ)≥ · · · ≥ qn(Γ), respectively. L(Γ) and Q(Γ) are
semidefnite matrices, according to the Geršgorin disc
theorem. From here, all eigenvalues of Laplacian and
signless Laplacian matrices of Γ are non-negative integers. In
[3], it has been found that μi(Γ)> 0(i � 1, 2, . . . , n − 1) for
a connected nonbipartite graph Γ. Additionally, Γ is a bi-
partite graph if and only if qn � 0.

Te link between the eigenvalues of a graph and the
molecular orbital energy levels of π− electrons in conjugated
hydrocarbons is the most crucial chemical application of
graph theory. Te total π− electron energy in conjugated
hydrocarbons is calculated by the sum of absolute values of
the eigenvalues corresponding to the molecular graph Γ
which has a maximum of four degree generally for the
Hüchkel molecular orbital approximation. Te energy of Γ
given by Gutman in [4] is as follows:

E(Γ) � 􏽘
n

i�1
λi(Γ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (1)

Nowadays, there is a lot of study on graph energy, as can
be seen from the recent papers [5].

Te square roots of the eigenvalues of the matrix MMT

are known as the singular values of some n × m matrix M

and its transpose MT. Recently, in [2], Nikiforov introduced
and explored the notion of graph energy. He defned the
energy E(Γ) of a graph to be the sum of singular values of
any matrix M. Clearly, E(Γ) � E(A(Γ)).

Assume that I(Γ) represents the vertex-edge incidence
matrix of the graph Γ. Ten, for Γ having vertex set V(Γ) and
edge set E(Γ), the (i, j)− entry of I(Γ) is 0 if vi is not incident
with ej and 1 if vi is incident with ej. Jooyandeh et al. [6]
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introduced the notion of incidence energy of a graph. Ac-
cordingly, the incidence energy IE of Γ is the sum of the
singular values of the incidence matrix of Γ. Te following
expression is given by Gutman et al. [7]:

IE � IE(Γ) � 􏽘
n

i�1

�����

qi(Γ)
􏽱

. (2)

Some basic information on IE may be seen in [6, 7].
As abovementioned, one can compute the incidence

energy of a graph Γ by calculating the eigenvalues of signless
Laplacian matrix of Γ. However, the problem is much more
complicated for some classes of graphs due to the compu-
tational complexity of fnding eigenvalues of signless Lap-
lacian matrix. Tus, to compute the invariant for some
classes of graphs, it is crucial to fnd their lower and upper
bounds. Zhou [8] found the upper bounds on the incidence
energy in terms of the frst Zagreb index. Diferent lower and
upper bounds on IE have been studied by various
researchers.

In [9], associated to the Laplacian eigenvalues, authors
introduced the invariant called the Laplacian energy-like
invariant (or Laplacian-like energy) which is defned as
follows:

LEL � LEL(Γ) � 􏽘
n− 1

i�1

��
μi

√
. (3)

Firstly, it was examined in [9] that LEL and Laplacian
energy have similar characteristics. It has also been shown
that it resembles to graph energy much more closely. For
detailed information, see [10].

For a graph Γ of order n and a real number ε not equal to
0 and 1 in [8], the sum of the εth powers of the nonzero
Laplacian eigenvalues is defned as follows:

σε � σε(Γ) � 􏽘
n− 1

i�1
μεi . (4)

If ε is 0 and 1, then the cases are trivial as σ0 � n − 1 and
σ1 � 2m, where m denotes the cardinality of the edge set of Γ.
It is clear that σ1/2 is equal to LEL. We should note that nσ − 1
is also equal to the Kirchhof index of Γ (for more detail (one
can see [11, 12]). Many studies on σε have recently been
published in the literature. For details, see [13, 14].

Similar to the defnitions of IE, LEL, and σε, Akbari et al.
[15] defned the sum of the εth powers of the signless
Laplacian eigenvalues of Γ as follows:

sε � sε(Γ) � 􏽘
n

i�1
q
ε
i , (5)

and they also gave some connections between σε and sε. If ε is
0 and 1, then the cases are trivial as s0 � n and s1 � 2m. Note
that s1/2 is equal to the incidence energy IE.We observed that
Laplacian eigenvalues and signless Laplacian eigenvalues of
bipartite graphs are equal [1, 3, 16]. Terefore, for bipartite
graphs, σε and sε are equal, and hence, LEL is equal to IE [17].
Recently, diferent properties, as well as diferent lower and
upper bounds of sε have been established in [15, 17, 18].

Lemma 1 (see [19]). Let a1, a2, . . . , an be nonnegative
numbers. Ten,

n
1
n

􏽘

n

i�1
ai − 􏽙

n

i�1
ai

⎛⎝ ⎞⎠

1/n
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦≤ n 􏽘

n

i�1
ai − 􏽘

n

i�1

��
ai

√⎛⎝ ⎞⎠

2

≤ n(n − 1)
1
n

􏽘

n

i�1
ai − 􏽙

n

i�1
ai

⎛⎝ ⎞⎠

1/n
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦.

(6)

Te equality among them holds if and only if
a1 � a2 � · · · � an.

We aim to obtain some strong bounds using the efcient
inequality technique in Lemma 1 for main results. Also, we
give some generalizations for sε, σε, indicence energy IE, and
the Laplacian energy-like invariant LEL of graphs (with r

connected components, connected nonbipartite, and con-
nected bipartite).

Te following main lemmas are required for our main
results.

Let t � t(Γ) denote the number of spanning trees of
a graph Γ. Let Γ1 × Γ2 be the Cartesian product of the graphs
Γ1 and Γ2. We defne the following number for a graph Γ.

t1 � t1(Γ) �
2t Γ × K2( 􏼁

t(Γ)
. (7)

Lemma 2 (see [20]). If Γ is a connected bipartite graph with n

vertices, then 􏽑
n− 1
i�1 μi � 􏽑

n− 1
i�1 qi � nt(Γ). If Γ is a connected

nonbipartite graph with n vertices, then 􏽑
n
i�1qi � t1.

Lemma 3 (see [21]). Let Γ be a connected graph with n≥ 3
vertices and maximum degree ∆. Ten, μ2 � · · · � μn− 1 if and
only if Γ � Kn or Γ � K1,n− 1 or Γ � K∆,∆.

Lemma 4 (see [21]). Let Γ be a connected graph of order n.
Ten, μ1 � · · · � μn− 1 if and only if Γ � Kn.
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Lemma 5 (see [3]). Te spectra of L(Γ) and Q(Γ) coincide if
and only if the graph Γ is bipartite.

2. Main Results

After above preliminary informations, we are ready to give
our main results.

It is well known that if a graph Γ has r connected
components, the spectrum of Γ is the union of the spectra of

Γi, 1≤ i≤ r (and multiplicities are added). Te same also
holds for the Laplacian and the signless Laplacian spectrum.

Firstly, we give lower and upper bounds on sε and σε for
a graph with r connected components.

Theorem 6. Let Γ be a graph of order n with r connected
components such that p of them are connected bipartite.Ten,

�������������������������

σ2ε +(n − r)(n − r − 1)R
2ε/(n− r)
n− r

􏽱

≤ σε ≤
�������������������������

σ2ε(n − r − 1) +(n − r)R
2ε/(n− r)
n− r

􏽱

,
��������������������������

s2ε +(n − p)(n − p − 1)∆2ε/(n− p)
n− p

􏽱

≤ sε ≤
��������������������������

s2ε(n − p − 1) +(n − p)∆2ε/(n− p)
n− p

􏽱

,

(8)

where Rn− r � 􏽑
n− r
i�1 μi and ∆n− p � 􏽑

n− p
i�1 qi. Equalities occur in

both bounds if and only if μ1 � μ2 � · · · � μn− r and
q1 � q2 � · · · � qn− p, respectively.

Proof. Note that 0 is an eigenvalue of Laplacian matrix with
multiplicity r. Taking ai � μ2εi , replacing n by n − r in Lemma
1, we obtain the following equation:

W≤ (n − r) 􏽘
n− r

i�1
μ2εi − 􏽘

n− r

i�1
μεi⎛⎝ ⎞⎠

2

≤ (n − r)W, (9)

where

W � (n − r)
1

n − r
􏽘

n− r

i�1
μ2εi − 􏽙

n− r

i�1
μ2εi

⎞⎠

1/(n− r)

⎛⎜⎝ ⎤⎥⎥⎥⎥⎥⎦.
⎡⎢⎢⎢⎢⎢⎣ (10)

Since 􏽐
n− r
i�1 μ

ε
i � σε, we have the following equation:

W≤ (n − r)σ2ε − σ2ε ≤ (n − r)W. (11)

Observe that

W � (n − r)
1

n − r
􏽘

n− r

i�1
μ2εi − 􏽙

n− r

i�1
μ2εi

⎛⎝ ⎞⎠

1/(n− r)

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

� (n − r)
1

n − r
σ2ε − R

2ε/(n− r)
n− r􏼔 􏼕

� σ2ε − (n − r)R
2ε/(n− r)
n− r .

(12)

Hence, we get the result.
From Lemma 1, the equalities hold if and only if

μ1 � μ2 � · · · � μn− r.
It is known that 0 is an eigenvalues of signless Laplacian

matrix with multiplicity p. For sε, the proof is similar,
replacing n by n − p and taking ai � q2εi in Lemma 1.

As a special case, if we take ε � 1/2, we get the bounds for
the LEL and IE given as follows: □

Corollary  . Let Γ be a graph of order n with r connected
components such that p of them are connected bipartite.Ten,

�������������������������

2m +(n − r)(n − r − 1)R
1/(n− r)
n− r

􏽱

≤ LEL≤
�������������������������

2m(n − r − 1) +(n − r)R
1/(n− r)
n− r

􏽱

,
��������������������������

2m +(n − p)(n − p − 1)∆1/(n− p)
n− p

􏽱

≤ IE≤
��������������������������

2m(n − p − 1) +(n − p)∆1/(n− p)
n− p

􏽱

,

(13)

where Rn− r � 􏽑
n− r
i�1 μi and ∆n− p � 􏽑

n− p
i�1 qi. Equalities hold in

both bounds if and only if μ1 � μ2 � · · · � μn− r and
q1 � q2 � · · · � qn− p, respectively.

Note that, if we take r � 1 and p � 0 in Teorem 6, we
reach the following result.

Corollary 8. Let Γ be a nonbipartite connected graph of order
n. Let t and t1 be as given in Lemma 2. Ten,

�������������������������

σ2ε +(n − 1)(n − 2)(nt)
2ε/(n− 1)

􏽱

≤ σε ≤
�������������������������

σ2ε(n − 2) +(n − 1)(nt)
2ε/(n− 1)

􏽱

, (14)
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and
��������������

s2ε + n(n − 1)t
2ε/n
1

􏽱

≤ sε ≤
��������������

s2ε(n − 1) + nt
2ε/n
1

􏽱

. (15)

Inequalities (14) and (15) hold in both bounds if and only
if Γ � Kn and q1 � q2 � · · · � qn, respectively.

Taking ε � 1/2 in Corollary 7, we have the following
corollary.

Corollary 9. Let Γ be a nonbipartite connected graph of order
n and t and t1 be as given in Lemma 2. Ten,

������������������������

2m +(n − 1)(n − 2)(nt)
1/(n− 1)

􏽱

≤ LEL≤
������������������������

2m(n − 2) +(n − 1)(nt)
1/(n− 1)

􏽱

, (16)

and
��������������

2m + n(n − 1)t
1/n
1

􏽱

≤ IE≤
��������������

2m(n − 1) + nt
1/n
1

􏽱

. (17)

Equalities (16) and (17) hold in both bounds if and only if
Γ � Kn and q1 � q2 � · · · � qn, respectively.

Now, we consider the bipartite graph case of the above
theorem (Teorem 6). In the next corollary, we actually
improved the results which were obtained in [22].

Corollary 10. Let Γ be a connected bipartite graph with n

vertices. Let t be as given in Lemma 2. Ten,

������������������������

s2ε +(n − 1)(n − 2)(nt)
2ε/(n− 1)

􏽱

≤ sε � σε ≤
������������������������

s2ε(n − 2) +(n − 1)(nt)
2ε/(n− 1)

􏽱

, (18)

and

������������������������

2m +(n − 1)(n − 2)(nt)
1/(n− 1)

􏽱

≤ IE � LEL≤
������������������������

2m(n − 2) +(n − 1)(nt)
1/(n− 1)

􏽱

. (19)

Equalities (18) and (19) hold in both bounds if and only if
Γ � Kn, Γ � K1,n− 1, or Γ � K∆,∆, where ∆ is the maximum
degree.

As it is well known in graph theory, every tree is bi-
partite. In addition, for a tree T, m � n − 1 and t � 1. From
Corollary 10, we have the following.

Corollary 11. Let T be a tree of order n. Ten,

����������������������

σ2ε +(n − 1)(n − 2)n
2ε/(n− 1)

􏽱

≤ sε(T) � σε(T)≤
����������������������

σ2ε(n − 2) +(n − 1)n
2ε/(n− 1)

􏽱

,
����������������������

(n − 1) 2 +(n − 2)n
1/(n− 1)

􏽨 􏽩

􏽱

≤ IE(T) � LEL(T)≤
����������������������

(n − 1) 2(n − 2) + n
1/(n− 1)

􏽨 􏽩

􏽱

.

(20)

Equalities hold in both bounds if and only if T � K1,n− 1.

Remark 12. It is pertinent to mention here that in equations
(15) and (17), for connected nonbipartite graphs, we recover
the same lower bounds as in Teorem 2.6 (i) and Corollary
2.7 (i) in [22] through a diferent approach. For connected
bipartite graphs, it can be seen that lower bounds (18) and
(19) are better than lower bounds obtained in Teorem 2.6
(ii) and Corollary 2.7 (ii) in [22], respectively. Moreover, we

obtained extra upper bounds for the relevant parameters and
generalized them as diferent forms [22].

3. Accomplishment Remarks

In this paper, we have obtained new results for the graph
invariants sε and σε of a simple graph Γ with r connected
components (connected nonbipartite and connected bi-
partite), where ε(≠ 0, 1) is a real number. Also, as a result, we
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generalized and improved the results on incidence energy
(IE) and Laplacian energy-like invariant (LEL).

Data Availability
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within the article.
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