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Te damped parametric driven nonlinear pendulum equation/oscillator (NPE), also known as the damped disturbed NPE, is
examined, along with some associated oscillators for arbitrary angles with the vertical pivot. For analyzing and solving the current
pendulum equation, we reduce this equation to the damped Dufng equation (DDE) with variable coefcients. After that, the
DDEwith variable coefcients is divided into two cases. In the frst case, two analytical approximations to the damped undisturbed
NPE are obtained. Te frst approximation is determined using the ansatz method while the second one is derived using He’s
frequency formulation. In the second case, i.e., the damped disturbed NPE, three analytical approximations in terms of the
trigonometric and Jacobi elliptic functions are derived and discussed using the ansatz method. Te semianalytical solutions of the
twomentioned cases are graphically compared with the 4th-order Runge–Kutta (RK4) approximations. In addition, the maximum
error for all the derived approximations is estimated as compared with the RK4 approximation. Te proposed approaches as well
as the obtained solutions may greatly help in understanding the mysteries of various nonlinear phenomena that arise in diferent
scientifc felds such as fuid mechanics, plasma physics, engineering, and electronic chips.

1. Introduction

Te complex pendulum is a paradigm for investigating
oscillations and numerous other physical problems and
nonlinear dynamical phenomena [1, 2]. Several models for
the nonlinear pendulum oscillators (NPOs) have been uti-
lized for investigating numerous physical and engineering
problems, e.g., the oscillations in chips and electrical circuits,
Bose–Einstein condensates, image processing, the move-
ment of satellites, oscillations in diferent plasma models,
and many other problems in several felds [3–5]. Moreover,
many evolution equations to the pendulum oscillators have
been utilized as a physical model to study several natural
problems related to diferent oscillations, bifurcations, and

chaos [6–8]. For instance, He et al. [9] modifed the structure
of the pendulum oscillations on a dynamical system by using
a device with electromagnetic harvesting to control the
kinematics of a spring-pendulum system. Based on
Lagrange’s equations, the authors derived the governing
kinematics equations of the NPOs and solved them ana-
lytically using the multiple-scale method (MSM). In that
investigation, the authors explained various behaviors,
which control the mentioned model, such as the stability of
fxed points, amplitudes, phases, and the (in)stability re-
gions. Besides that, they motioned that this model is utilized
to control sensors in building transportation and industrial
sectors. Te auto-parametric system of three degrees of
freedom consisting of a damped spring pendulum was

Hindawi
Journal of Mathematics
Volume 2023, Article ID 6294798, 14 pages
https://doi.org/10.1155/2023/6294798

https://orcid.org/0000-0001-9343-6062
https://orcid.org/0000-0002-6724-7361
mailto:tantawy@sci.psu.edu.eg
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/6294798


demonstrated in the study of [10]. Te analytical solution to
the motion equations up to the third approximation was
obtained using the MSM. Furthermore, the stability and
instability zones were analyzed and investigated. In the study
of [11], the authors investigated the periodic property of
a rotating pendulum model. Te governing equation for
this model was solved analytically using He’s homotopy
perturbation method (He’s HPM). Te accuracy of the
obtained results was verifed by comparing the obtained
solution with the numerical one based on the 4th-order
Runge–Kutta (RK4) method and with He’s frequency
formulation (He’s FF). HPM and its family succeeded more
than other methods in analyzing pendulum equations
without both linear and negative-linear terms [12] and
many other NPOs [13–15]. He’s FF has developed rapidly
since its inception; where many researchers have developed
this method to give good results for many complicated
nonlinear problems without any restrictions [16–21]. Te
hybrid forced Rayleigh–Van der Pol–Dufng oscillator
with higher-order nonlinearity has been solved using the
Poincaré–Lindstedt approach. Te researchers discovered
that the approximate solution and the RK4 numerical
solution are in good agreement. Te authors found that
there is a high agreement between the analytical and nu-
merical approximations [22]. Also, the homotopy analysis
method (HAM) has been employed for analyzing the
damped Dufng oscillator (DDO) [23]. Te Laplace
transform, modifed diferential transform method
(MDTM), and Padé approximants have been applied for
analyzing and investigating the approximations to many
NPOs such as the forced DDO and forced damped van der
Pol oscillator [24]. Both damped and undamped Helm-
holtz–Dufng (H-D) oscillators have been studied and
analyzed using the ansatz method with the moving
boundary technique to obtain high-accurate approxima-
tions [25]. Te authors [25] made a comparison between
both approximate analytic and numeric solutions to prove
the accuracy of the analytic approximations, and it was
found that the obtained results were in agreement with
each other to a large extent. Moreover, the (un)damped
quadratic nonlinear Helmholtz oscillator (HO) have been
investigated using ansatz method and the exact solution for
the undamped oscillator as well as the approximate solu-
tion to the damped oscillator have been derived in terms of
the Weiersrtrass elliptic functions [26]. Tere have been
few attempts to solve and analyze damped NPOs while
taking friction forces into account [27]. Te analytical
approximations to some damped NPOs have been derived
in terms of the Jacobi elliptic functions [27]. Tere are
many other physical forces, such as periodic and perturbed
forces in addition to friction force, that can afect the
behavior of pendulum oscillators. For instance, the damped
parametric nonlinear pendulum equation/oscillator (NPE/
NPO) or known as the damped disturbed NPE/NPO has
been discussed and solved numerically using implicit
discrete mappings [28, 29]. Also, the parametric NPE with
both frictional and excited forces has been solved analyt-
ically using the ansatz method and He’s FF as well as solved
numerically via the Galerkin method [30]. Te comparison

with the RK4 approximation revealed that the derived
analytical and numerical solutions were extremely accu-
rate. Also, utilizing a variety of analytical and numerical
techniques, the parametric NPE as well as certain related
oscillators have been solved [31]. Te authors used the
ansatz method for deriving high-accurate approximations
to the unforced damped parametric NPE in terms of an-
gular Mathieu functions. Also, the authors applied the
ansatz method to fnd some approximations to the damped
(un)forced parametric NPE in terms of trigonometric
functions. Moreover, He’s FF was applied to obtain some
approximations for both undamped and damped para-
metric NPE. Furthermore, HPM was carried out for ana-
lyzing both forced undamped and forced damped
parametric NPE. Also, the authors applied the Kry-
lov–Bogoliúbov Mitropolsky method (KBMM) for ana-
lyzing forced damped parametric NPE. Finally, the authors
made a comparison between all obtained approximations
with numerical approximations using both RK4 method
and the hybrid Padé-fnite diference method. In current
work, the parametric (un)disturbed NPE and many other
related oscillators will be investigated in detail and some
innovative approximations using several efective tech-
niques will be derived using the ansatz method.Te present
study is divided into two main parts: in the frst part, some
semianalytical solutions (analytical approximations) to the
damped undisturbed NPE will be derived using the ansatz
method and He’s FF [17, 18, 32]. For the second part, the
damped disturbed NPE will be solved analytically via
diferent approaches based on the ansatz method. Fur-
thermore, the comparison between all obtained analytical
approximations for the two studied cases and the RK4
numerical approximation will be investigated graphically
and numerically.

Te rest of the present work is organized as follows. In
Section 2, a glimpse about the equation of motion of the
parametric pendulum equation and its solution is recovered.
In Section 3, two-diferent analytical approximations
(sometimes are called semianalytical solutions) to the
damped undisturbed NPO are obtained using a suitable
ansatz method and He’s FF. In Section 4, some semi-
analytical solutions to the damped parametric driven NPO
are discussed in detail. In this section, three-diferent for-
mulas for the semianalytical solutions are derived. Te re-
sults and discussion are introduced in Section 5. We
summarized and introduced the most important results in
Section 6.

2. The Damped Disturbed NPE and Its Solution

In this section, we construct the diferential equation that
describes the behavior of the parametric driven NPE on the
pivot vertical. A simple mathematical parametric pendulum
system is modeled by a point mass m in kg unit, hanging at
the end of a massless wire with length l in m unit and fxed to
a supporting point “O,” swinging to and from in a vertical
plane. It is assumed that the end of the massless wire is
moving harmonically with a small harmonic disturbance
[28]: y(t) � ± ε cos(ct) (the motion of the vibrating base),
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where ε is a dimensionless small parameter and c represents
the frequency of harmonic motion. By analyzing the pen-
dulum motion, we obtain the following equation:

x(t) � l sinφ,

y(t) � − l cosφ + ε cos(ct),
􏼨 (1)

where φ denotes the angular displacement about downward
vertical.

Accordingly, the velocities in (x, y)-directions read

_x(t) � φ
.
l cosφ,

_y(t) � ± φ
.
l sinφ − εc sin(ct).

⎧⎨

⎩ (2)

Using the Lagrangian method, the equation of motion
could be obtained taking damping force of the medium into
account [28]:

R1 ≡ φ
..

+ 2βφ
.

+ ϕ(t) sinφ � 0, (3)

where ϕ(t) � ω2
0 ± Q0 cos(ct), ω0 �

���
g/l

􏽰
denotes the

eigenfrequency of the system, β � μ/(2ml) indicates the
coefcient of the damping term, Q0 � εω2 is the excitation
amplitude, and ω2 � c2/l. Here, g represents the gravita-
tional acceleration in unit m/s2, g � 9.8m/s2. More details
about the deriving (3) can be found in the studies of [28, 29].

As a particular case, in the absence of the dissipative
(friction) forces, i.e., for β � 0, the parametric pendulum
equation reduces to the undamped disturbed nonlinear
pendulum equation:

φ
..

+ ϕ(t) sinφ � 0. (4)

For ε � 0 and undamping β � 0, the parametric pen-
dulum equation reduces to the simple pendulum equation:

φ
..

+ ω2
0 sinφ � 0. (5)

In the following sections, we proceed to solve and an-
alyze all the mentioned cases in detail.

3. Analytical Approximations to the Damped
Undisturbed NPE

It is supposed that ε � 0, then (3) reduces into the damped
simple pendulum equation:

R2 ≡ φ
..

+ 2βφ
.

+ ω2
0 sinφ � 0,

φ(0) � φ0 andφ
.
(0) � φ

.

0.

⎧⎨

⎩ (6)

For the Chebyshev approximation
sinφ ≈ (332/333)φ − (13/85)φ3, the initial value problem
(i.v.p.) (6) can be rewritten in the following damped Dufng
i.v.p. [33]:

k ≡ φ
..

+ 2βφ
.

+ pφ + qφ3
� 0,

φ(0) � φ0 andφ
.
(0) � φ

.

0.

⎧⎨

⎩ (7)

where p � (332/333)ω2
0 and q � − (13/85)ω2

0.

3.1. First Formula: Trigonometric Solution. Now, we seek
a solution in the following ansatz:

φ � exp(− βt)[A sin(f(t)) + B cos(f(t)], (8)

where the coefcients A and B are undetermined coefcients
which can be obtained the initial conditions (ICs) φ(0) � φ0
and φ′(0) � φ

.

0 and f ≡ f(t), f(0) � 0 is a function to be
determined later. Applying the mentioned ICs, the values of
A and B are obtained as

A � ±

���������������������������������������������������

±
4β2 +

�������������������������������

− 4β2 + 4p + 3qφ2
0􏼐 􏼑

2
+ 48q βφ0 + φ

.

0( 􏼁
2

􏽲

− 4p − 3qφ2
0

6q
,

􏽶
􏽴

B � φ0.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(9)

Te substitution of (8) into (7) gives us
k � S1 sin(f) + S2 sin(3f) + S3 cos(f) + S4 cos(3f),

(10)
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with

S1 � −
e

− 3βt

4

− 3A
3
q − 3AB

2
q + 4A( _f)

2
e
2βt

− 4Ape
2βt

+ 4Aβ2e2βt
+ 4B €f

e
2βt⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

S2 � −
e

− 3βt

4
A

3
q − 3AB

2
q􏼐 􏼑,

S3 � −
e

− 3βt

4 − 3A
2
Bq − 4A €f e

2βt
− 3B

3
q + 4B( _f)

2
e
2βt

− 4Bpe
2βt

+ 4β2Be
2βt

􏼐 􏼑,

S4 � −
e

− 3βt

4
3A

2
Bq − B

3
q􏼐 􏼑.

(11)

Te ODE for the function f could be obtained by
eliminating €f from the system

S1 � 0&S3 � 0. (12)

Te ODE to be solved is

_f �

������������������������

(3/4)q A
2

+ B
2

􏼐 􏼑e
− 2βt

− β2 + p

􏽱

,

f(0) � 0.

⎧⎪⎨

⎪⎩
(13)

Te solution to the ODE (13) reads

f �
1
2β

��
Γ

√
−

�����

Γe− 2tβ
􏽱

+ 2
������

p − β2
􏽱

sinh− 1
(Θ) − sinh− 1

(Θ)􏼐 􏼑􏼢 􏼣,

(14)

with

Θ � 2

����������

p − β2

3 A
2

+ B
2

􏼐 􏼑q

􏽶
􏽴

e
tβ and Γ � 4p − 4β2 + 3 A

2
+ B

2
􏼐 􏼑q.

(15)

For β⟶ 0, the function f reduces to

f �

����������������

p +(3/4) A
2

+ B
2

􏼐 􏼑

􏽱

t. (16)

Example 1. Let (β,ω0) � (0.1, 1), then we obtain the fol-
lowing equation:

φ
··

+ 0.2φ
.

+ sinφ � 0,

φ(0) � 0 andφ
.
(0) � 0.25.

⎧⎨

⎩ (17)

According to the above analysis, the approximate ana-
lytical solution reads

φApprox � − 0.252583e
− 0.1t sin

5.
���������������������
3.94799 − 0.0292721e

− 0.2t
􏽰

+(− 9.93477i)sin− 1 11.6134e
0.1t

􏼐 􏼑

+(21.3316 + 15.6055i)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (18)

Te comparison between the approximation (18) and the
RK4 numerical approximation is carried out as shown in
Figure 1. Also, the maximum distance error (MDE) L∞ to
the approximation (18) as compared to the RK4 approxi-
mation is estimated:

L∞ � max0≤t≤30 φApprox − φRK

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 0.00134826. (19)

It is clear from the value of the MDE L∞ that the an-
alytical approximation (8) is characterized by the high-
accuracy as compared to the RK4 numerical approxima-
tion, which enhances the efectiveness of this solution.

3.2. Second Approach: He’s Frequency Formulation (He’s FF).
In order to apply He’s FF, the following i.v.p.
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R2 ≡ φ
..

+ 2βφ
.

+ ω2
0 sinφ � 0,

φ(0) � φ0 andφ
.
(0) � φ

.

0,

⎧⎨

⎩ (20)

replaces by the i.v.p.

φ
..

+ 2βφ
.

+ f(φ) � 0,

φ(0) � φ0 andφ
.
(0) � φ

.

0,

⎧⎨

⎩ (21)

where the function f(φ) ≡ f(x) can be obtained from the
Chebyshev approximation as

f(x) � ω2
0 sinx ≈ ω2

0 x −
2
13

x
3

􏼒 􏼓. (22)

According to He’s FF, we state

φ � Ae
− ρt cos w(t) + arccos

φ0
A

􏼒 􏼓􏼒 􏼓, (23)

with

_w(t) � μ
��������

(f(x)/x)

􏽱

 and x �

��
a

√

2
Ae

− ρt
, (24)

which leads to

_w(t) � μ
������������������

1 − (3/26)A
2
e

− 2ρt
􏼐 􏼑ω2

0

􏽱

. (25)

Solving the ODE (25) using the initial condition (IC)
w(0) � 0, we have

w(t) � μ􏽚
t

0

���������������

1 −
3
26

A
2
e

− 2ρt
􏼒 􏼓ω2

0

􏽲

dτ,

� μ

�������

Y(0)ω2
0

􏽱

−

������

Y(t)ω2
0

􏽱

��
26

√
ρ

−

������
− Y(0)

􏽰
ω2
0csc

− 1
(

������
(3/26)

􏽰
A)

ρ
�������
Y(0)ω$

􏽰 2
0

⎛⎜⎜⎝

−
Ae

ρt

����������

3A
2

− 26e
2ρt

􏽱 ������

Y(t)ω2
0

􏽱

csc− 1 ������
(3/26)

􏽰
Ae− ρt

􏼐 􏼑

ρ 3A2
− 26e2ρt􏼐 􏼑

⎞⎟⎟⎟⎟⎟⎠,

(26)

with

Y(t) � 26 − 3A
2
e

− 2ρt
􏼐 􏼑. (27)

Te value of the coefcient A can be obtained by using
the value of w(t) (given in (26)) and applying the IC
φ
.
(0) � φ

.

0

Γ ≡ − 3A
2φ2

0 + 3A
4

− 26A
2

+ 26B
2

􏼐 􏼑μ2ω2
0 + 26φ2

0ρ
2

+ 52φ0ρφ
.

0 + 26φ
. 2
0 � 0. (28)

Using command Solve [Γ �� 0, A] inMATHEMATICA,
we fnally get the value of A as follows:

A � ±

����������������������������������������������������������������������

±
���������������������������������������������������

9φ4
0μ

2ω2
0 − 156φ2

0μω
2
0 − 312φ2

0ρ
2

− 624φ0ρφ
.

0 + 676μ2ω2
0 − 312φ

. 2
0

􏽱

/μω0􏼒 􏼓 + 3φ2
0 + 26

􏽲

�
6

√ .
(29)

RK4
Approx

–0.1

0.0

0.1

0.2

φ

5 10 15 20 25 300
t

(β,ω0,φ0,φ̇0)=(0.1,1,0,0.25)

Figure 1: A comparison between the approximation (18) and the
RK numerical approximation to the i.v.p. (17).
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Here, ρ and μ are free parameters that are chosen in
order to optimize the approximate solution, i.e., minimize
the residual error.

Example 2. We can apply He’s FF (23) on Example 1, which
is given in equation (20). Te approximation (23) and the
RK4 numerical approximation are compared with each
other as shown in Figure 2 and the error L∞ is estimated at
the best values of (ρ, μ) � (0.104, 0.99) as

L∞ � max0≤t≤30 φApprox − φRK

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 0.00136089.

L∞ � max0≤t≤30 φHe′s− FF(t) − φRK(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 0.00531151.

⎧⎪⎨

⎪⎩

(30)

It is clear from the errors of both trigonometric solution
(8) and He’s FF (23) for the same values of parameters that
the Trigonometric solution (8) is better than the solution of
He’s FF (23). However, for higher-order Chebyshev ap-
proximation to the function f(x):

f(x) � ω2
0 sinx ≈ ω2

0 x −
1
6
x
3

−
1
127

x
5

􏼒 􏼓. (31)

We cannot get more accuracy but in this case the third-
order Chebyshev approximation is better than the ffth-
order Chebyshev approximation.

4. Some Analytical Approximations to the
Damped Disturbed NPE

Some diferent formulas to the analytical approximations to
the following i.v.p. will be discussed in detail:

R1 ≡ φ
..

+ 2βφ
.

+ ϕ(t) sinφ � 0,

φ(0) � φ0 andφ
.
(0) � φ

.

0.

⎧⎨

⎩ (32)

In the next section, three diferent formulas with high
accuracy are investigated.

4.1. First Formula: Jacobi Elliptic Form. Taking the ap-
proximation (13) into account and with the help of the
approximation sinφ ≈ (λ0φ − λ1φ3), the i.v.p. (32) reduces
to the following variable coefcients damped Dufng i.v.p.:

R ≡ φ
..

+ 2βφ
.

+ ϕ(t) λ0φ − λ1φ
3

􏼐 􏼑 � 0,

φ(0) � φ0 andφ
.
(0) � φ

.

0,

⎧⎨

⎩ (33)

where λ0 � (332/333) and λ1 � (13/85). Note that the values
of sinφ ≈ (λ0φ − λ1φ3) are obtained from the Chebyshev
approximation.

Now, we seek approximate analytic solution to the i.v.p.
(33) in the following ansatz form:

φ|Approx(1) � exp(− βt)θ(f(t)), (34)

where θ ≡ θ(t) is a solution to the following i.v.p.:

θ
..

+ κ λ0θ − λ1θ
3

􏼐 􏼑 � 0,

θ(0) � θ0  and θ
.

(0) � θ
.

0,

⎧⎪⎨

⎪⎩
(35)

where κ � (ω2
0 − εω2).

Te solution of the i.v.p. (35) can be expressed in the
following form:

θ(t) �
θ0cn(

��
w

√
t|m) + θ

.

0/
��
w

√
􏼒 􏼓dn(

��
w

√
t|m)sn(

��
w

√
t|m)

1 + p + qφ2
0 − w/2w􏼐 􏼑sn(

��
w

√
t|m)

2 ,

(36)

with

p � λ0κ, q � − λ1κ, w �
p

1 − 2m
, and m �

1
2

1 −
p

����������������

p + qθ20􏼐 􏼑
2

+ 2qθ
.

0
2

􏽲
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (37)

Te function f ≡ f(t) is to be determined later, sn
(

��
w

√
t|m) is the elliptic sine, cn (

��
w

√
t|m) is elliptic cosine,

dn (
��
w

√
t|m) is the delta amplitude, and 0≤m≤ 1.

Inserting solution (8) into the i.v.p. (33), we have the
following equation:

(β,ω0,φ0,φ̇0)=(0.1,1,0,0.25)

–0.1

0.0

0.1

0.2

φ

5 10 15 20 25 300
t

RK4
He's–FF

Figure 2: A comparison between the He’s FF approximation (23)
and the RK numerical approximation to the i.v.p. (6).
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β2 + λ0κ( _f)
2

+ λ0εω2 cos(ct) − λ0ω
2
0 � 0. (38)

Te solution of (38) gives the value of f(t):

f � ±
���
333

√

c
���
83κ

√

�������

λ0κ − β2
􏽱

E
c

2
t,

2λ0εω2

β2 − λ0κ
􏼠 􏼡. (39)

We can choose the solution with plus sign, then f(0) � 0

and _f(0) �

������������

− (β2/λ0κ) + 1
􏽱

.
Now, we must determine the values of θ0 and θ

.

0 using
the conditions φ(0) � φ0 and φ

.
(0) � φ

.

0. Te required values
are given by the following equation:

θ
.

0 �
βφ0 + φ

.

0����������
1 − β2/λ0κ􏼐 􏼑

􏽱 , θ0 � φ0. (40)

Inserting f(t) given in (39) into solutions (34) and (36),
we get the solution of the i.v.p. (33):

φ|Approx(1) � exp(− βt)θ(f(t)), (41)

with

θ(f(t)) �
θ0cn(

��
w

√
f(t)|m) + θ

.

0/
��
w

√
􏼒 􏼓dn(

��
w

√
f(t)|m)sn(

��
w

√
f(t)|m)

1 + p + qφ2
0 − w/2w􏼐 􏼑sn(

��
w

√
f(t)|m)

2 . (42)

4.2. Te Second Formula: Jacobi Elliptic Solution. Here, we
can use another approximation to sinφ ≈ (φ − 2/13φ3), then
the i.v.p. (32) reduces to the damped Dufng i.v.p. with
variable coefcients:

Q ≡ φ
..

+ 2βφ
.

+ ϕ(t) φ −
2
13
φ3

􏼒 􏼓 � 0,

φ(0) � φ0  and φ
.
(0) � φ

.

0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(43)

Let us consider the solution of the i.v.p. (43) is defned by
the following ansatz:

φ(t)|Approx(2) � φ0e
− tβcn(ω(t) + C, m). (44)

Inserting the ansatz (44) in the i.v.p (43), we fnally
obtain the following equation:

13m _ω(t)
2

+ φ2
0e

− 2tβϕ(t) � 0,

(2m − 1) _ω(t)
2

− β2 + ϕ(t) � 0.

⎧⎨

⎩ (45)

Eliminating m from system (45), we obtain the following
equation:

_ω(t) �

��������������������������

ϕ(t) 13 − 2φ2
0e

− 2tβ
􏼐 􏼑 − 13β2/13􏼐 􏼑

􏽱

,

ω(0) � 0.

⎧⎪⎨

⎪⎩
(46)

Equation (46) is not integrable, thus it solved numeri-
cally in order to get the value of ω(t).

Furthermore, the solution (44) could be written as

φ|Approx(2) � φ0e
− tβ

cn(ω(t) + C, m)

� φ0e
− tβcn + b1sndn

1 + b2sn
2 ,

(47)

with

sn ≡ sn(ω(t)|m) �
������
1 − cn

2
􏽰

,

cn ≡ cn(ω(t)|m),

dn ≡ dn(ω(t)|m) �
������������
1 − m 1 − cn

2
􏼐 􏼑

􏽱

􏼔 􏼕.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(48)

By inserting (46) and (47) into the i.v.p. (43) and after
straightforward and simply calculations, fnally, the values of
b1 and b2 could be obtained as follows:

b1 �

��
13

√
βφ0 + φ

.

0( 􏼁
����������

− 13β2 − κS1

􏽱 , (49)

and for φ0 ≠ 0

b2 � −
κ

2φ0 13β2 + κS1􏼐 􏼑
2

φ0

− 169S2 − 26βφ
.

0φ0

+4κφ4
0 − 52κφ2

0

⎛⎜⎝ ⎞⎟⎠

+13 sin φ0( 􏼁 13β2 + κS1􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(50)

while φ0 � 0, we obtain b2 � 0, where S1 � (2φ2
0 − 13) and

S2 � (β2 − κ).
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By substituting equations (49)–(53) into the i.v.p. (43)
and solving the obtained solution, we fnally obtain the value
of “m” for φ0 ≠ 0 as follows:

m �

− 26κφ0φ
.

0 cos φ0( 􏼁 13S2 + 2κφ2
0􏼐 􏼑

2

+ 26κ sin φ0( 􏼁 26φ0βS2 + 3φ
.

0 13S2 + 2κφ2
0􏼐 􏼑 − 2βκφ3

0􏼐 􏼑 13S2 + 2κφ2
0􏼐 􏼑

+φ0

− 156βκφ0φ
. 2
0 13S2 + 2κφ2

0􏼐 􏼑

+βφ0

− 13c
2εω2S1 13S2 + 2κφ2

0􏼐 􏼑+

8κ2φ2
0 78φ2

0S2 − 507S2 + 4κφ4
0􏼐 􏼑 − 8788κS

2
2

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

− φ
.

0

8κφ2
0 507 β4 − κ2􏼐 􏼑 + 2κ2 39 − 2φ2

0􏼐 􏼑φ2
0􏼐 􏼑+

13c
2εω2S1 13S2 + 2κφ2

0􏼐 􏼑+

8788κS
2
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

8φ0 βφ0 + φ
.

0( 􏼁 13S2 + 2κφ2
0􏼐 􏼑

3 .

(51)

For φ0 � 0, the value of the modulus “m” given in (51)
reduces to

m �
c
2εω2

8 β2 − κ􏼐 􏼑
2 . (52)

4.3. Tird Formula: Trigonometric Approach. Another ap-
proximation in terms of trigonometric function to the i.v.p.
(43) can be determined by inserting the following ansatz:

φ|Approx(3) � A exp(− ρt) cos f + arccos
φ0
A

􏼒 􏼓􏼒 􏼓, (53)

into the i.v.p. (46) which leads to

Q ≡ φ
..

+ 2βφ
.

+ ϕ(t) φ −
2
13
φ3

􏼒 􏼓

� −
2
13

A
3 cos3(θ)e

− 3ρtϕ(t) + Ae
− ρt cos(θ)

· ρ2 − 2βρ + ϕ(t) − ( _f)
2

􏼐 􏼑

+ Ae
− ρt sin(θ)(2(β − ρ) _f+ €f),

(54)

where f ≡ f(t), f(0) � 0, and ρ is an optimal parameter.
For vanishing the coefcient of cos(θ), we obtain the

following equation:

ρ2 − 2βρ + ϕ(t) − ( _f)
2

􏼐 􏼑 � 0, and f(0) � 0. (55)

Solving (55) with f(0) � 0 yields

f � 􏽚
t

0

�������������

ρ2 − 2βρ + ϕ(t)

􏽱

dτ �
2

���
Π0

􏽰

c
E

c

2
t, −

2Q0

Π0
􏼠 􏼡, (56)

with Π0 � (ρ2 − 2βρ + ω2
0 − Q0) and E((c/2)t, − (2Q0/Π0))

represents the elliptic integral of the second kind.
Applying the ICs φ(0) � φ0 and φ

.
(0) � φ

.

0, we obtain the
following equation:

A � ±

������������������������

2ρφ0 . φ0 + φ2
0 Π0 + ρ2􏼐 􏼑 + φ0

. 2
􏽱

���
Π0

􏽰 . (57)

Te number ρ is a free arbitrary parameter that we
choose in order to get as small residual error as possible.

5. Results and Discussion

In this section, we proceed to analyze all obtained ap-
proximations. Te discussion can be divided into several
cases as follows.

Case 1. For the following numerical example
(β,ω0,ω2, ε, c,φ(0),φ

.
(0)) � (0.1, 1, 0.5, 0.2, 0.2, 0, 0.1)

R ≡ φ
..

+ 0.2φ
.

+ ϕ(t) λ1φ − λ2φ
3

􏼐 􏼑 � 0,

ϕ(t) � ω2
0 − εω2 cos(ct) � 1 − 0.1 cos(0.2t),

φ(0) � 0 and φ. (0) � 0.1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(58)

Te analytical approximations to the damped disturbed
NPO (58) according to the frst formula (44), second for-
mula (50), and third formula (56) are compared with the
RK4 numerical solution and the He’s HPM approximation
as illustrated in Figure 3. Also, the MDE L∞ for the men-
tioned approximations is estimated:
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L∞
􏼌􏼌􏼌􏼌Approx(1)

� max0≤t≤30 φ|Approx(1) − φRK

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 0.00114366,

L∞
􏼌􏼌􏼌􏼌Approx(2)

� max0≤t≤30 φ|Approx(2) − φRK

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 0.00139714,

L∞
􏼌􏼌􏼌􏼌Approx(3)

� max0≤t≤30 φ|Approx(3) − φRK

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 0.000432514,

L∞
􏼌􏼌􏼌􏼌He′sHPM � max0≤t≤30 φ|He′s− HPM − φRK

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � 0.0246647.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(59)

It is observed that the exact congruence between the
analytical approximations (41), (47), (53), and the RK4
numerical solution. Also, it is clear that the derived

approximations show high accuracy as compared to the He’s
HPM approximation. Henceforth, for He’s HPM approxi-
mation, we used λ1 � 1 and λ2 � 1/6.

(β,ω0,ω2,ε,γ,φ0,φ̇0)=(0.1,1,0.5,0.2,0.2,0,0.1)

RK4
Approx (1)

5 10 15 20 25 300
t

–0.05

0.00

0.05

φ

(a)

(β,ω0,ω2,ε,γ,φ0,φ̇0)=(0.1,1,0.5,0.2,0.2,0,0.1)

RK4
Approx (2)

5 10 15 20 25 300
t

–0.05

0.00

0.05

φ

(b)

(β,ω0,ω2,ε,γ,φ0,φ̇0)=(0.1,1,0.5,0.2,0.2,0,0.1)

RK4
Approx (3)

–0.05

0.00

0.05

φ

5 10 15 20 25 300
t

(c)

(β,ω0,ω2,ε,γ,φ0,φ̇0)=(0.1,1,0.5,0.2,0.2,0,0.1)

RK4
He's–HPM

5 10 15 20 25 300
t

–0.05

0.00

0.05

φ

(d)

Figure 3: A comparison between the RK numerical approximation and the diferent types of the analytical approximations to the i.v.p. (33):
(a) the Jacobi elliptic solution (44), (b) the Jacobi elliptic solution (50), (c) the trigonometric solution (56), and (d) the He’s HPM ap-
proximation. Here, (ω2,φ0) � (1, 0).
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Case 2. Te approximations (41), (47), and (53) can recover
the solutions to the damped undisturbed NPO (32) for
ω2 � 0, i.e., the i.v.p. (7). Now, by considering the values
(β,ω0,ω2,φ(0), φ

.
(0)) � (0.1, 1, 0, 0, 0.1), the i.v.p. (7)

φ
..

+ 0.2φ
.

+ pφ + qφ3
� 0,

φ(0) � 0  and φ. (0) � 0.1.

⎧⎨

⎩ (60)

Te analytical approximations (8), (41), (47), (53), and
the RK4 approximation and theHe’s HPM approximation to
the i.v.p. (60) are graphically introduced in Figure 4. Also,
the MDE L∞ is computed for all mentioned approximations

L∞
􏼌􏼌􏼌􏼌Sol. (8)

� max0≤t≤30 φ(t)|Sol.(8) − φRK(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 0.000555229,

L∞
􏼌􏼌􏼌􏼌Approx(1)

� max0≤t≤30 φ(t)|Approx(1) − φRK(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 0.000714541,

L∞
􏼌􏼌􏼌􏼌Approx(2)

� max0≤t≤30 φ(t)|Approx(2) − φRK(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 0.000121574,

L∞
􏼌􏼌􏼌􏼌Approx(3)

� max0≤t≤30 φ(t)|Approx(3) − φRK(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 0.000120303,

L∞
􏼌􏼌􏼌􏼌He′sHPM � max0≤t≤30 φ|He′s− HPM − φRK

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � 0.00189472.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(61)
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(β,ω0,,φ0,φ̇0)=(0.1,1,0,0.2,0.2,0,0.1)
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Figure 4: A comparison between the RK numerical approximation and the diferent types of the analytical approximations to the i.v.p. (33):
(a) the Jacobi elliptic solution (44), (b) the Jacobi elliptic solution (50), (c) the trigonometric solution (56), and (d) the He’s HPM ap-
proximation. Here, (ω2,φ0) � (0, 0).
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Case 3. For (β,ω0,ω2,φ(0),φ
.
(0)) � (0.1, 1, 0, π/4, 0.2), the

numerical form to the i.v.p. (7) reads

φ
..

+ 0.2φ
.

+ pφ + qφ3
� 0,

φ(0) �
π
4
 and φ. (0) � 0.2.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(62)

Te trigonometric solution (8) as well as the Jacobi el-
liptic solutions (41) and (47) in addition to the RK4 nu-
merical solution and the He’s HPM approximation to the
i.v.p. (62) are graphically plotted as shown in Figure 5 and
their MDE L∞ is estimated as follows:
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Figure 5: A comparison between the RK numerical approximation and the diferent types of the analytical approximations to the i.v.p. (62):
(a) the Jacobi elliptic solution (44), (b) the Jacobi elliptic solution (50), (c) the trigonometric solution (56), and (d) the He’s HPM ap-
proximation. Here, (ω2,φ0) � (0, π/4).
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L∞
􏼌􏼌􏼌􏼌Sol.(8)

� max0≤t≤30 φ(t)|Sol.(8) − φRK(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 0.0116904,

L∞
􏼌􏼌􏼌􏼌Approx(1)

� max0≤t≤30 φ(t)|Approx(1) − φRK(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 0.0806987,

L∞
􏼌􏼌􏼌􏼌Approx(2)

� max0≤t≤30 φ(t)|Approx(2) − φRK(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 0.0422837,

L∞
􏼌􏼌􏼌􏼌Approx(3)

� max0≤t≤30 φ(t)|Approx(3) − φRK(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 0.0807087,

L∞
􏼌􏼌􏼌􏼌He′sHPM � max0≤t≤30 φ|He′s− HPM − φRK

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � 0.0528277.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(63)

It is observed that the trigonometric approximation (8) is
better than all other approximations for arbitrary angles with
the pivot vertical. Despite this, all the obtained approxi-
mations give satisfactory results and have good accuracy.

Furthermore, all analytical approximations (41), (47),
and (53) can be recovered the undamped disturbed non-
linear pendulum oscillation (β � 0\&ω2 ≠ 0) and the un-
damped undisturbed nonlinear pendulum oscillation
(β � ω2 � 0) for arbitrary angles with the vertical pivot. In
addition, the obtained solutions can be used for investigation
the nonlinear oscillations in diferent plasma models which
most evolutions equations that governed the dynamics of
plasma waves and oscillations can be reduced to a pendulum
equations (25) and (26).

6. Conclusions

In the current work, the parametric pendulum oscillatory
equation and some related oscillatory equations have been
solved using diferent analytical and numerical techniques.
In this investigation, two-cases called the damped un-
disturbed nonlinear pendulum equation/oscillator (NPE/
NPO) and the damped disturbed NPE have been discussed.
Te following list provides a concise summary of the most
signifcant fndings:

(i) For the frst oscillator, i.e., damped undisturbed
NPO, this oscillator has been reduced to the constant
coefcients damped Dufng equation, and its ana-
lytical approximations have been derived in terms of
the trigonometric functions

(a) Both ansatz method and He’s frequency for-
mulation were employed to fnd some approx-
imations for the damped undisturbed NPE

(b) Te outcomes of comparing the obtained ap-
proximations and the numerical solutions
revealed the great correctness of the obtained
solutions

(ii) In the second oscillator, i.e., damped disturbed NPO,
this oscillator has been reduced to the variable co-
efcients damped Dufng oscillator in order to fa-
cilitate the solution process

(a) Tree diferent formulas for the analytical ap-
proximations to the damped Dufng equation
with variable coefcients in terms of Jacobi el-
liptic and trigonometric functions have been
derived in detail.

(b) In the frst-formula, the modulus of Jacobi el-
liptic solution has been taken as zero while in the
second formula, the modulus of Jacobi elliptic
solution was taken as arbitrary value.

(c) In the third formula, a new ansatz in terms of the
trigonometric function was employed to fnd
a high-accurate approximation in terms of
trigonometric function.

(d) It was found that the three-formulas to the
analytical approximations to the damped dis-
turbed NPO can be recovered diferent cases for
the pendulum oscillators. Consequently, we
discussed several cases for the nonlinear pen-
dulum oscillators for small and arbitrary angles
with the vertical pivot, e.g., the damped dis-
turbed NPE (β≠ 0&ω2 ≠ 0) and the damped
undisturbed nonlinear pendulum oscillation
(β≠ 0&ω2 � 0). Also, the obtained approxima-
tions can be recovered the undamped disturbed
nonlinear pendulum oscillation (β � 0&ω2 ≠ 0)

and the undamped undisturbed nonlinear
pendulum oscillation (β � ω2 � 0) for arbitrary
angles with the vertical pivot.

Finally, the obtained results were compared with the
RK4 numerical approximation and the He’s HPM ap-
proximation. It was found that the derived anlaytical ap-
proximations are distinguished by their great precision and
more stable across the whole time domain, especially the
third formula. Many equations of motions that govern the
various pendulum oscillations can be solved using all pro-
posed techniques. In addition, the obtained solutions aid in
the investigation of nonlinear oscillations in diferent plasma
physics.

Data Availability

All data generated or analyzed during this study are included
within the article and more details are available from the
corresponding author upon request.

Additional Points

Future Work. Te study of stability analysis to the present
pendulum oscillator is one of the most important topics, but
it is out of the scope of the present study and it will be
addressed in the next work. Also, the diferential transform
method (DTM) with the Padé approximation in addition
can be used for analyzing the present oscillator [34].

12 Journal of Mathematics



Conflicts of Interest

Te authors declare that they have no conficts of interest.

Authors’ Contributions

All authors contributed equally and approved the fnal
manuscript.

Acknowledgments

Te authors expressed their gratitude to Princess Nourah
bint Abdulrahman University Researchers Supporting
Project number PNURSP2023R229, Princess Nourah bint
Abdulrahman University, Riyadh, Saudi Arabia.

References

[1] N. Nayfeth and D. T. Mook, Non-linear Oscillations, John
Wiley, New York, NY, USA, 1973.

[2] W. Albalawi, A. H. Salas, S. A. El-Tantawy, and A. A. Al-
Rahman Youssef, “Approximate analytical and numerical
solutions to the damped pendulum oscillator: New-
ton–Raphson and moving boundary methods,” Journal of
Taibah University for Science, vol. 15, pp. 479–485, 2021.

[3] A.-M. Wazwaz, Partial Diferential Equations and Solitary
Waves Teory, Higher Education, Springer, Berlin, Germany,
2009.

[4] Z.-J. Yang, S.-M. Zhang, X.-L. Li, and Z.-G. Pang, “Variable
sinh-Gaussian solitons in nonlocal nonlinear Schrödinger
equation,” Applied Mathematics Letters, vol. 82, pp. 64–70,
2018.

[5] L.-M. Song, Z.-J. Yang, S.-M. Zhang, and X.-L. Li, “Spiraling
anomalous vortex beam arrays in strongly nonlocal nonlinear
media,” Physical Review A, vol. 99, no. 6, Article ID 063817,
2019.

[6] W. Hu and D. J. Scheeres, “Spacecraft motion about slowly
rotating asteroids,” Advances in the Astronautical Sciences,
vol. 105, p. 839, 2000.

[7] W. Lestari and S. Hanagud, “Nonlinear vibration of buckled
beams: some exact solutions,” International Journal of Solids
and Structures, vol. 38, no. 26-27, pp. 4741–4757, 2001.

[8] S. Liu, Z. Fu, S. Liu, and Q. Zhao, “Jacobi elliptic function
expansion method and periodic wave solutions of nonlinear
wave equations,” Physics Letters A, vol. 289, no. 1-2, pp. 69–74,
2001.

[9] C.-H. He, T. S. Amer, D. Tian, A. F. Abolila, and A. A. Galal,
“Controlling the kinematics of a spring-pendulum system
using an energy harvesting device,” Journal of Low Frequency
Noise, Vibration and Active Control, vol. 41, no. 3,
pp. 1234–1257, 2022.

[10] J. H. He, T. S. Amer, A. F. Abolila, and A. A. Galal, “Stability of
three degrees-of-freedom auto-parametric system,” Alexan-
dria Engineering Journal, vol. 61, no. 11, pp. 8393–8415, 2022.

[11] J. H. He, T. S. Amer, S. Elnaggar, and A. A. Galal, “Periodic
property and instability of a rotating pendulum system,”
Axioms, vol. 10, no. 3, p. 191, 2021.

[12] Y. Wu and J. H. He, “Homotopy perturbation method for
nonlinear oscillators with coordinatedependent mass,” Results
in Physics, vol. 10, pp. 270-271, 2018.

[13] J. H. He and Y. O. El-Dib, “Homotopy perturbation method
for Fangzhu oscillator,” Journal of Mathematical Chemistry,
vol. 58, no. 10, pp. 2245–2253, 2020.

[14] J. H. He and Y. O. El-Dib, “Te reducing rankmethod to solve
third-order Dufng equation with the homotopy perturba-
tion,” Numerical Methods for Partial Diferential Equations,
vol. 37, no. 2, pp. 1800–1808, 2020.

[15] J. H. He and Y. O. El-Dib, “Te enhanced homotopy per-
turbation method for axial vibration of strings,” Facta Uni-
versitatis  Series: Mechanical Engineering, vol. 19, no. 4,
p. 735, 2021.
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