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We present iterative approximation results of an iterative scheme for fnding common fxed points of edge-preserving quasi-
nonexpansive self-maps in Hilbert spaces along with directed graph. We obtain weak as well as strong convergence of our scheme
under various assumptions. Tat is, we impose several possible mild conditions on the domain, on the mapping, or on the
parameters involved in our scheme to prove convergence results. We support numerically our main outcome by giving an
example. Eventually, an application is provided for solving a variational inequality problem. Our result are new/generalized some
recently announced results of the literature.

1. Introduction

Teory of fxed points is an important feld of analysis that
provides possibly efcient tools for solving nonlinear
problems (see, e.g., [1, 2] and others). For a nonlinear
problem, it is often very difcult to calculate the exact value
of solution. In this case, the approximate value of the
requested solution is always under the consideration [3, 4].
In 1922, Banach [5] suggested the well-known principle for
a special class of operators called contractions in Banach
spaces. He proved that any contraction on a Banach space
admits one and only one fxed point and the sequence of
successive approximations converges in the strong sense to
this fxed point. Te Banach result motivated several re-
searchers and many generalizations of this principle have
been investigated [4, 6]. Te sequence of successive

approximations does not converge in general when the
mapping is nonexpansive. Tus, Mann [7] and Ishikawa [8]
suggested new iterative schemes for fxed point approxi-
mations of nonexpansive and generalized nonexpansive
mappings.

Now we consider a Hilbert space, namely, X∗ and as-
sume that K∗ denote any nonempty convex as well as
a closed subset of X∗. Notice that an element e ∈ X∗ is
known as a fxed point for the self-map P: K∗ ⟶ K∗ if one
has P(e) � e. In this research, the notation F∗(P) will denote
the fxed point set of P, i.e., F∗(P) � e ∈ K∗: Pe � e{ }. Te
self-map P: K∗ ⟶ K∗ is known as a nonexpansive map if
‖Pe − Pr‖≤ ‖e − r‖ for all e, r ∈ K∗. Also, P is known as
a quasi-nonexpansive mapping when P has at least one fxed
point in X∗, i.e., F∗(P)≠∅ and if z∗ ∈ F∗(P), then ‖Pe −

z∗‖≤ ‖e − z∗‖ for all e ∈ X∗. Diaz andMetcalf [9] introduced
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the concept of quasi-nonexpansive mapping along with
some related ideas. Note that the set of fxed point of a quasi-
nonexpansive mapping is closed and convexed [10].

In [11], the authors suggested some applications of the
fxed point theory of nonexpansive mappings in image re-
covery and signal processing. Many researchers developed
diferent iteration schemes to fnd approximate fxed points
of nonexpansive type mappings. In 1974, Senter and Dotson
[12] established some fxed point results for quasi-
nonexpansive mapping through Mann iteration in a uni-
formly convex Banach space. In a Hilbert space setting, by an
elementary constructive method, Itoh and Takahashi [10]
proved existence of common fxed points of a quasi-
nonexpansive mapping in 1978. In 1992, Ghosh and Deb-
nath [13] established convergence of Ishikawa iteration [8]
to a unique fxed point of a quasi-nonexpansive mapping in
a uniformly convex Banach space. In 2011, Jin and Tian [14]
proved some fxed point results for quasi-nonexpansive
mapping in a Hilbert space by using an iterative process
involving Lipschitzian mapping. In 2013, Suantai and
Bunyawat [15] established fxed points in a uniformly
convex Banach space for a fnite family of multi-valued
quasi-nonexpansive mappings.

In the recent research in the theory of fxed points,
several researchers studied theory of fxed points in the
setting of graph theory and many fruitful generalizations of
the classical results are obtained. For example, Echenique
[16] studied theory of fxed points in the setting of graph
theory and obtained several new results. Similarly, Espinola
and Kirk [17] obtained some novel fxed point results in the
setting of graph theory. Alfuraidan and Khamsi [18] studied
theory of fxed points for nonexpansive mappings in the
setting of a hyperbolic space with direct graph. Tiammee
et al. [19] obtained the analog of the remarkable Browder’s
fxed point result in the setting of a Hilbert space with
directed graph.

Suppose a directed graph G∗, V∗(G∗) its vertices, and
E∗(G∗) , the set of edges. Assume that V∗(G∗) � K∗ and
E∗(G∗) is convex and transitive. Suppose the mappings
Pi: (i � 1, 2) fromK∗ toK∗ are G− are edge-preserving with
F∗(P) � F∗(P1)∩F∗(P2) nonempty.

In [20], Tripak defned the following iteration for fnding
fxed points which produce a sequence of iterates ek  for
a starting point e1 ∈ K∗:

ek+1 � 1 − αk( ek + αkP1rk,

rk � 1 − βk( ek + βkP2ek,
 (1)

where αk  and βk  are sequences in [0, 1].
Motivated by the work of Tripak [20], in 2018, Supar-

atulatorn et al. [21] proved weak and strong convergence of
the following iteration scheme for G− nonexpansive map-
pings in Banach spaces endowed with graph:

ek+1 � 1 − αk( P1ek + αkP2rk,

rk � 1 − βk( ek + βkP1ek, k≥ 1,
 (2)

where αk  and βk  are sequences in [0, 1].

Inspired by the work of Suparatulatorn et al. [21], we
proved some weak and strong convergence of a sequence
ek  defned by (2) for edge-preserving quasi-nonexpansive
mappings in a Hilbert space along with directed graph. With
the help of an example, we show comparison between se-
quences ek  defned by (1) and (2).

2. Preliminaries

Tis section start with some necessary concepts and some
established results that are required to obtain the main
results.

Defnition 1. Consider a graph G∗ � (V∗(G∗), E∗(G∗)). In
this case, for any choice of vertices e and r in G∗, the path in
G∗ from e to r of the length N ∈ N∪ 0{ } is essentially
a sequence, namely, ek 

N
k�0 of N + 1 vertices with e0 � e,

eN � r and (ek−1, ek) ∈ E∗(G∗) for any k � 0, 1, . . . , N − 1.

Defnition 2. A given graph is referred to as a connected
graph if one is able to fnd an edge (path) between any two
given vertices of G∗. While, a directed graph (sometimes
called digraph), is a graph such that the edges have a di-
rection. For any two given vertices e and r in a graph G∗, the
distance d(e, r) from e to r is defned as a length of a shortest
path from e to r.

Remark 1. In order for d(e, r) to be defned for all pairs of
e, r of vertices in G∗, the graph G∗ must be connected.

Defnition 3 (see [21]). Assume that, we have a non-empty
subset, namely, K∗ of any given Hilbert space X∗. In this
case, suppose G∗ � (V∗(G∗), E∗(G∗)) is a directed graph
with V∗(G∗) � K∗, and E∗(G∗) contains all the loops, i.e.,
E∗(G∗)⊇ (e, e): e ∈ V∗(G∗){ }. Te self-map P: K∗ ⟶ K∗ is
known as an edge-preserving nonexpansive self-map
(sometimes called G− edge-preserving nonexpansive self-
map) if

for all e, r ∈ K∗, (e, r) ∈ E
∗

G
∗

( ⇒(P(e), P(r)) ∈ E
∗

G
∗

( .

(3)

Defnition 4. Assume that, we have a non-empty subset,
namely, K∗ of any given Hilbert space X∗. In this case,
suppose G∗ � (V∗(G∗), E∗(G∗)) is a directed graph with
V∗(G∗) � K∗ and E∗(G∗) contains all the loops. Te self-
map P: K∗ ⟶ K∗ is known as an edge-preserving quasi-
nonexpansive self-map, if one have

(i) P is edge-preserving
(ii) P is quasi-nonexpansive

Defnition 5 (see [19]). Assume that, we have a directed
graph, namely, G∗ � (V∗(G∗), E∗(G∗)). In this case, one
regards G∗ as a transitive directed graph whenever for any
pair of point, e, r, s ∈ V∗(G∗) satisfying (e, r) ∈ E∗(G∗) and
(r, s) ∈ E∗(G∗), it follows that (e, s) ∈ E∗(G∗).
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Defnition 6 (see [19, 21]). Assume that, we have non-empty
subset, namely,K∗ of a given Hilbert spaceX∗. Ten, for any
G∗ � (V∗(G∗), E∗(G∗)), where V∗(G∗) � K∗ is any given
directed graph, the set K∗ is referred to as a set with the
property WG, whenever, we have a weakly convergent se-
quence ek  inK∗ and the point e ∈ K∗ if its weak limit, then
one can construct a subsequence, namely, ekn

  of ek  with
the property (ekn

, e) ∈ E∗(G∗) for any choice of k ∈ N.

Defnition 7 (see [21]). Assume that, we have a non-empty
subset, namely, K∗ of a given Hilbert space X∗ and
P: K∗ ⟶ K∗ a self-map. Te self-map P is known as a G−

demiclosed at r ∈ X∗ if, for each choice of the sequence ek 

in K∗ with ek  convergent weakly to e ∈ K∗, Pek  con-
vergent strongly to r and (ek, ek+1) ∈ E∗(G∗), it follows that
Pe � r.

Defnition 8 (see [22]). A Banach space X∗ satisfes Opial’s
property, if for any sequence ek , ek⇀e implies that

limsup
k⟶∞

ek − e
����

����< limsup
k⟶∞

ek − r
����

����, (4)

for all r ∈ X∗ such that e≠ r. It is known that every Hilbert
space satisfes Opial’s property.

Defnition 9 (see [23]). Assume that, we have a Hilbert
space, namely, X∗. In this case, the sequence ek  in X∗ is
referred to as a Fejer monotone sequence corresponding to
the subset K∗ of X∗, if one has

ek+1 − p
����

����≤ ek − p
����

����, (5)

for any choice of p ∈ K∗, k≥ 1.

Proposition 1 (see [23]). Assume that, we have a non-empty
subset, namely, K∗ of any Hilbert space K∗. In this case, if the
sequence ek  is a Fejer monotone corresponding to the setK∗.
Ten, one have

(a) Te sequence ek  is essentially bounded
(b) For any choice of e ∈ K∗, the sequence ‖ek − e‖  is

convergent.

Suppose that X∗ is a Hilbert space. We can construct
a graph in X∗ by taking V∗(G∗) � X∗ or V∗(G∗) � any
subset of X∗, and E∗(G∗)⊇ (e, e): e ∈ V∗(G∗){ }, i.e., E∗(G∗)

contains all the loops (for constructing graph in an arbitrary
space, refer [19]).

Defnition 10 (see [20, 21]). Assume that, we have a non-
empty subset, namely, K∗ of any Hilbert space X∗. In this
case, the self-maps Pi(i � 1, 2) on K∗ are said to be with
condition (B, if one has essentially a function that is
nondecreasing and have the properties f∗(0) � 0, f∗(r)> 0
for all other r> 0 and for any choice of e ∈ K∗,

max e − P1e, e − P2e
����

����
���� ≥f d e, F

∗
(P)( ( , (6)

where d(e, F∗(P)) � inf ‖e − z∗‖: z∗ ∈ F∗(P){ } and
F∗(P) � F∗(P1)∩F∗(P2).

Defnition 11 (see [20, 21]). Assume that, we have a non-
empty subset, namely, K∗ of any Hilbert space X∗ and G∗ �

(V∗(G∗), E∗(G)) a direct graph with V∗(G∗) � K∗. In this
case, the set E∗ is said to be with WG property if for any choice
of ek  in K∗ with weak limit p and (ek, ek+1) ∈ E∗(G∗), one
has a subsequence eki

  of ek  with (eki
, p) ∈ E∗(G∗)

Te following results will be used to reach our main
results:

Lemma 1 (see [24]). Assume that, we have a Banach space,
namely, X∗. In this case, if X∗ is with Opial’s property, then
for any choice of a sequence, namely, ek  inX∗ and e, r ∈ X∗,
if one have limk⟶∞‖ek − e‖ and limk⟶∞‖ek − r‖ exists
and the subsequences, namely, ekn

  and ekm
  of ek  that are

weakly convergent to e and r, respectively, then subsequently,
it follows that e � r.

Lemma 2 (see [25]). Assume that, we have a uniformly
convex Banach space, namely,X∗ and there is a sequence αk 

in [δ∗, 1 − δ∗] where δ∗ ∈ (0, 1). If one have a real number,
c∗ ≥ 0 such that for any ek  and rk  in X∗ with
limsupk⟶∞‖ek‖≤ c∗, limsupk⟶∞‖rk‖≤ c∗, and
limsupk⟶∞‖αkek + (1 − αk)rk‖ � c∗. Subsequently, one has
limk⟶∞‖ek − rk‖ � 0.

Lemma 3 (see [26]). Assume that, we have a Banach space,
namely,X∗. In this case, for any real constant R> 1, the space
X∗ is uniformly convex ⇔ one can fnd a function g that is
strictly increasing, convex and continuous and admit the
properties, g(0) � 0 and

λ∗e + 1 − λ∗( r
����

����
2 ≤ λ∗‖e‖

2
+ 1 − λ∗( ‖r‖

2

− λ∗ 1 − λ∗( g(‖e − r‖),
(7)

for any choice of e ∈ BR(0) � e ∈ X: ‖e‖≤R{ } and λ∗ ∈ [0, 1].

Lemma 4 (see [27]). Assume that, we have a non-empty
subset, namely, K∗ of a given Hilbert space. In this case, for
any choice of x ∈ H∗ and y ∈ K∗, it follows that the following
are essentially equivalent:

(i) ‖x − y‖ � d(x, K∗)

(ii) <x − y, z − y> ≥ 0, for every choice of z ∈ K∗

3. Main Results

Tis section proceeds with the following lemmas:

Lemma 5. Assume that, we have a non-empty convex closed
subset, namely, K∗ of any Hilbert space K∗. In this case,
suppose G∗ � (V∗(G∗), E∗(G∗)) a directed transitive graph
with V∗(G∗) � K∗ and E∗(G∗) is convex. Assume that Pi(i �

1, 2): K∗ ⟶ K∗ is an edge-preserving quasi-nonexpansive
self-map. Fix any point e1 ∈ K∗ with (e1, P1e1) ∈ E∗(G∗) and
(e1, P2r1) ∈ E∗(G∗). Let ek  be a sequence in V∗(G∗) de-
fned by (2) and z∗ ∈ F∗(P) with (e1, z∗), (z∗, e1) ∈ E∗(G∗).
Ten, we have the followings:
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(a) (ek, ek+1) ∈ E∗(G∗) and (rk, rk+1) ∈ E∗(G∗) for every
choice of k≥ 1

(b) (ek, P1ek) ∈ E∗(G∗) and (ek, P2rk) ∈ E∗(G∗) for
every choice of k≥ 1

(c) (ek+1, P1ek) ∈ E∗(G∗) and (ek+1, P2rk) ∈ E∗(G∗) for
every choice of k≥ 1

Proof

(a) Since we have (e1, z∗) ∈ E∗(G∗), and P1 is essen-
tially an edge-preserving, it follows that
(P1e1, z∗) ∈ E∗(G∗). Now thanks to the convexity of
E∗(G∗), one has

1 − β1( e1 + β1P1e1, 1 − β1( z
∗

+ β1z
∗

(  ∈ E
∗

G
∗

( .

(8)

i.e., (r1, z∗) ∈ E∗(G∗). By edge-preserving of P2, we
have (P2r1, z∗) ∈ E∗(G∗). Since (P1e1, z∗) ∈ E∗

(G∗), (P2r1, z∗) ∈ E∗(G∗), by convexity of E∗(G∗),
we have

1 − α1( P1e1 + α1P2r1, 1 − α1( z
∗

+ α1z
∗

(  ∈ E
∗

G
∗

( .

(9)

i.e., (e2, z∗) ∈ E∗(G∗). Since (e1, z∗) ∈ E∗(G∗),
(e2, z∗) ∈ E∗(G∗), by transitivity of G∗, we have
(e1, e2) ∈ E∗(G∗). Continuing this process, we get
(ek, ek+1) ∈ E∗(G∗).
Note that (e2, z∗) ∈ E∗(G∗), hence (P1e2, z∗) ∈ E∗

(G∗). Now thanks to the convexity of E∗(G∗), it
follows that (r2, z∗) ∈ E∗(G∗) and also using the
transitivity of G∗, it follows that (r1, r2) ∈ E∗(G∗). If
we go in the similar way, we get (rk, rk+1) ∈ E∗(G∗).

(b) Now we go the prove (ek, P1ek) ∈ E∗(G∗) for every
choice of k≥ 1. For this, we use the method of in-
duction on k. As assumed, (e1, P1e1) ∈ E∗(G∗), it
follows that the induction method is hold for the
value k � 1. Next we assume that (ek, P1ek)

∈ E∗(G∗) for any choice of k≥ 2. Notice that
(ek, ek+1) ∈ E∗(G∗), (ek, P1ek) ∈ E∗(G∗), it follows
that (ek+1, P1ek) ∈ E∗(G∗) due to the transitive
property of G∗. Also (ek, ek+1) ∈ E∗(G∗), it follows
that (P1ek, P1ek+1) ∈ E∗(G∗) because P1 is edge-
preserving map. Again, notice that (ek+1, P1ek)

∈ E∗(G∗), and (P1ek, P1ek+1) ∈ E∗(G∗), that lead us
to the fact (ek+1, P1ek+1) ∈ E∗(G∗).
In a similarly way, (e1, P2r1) ∈ E∗(G∗), this proves
that the induction is hold for the value k � 1. We
now suppose (ek, P2rk) ∈ E∗(G∗) for any choice of
k≥ 2. Since (rk, rk+1) ∈ E∗(G∗), it follows that
(P2rk, P2rk+1) ∈ E∗(G∗). Also (ek, ek+1) ∈ E∗(G∗),
(ek, P2rk) ∈ E∗(G∗), due to the transitive property of
G∗, it follows that (ek+1, P2rk) ∈ E∗(G∗). Now
(ek+1, P2rk) ∈ E∗(G∗), (P2rk, P2rk+1) ∈ E∗(G∗), one
has (ek+1, P2rk+1) ∈ E∗(G∗).

(c) By part (b), we have (ek+1, P1ek) ∈ E∗(G∗) and
(ek+1, P2rk) ∈ E∗(G∗) for any k≥ 1. □

Lemma 6. Assume that, we have a non-empty convex closed
subset, namely, K∗ of any Hilbert space X∗. In this case,
suppose G∗ � (V∗(G∗), E∗(G∗)) is a directed transitive
graph with V∗(G∗) � K∗ and E∗(G∗) is convex. Assume that
Pi(i � 1, 2): K∗ ⟶ K∗ is an edge-preserving quasi-
nonexpansive self-maps. Fix any point e1 ∈ K∗ with
(e1, P1e1) ∈ E∗(G∗) and (e1, P2r1) ∈ E∗(G∗). Let ek  be
a sequence in V(G) defned by (2) and z∗ ∈ F∗(P) such that
(e1, z∗), (z∗, e1) ∈ E∗(G∗). Let αk , βk  are sequences in
[δ∗, 1 − δ∗], for some δ∗ ∈ (0, 1). Ten, we have followings:

(a) (ek, z∗),(z∗, ek),(rk, z∗), and (z∗, rk) are in E∗(G∗)

for k≥ 2
(b) (ek, rk) ∈ E∗(G∗) for k≥ 1

Proof

(a) We proceed by induction on k. Since
(e1, z∗) ∈ E∗(G∗), hence induction is true for k � 1.
By Lemma 5(a), we have (e2, z∗) ∈ E∗(G∗). Next we
assume that (ek, z∗) ∈ E∗(G∗) for k≥ 3. As
(ek, z∗) ∈ E∗(G∗), we have (P1ek, z∗) ∈ E∗(G∗).
Note that (ek, z∗), (P1ek, z∗) ∈ E∗(G∗), by convexity
of E∗(G∗), we have

1 − βk( ek + βkP1ek, 1 − βk( z
∗

+ βkz
∗

(  ∈ E
∗

G
∗

( . (10)

i.e., (rk, z∗) ∈ E∗(G∗). Note that (rk, z∗) ∈ E∗(G∗),
we have (P2rk, z∗) ∈ E∗(G∗) (as P is an edge-
preserving mapping). Since (P1ek, z∗) ∈ E∗(G∗),
(P2rk, z∗) ∈ E∗(G∗), by convexity of E∗(G∗), we
have

1 − αk( P1ek + αkP2rk, 1 − αk( z
∗

+ αkz
∗

(  ∈ E
∗

G
∗

( .

(11)

i.e., (ek+1, z∗) ∈ E∗(G∗). Terefore, (ek, z∗) ∈ E∗

(G∗) for k≥ 2. Using a similar argument, we can
show that (z∗, ek) ∈ E∗(G∗) and (z∗, rk) ∈ E∗(G∗).

(b) By part (a), we have (ek, z∗) ∈ E∗(G∗) and
(rk, z∗) ∈ E∗(G∗), by transitivity of G∗, we have
(ek, rk) ∈ E∗(G∗). □

Lemma 7. Assume that, we have a non-empty convex closed
subset, namely, K∗ of any Hilbert space X∗. In this case,
suppose G∗ � (V∗(G∗), E∗(G∗)) is a directed transitive
graph with V∗(G∗) � K∗ and E∗(G∗) is convex. Assume that
Pi(i � 1, 2): K∗ ⟶ K∗ are edge-preserving quasi-
nonexpansive self-maps. Fix any point e1 ∈ K∗ such that
(e1, P1e1) ∈ E∗(G∗) and (e1, P2r1) ∈ E∗(G∗). Let ek  be
a sequence in V∗(G∗) defned by (2) and z∗ ∈ F∗(P) such
that (e1, z∗), (z∗, e1) ∈ E∗(G∗). Ten, limk⟶∞‖ek − z∗‖

exists.
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Proof. Using quasi-nonexpansiveness of Pi(i � 1, 2), we
have

rk − z
∗����
���� � 1 − βk( ek + βkP1ek − z

∗����
����

≤ 1 − βk(  ek − z
∗����
���� + βk P1ek − z

∗����
����

≤ 1 − βk(  ek − z
∗����
���� + βk ek − z

∗����
����

≤ ek − z
∗����
����,

(12)

ek+1 − z
∗����
���� � 1 − αk( P1ek + αkP2rk − z

∗����
����

≤ 1 − αk(  P1ek − z
∗����
���� + αk P2rk − z

∗����
����

≤ 1 − αk(  ek − z
����

���� + αk ek − z
����

����

≤ ek − z
∗����
����.

(13)

It follows that the sequence ek  is Fejer monotone with
respect to F∗(P). Hence, by the Proposition 1, sequence ek 

is bounded and ‖ek − z∗‖  converges, i.e., limk⟶∞‖ek −

z∗‖ exists. □

Lemma 8. Assume that, we have a non-empty convex closed
subset, namely, K∗ of any Hilbert space X∗. In this case,
suppose G∗ � (V∗(G∗), E∗(G∗)) is a directed transitive
graph with V∗(G∗) � K∗ and E∗(G∗) is convex. Assume that
Pi(i � 1, 2): K∗ ⟶ K∗ are edge-preserving quasi-
nonexpansive self-maps and αk , βk  are sequences in
[δ∗, 1 − δ∗] for some δ∗ ∈ (0, 1). Fix any point e1 ∈ K∗ such
that (e1, P1e1) ∈ E∗(G∗) and (e1, P2r1) ∈ E∗(G∗). Let ek 

be a sequence in K∗ defned by (2) and z∗ ∈ F∗(P) such that
(e1, z∗), (z∗, e1) ∈ E∗(G∗). Ten,

lim
k⟶∞

P1ek − ek

����
���� � 0 � lim

k⟶∞
P2ek − ek

����
����. (14)

Proof. By Lemma 7, limk⟶∞‖ek − z∗‖ exists. Let
limk⟶∞‖ek − z∗‖ � c∗.

Suppose c∗ � 0, so due to the quasi-nonexpansiveness of
the mappings Pi, one has

ek − Piek

����
����≤ ek − z

∗����
���� + z
∗

− Piek

����
����

≤ ek − z
∗����
���� + z
∗

− ek

����
����.

(15)

Hence, the required result is hold in this case.
Next we prove the result for c∗ > 0. Since limk⟶∞

‖ek − z∗‖ � c∗, it follows that limk⟶∞‖ek − z∗‖≤ c∗. Also
‖rk − z∗‖≤ ‖ek − z∗‖, this implies that limk⟶∞
‖rk − z∗‖≤ c∗. Since P1 is quasi-nonexpansive, we have

limsup
k⟶∞

P1ek − z
∗����
����≤ c
∗
.

limsup
k⟶∞

βk P1ek − z
∗

(  + 1 − βk(  ek − z
∗

( 
����

����

≤ βk limsup
k⟶∞

P1ek − z
∗����
����

+ 1 − βk(  limsup
k⟶∞

ek − z
∗

( 
����

����

≤ c
∗
.

(16)

Terefore, from Lemma 2, we have

lim
k⟶∞

P1ek − z
∗

(  − ek − z
∗

( 
����

���� � 0⇒ lim
k⟶∞

P1ek − ek

����
���� � 0.

(17)

Note that

ek − rk

����
����≤ βk ek − P1ek

����
����⇒ ek − rk

����
����≤ δ∗ ek − P1ek

����
����.

(18)

Using Lemma 3, we have

ek+1 − z
∗����
����
2

� 1 − αk( P1ek + αkP2rk − z
∗����
����
2

≤ αk rk − z
∗����
����
2

+ 1 − αk(  ek − z
∗����
����
2

− αk 1 − αk( g P2rk − ek

����
���� 

≤ αk ek − z
∗����
����
2

+ 1 − αk(  ek − z
∗����
����
2

− αk 1 − αk( g P2rk − ek

����
���� 

≤ ek − z
∗����
����
2

− αk 1 − αk( g P2rk − ek

����
���� 

≤ ek − z
∗����
����
2

− δ∗2g P2rk − ek

����
���� 

⇒δ∗2g P2rk − ek

����
���� ≤ ek+1 − z

∗����
����
2

− ek − z
∗����
����

⇒ lim
k⟶∞

g P2rk − ek

����
����  � 0

⇒ lim
k⟶∞

P2rk − ek

����
���� � 0.

(19)

Since,

P2ek − ek

����
����≤ P2ek − P2rk

����
���� + P2rk − ek

����
����

≤ ek − z
∗����
���� + z
∗

− rk

����
���� + P2rk − ek

����
����

≤ ek − rk

����
���� + P2rk − ek

����
����.

(20)

Terefore,

lim
k⟶∞

P2ek − ek

����
����≤ lim

k⟶∞
δ∗ ek − P1ek

����
���� + lim

k⟶∞
P2rk − ek

����
����

≤ δ∗ lim
k⟶∞

ek − P1ek

����
���� + lim

k⟶∞
P2rk − ek

����
����

⇒ lim
k⟶∞

P2ek − ek

����
���� � 0.

(21)

Teupcoming theorems show the strongly convergent of
the sequence defned by (2). □
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Theorem 1. Assume that, we have a non-empty convex
closed subset, namely,K∗ of any Hilbert spaceX∗. In this case,
suppose G∗ � (V∗(G∗), E∗(G∗)) is a directed transitive
graph such that V∗(G∗) � K∗ and E∗(G∗) is convex. Assume
that Pi(i � 1, 2): K∗ ⟶ K∗ are edge-preserving quasi-
nonexpansive self-maps that are with the Condition (B).
Fix e1 ∈ K∗ such that (e1, P1e1) ∈ E∗(G∗) and
(e1, P2r1) ∈ E∗(G∗). Let ek  be a sequence in K∗ defned by
(2) and z∗ ∈ F∗(P) such that (e1, z∗), (z∗, e1) ∈ E∗(G∗). Let
αk , βk  are sequences in [δ∗, 1 − δ∗], for some δ∗ ∈ (0, 1).
Ten, the sequence ek  defned by (2) converges strongly to
a common fxed points of Pi.

Proof. Let z∗ ∈ F∗(P). From Lemma 7, we have

ek+1 − z
∗����
����≤ ek − z

∗����
����, (22)

it gives that

d ek+1, F
∗
(P)( ≤ d ek, F

∗
(P)( . (23)

Tus, limk⟶∞d(ek, F∗(P)) exists. Since, Pi satisfes
Condition (B) and from Lemma 8, we have limk⟶∞
‖Piek − ek‖ � 0, it follows that limk⟶∞f(d(ek, F∗(P))) �

0 and thus limk⟶∞d(ek, F∗(P)) � 0.

Next, we prove that ek  is a Cauchy sequence inV∗(G∗).
Since limk⟶∞d(ek, F∗(P)) � 0, for ε∗ > 0, there exists
a constant k0 such that for all k≥ k0, we have

d ek, F
∗
(P)( <

ε∗

4
. (24)

Hence, there must exists a p∗ ∈ F∗(P) such that

ek0
− p
∗

�����

�����<
ε∗

2
. (25)

Now for m∗, n≥ k0, we have

en+m∗ − en

����
����≤ en+m∗ − p

∗����
���� + p

∗
− en

����
����

≤ 2 ek0
− p
∗

�����

�����

< ε∗.

(26)

It follows that ek  is a Cauchy sequence in K∗. Since K∗
is closed subset of a Hilbert space X∗, so there exists a point
say e ∈ K∗ such that ‖ek − e‖⟶ 0 as k⟶∞. Next, we
prove that e is common fxed point of Pi. For this,

0≤ Pie − e
����

����≤ Pie − ek+1
����

���� + ek+1 − e
����

����

≤ 1 − αk(  Pie − P1ek

����
���� + αk Pie − P2rk

����
���� + ek+1 − e

����
����

≤ 1 − αk(  Pie − z
∗����
���� + z
∗

− Piek

����
���� 

+ αk Pie − z
∗����
���� + z
∗

− P2rk

����
����  + ek+1 − e

����
����

≤ 1 − αk(  e − z
∗����
���� + z
∗

− rk

����
���� 

+ αk e − z
∗����
���� + z
∗

− rk

����
����  + ek+1 − e

����
����

� 1 − αk(  e − rk

����
���� + αk e − rk

����
���� + ek+1 − e

����
����

� e − rk

����
���� + ek+1 − e

����
����

≤ e − ek

����
���� + δ∗ ek − P1ek

����
���� + ek+1 − e

����
����⟶ o as k⟶∞.

(27)

Tis shows that e is a common fxed point of Pi. □

Theorem 2. Assume that, we have a non-empty convex
closed subset, namely,K∗ of any Hilbert spaceX∗. In this case,
suppose G∗ � (V∗(G∗), E∗(G∗)) is a directed transitive
graph with V∗(G∗) � K∗ and E∗(G∗) is convex. Assume that
Pi(i � 1, 2): K∗ ⟶ K∗ are the edge-preserving quasi-
nonexpansive self-maps. Fix any point e1 ∈ K∗ such that
(e1, P1e1) ∈ E∗(G∗) and (e1, P2r1) ∈ E∗(G∗). Let ek  be
a sequence in K∗ defned by (2) and z∗ ∈ F∗(P) such that
(e1, z∗), (z∗, e1) ∈ E∗(G∗). Ten, the sequence ek  defned
by (2) converges strongly to a common fxed point of Pi if and
only if limk⟶∞d(ek, F∗(P)) � 0, where d(ek, F∗(P)) �

inf ‖ek − z∗‖: z∗ ∈ F∗(P) .

Proof. Suppose, the sequence ek  converges strongly to
a common fxed point of Pi, then clearly
limk⟶∞d(ek, F∗(P)) � 0.

Conversely, suppose that limk⟶∞d(ek, F∗(P)) � 0.
For ε∗ > 0, there exists k0 ∈ N, such that for all k≥ k0,

d ek, F
∗
(P)( <

ε∗

4
. (28)

In, particular, there must p∗ ∈ F∗(P) such that

ek0
− p
∗

�����

�����<
ε∗

2
. (29)

For k, m∗ ≥ k0, we have
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ek+m∗ − ek

����
����≤ ek+m∗ − p

∗����
���� + p

∗
− ek

����
����

� 2 ek0
− p
∗

�����

�����< ε
∗
.

(30)

It follows that ek  is a Cauchy sequence in K∗. Since K∗
is closed subset of a Hilbert space X∗, so there exists a point
say e ∈ K∗ such that ‖ek − e‖⟶ 0 as k⟶∞. By our
assumption limk⟶∞d(ek, F∗(P)) � 0, it gives that

d e, F
∗
(P)(  � 0⇒e ∈ F

∗
(P), (31)

i.e., e is the common fxed point of Pi. □

Theorem 3. Assume that, we have a non-empty convex
compact subset, namely, K∗ of any Hilbert space X∗. In this
case, suppose G∗ � (V∗(G∗), E∗(G∗)) is a directed transitive
graph such that V∗(G∗) � K∗ and E∗(G∗) is convex. Assume
that Pi(i � 1, 2): K∗ ⟶ K∗ are the edge-preserving quasi-
nonexpansive self-maps. Fix any point e1 ∈ K∗ such that
(e1, P1e1) ∈ E∗(G∗) and (e1, P2r1) ∈ E∗(G∗). Let ek  be
a sequence in V∗(G∗) defned by (2) and z∗ ∈ F∗(P) such
that (e1, z∗), (z∗, e1) ∈ E∗(G∗). Let αk , βk  are sequences
in [δ∗, 1 − δ∗], for some δ∗ ∈ (0, 1). Ten, the sequence ek 

defned by (2) converges strongly to a common fxed point
of Pi.

Proof. Since from Lemma 8, we have
limk⟶∞‖Piek − ek‖ � 0, and K∗ is compact, there exists
a subsequence ekn

  of ek  such that ekn
⟶ z∗ strongly for

some z∗ ∈ K∗. Note that

ekn
− Piz
∗

�����

�����≤ ekn
− Piekn

�����

����� + Piekn
− Piz
∗

�����

�����

≤ 2 ekn
− Piekn

�����

����� + ekn
− z
∗

�����

�����.
(32)

Tis shows that ekn
⟶ Piz

∗ as k⟶∞, i.e., z∗ � Piz
∗.

Also from Lemma 7, limk⟶∞‖ek − z∗‖ exists, thus the
sequence ek  converges strongly to a common fxed point
z∗ of Pi.

Next lemma is related to the demiclosed property of
I − Pi. □

Lemma  . Assume that, we have a non-empty convex closed
subset, namely, K∗ of any Hilbert space X∗ such that K∗ is
with the property WG. In this case, suppose
G∗ � (V∗(G∗), E∗(G∗)) is a transitive graph with V∗(G∗) �

K∗ and E∗(G∗) is convex. Assume that
Pi(i � 1, 2): K∗ ⟶ K∗ are the edge-preserving quasi-
nonexpansive self-maps. Let z∗ ∈ F∗(P) such that
(e1, z∗), (z∗, e1) ∈ E∗(G∗). Ten, I − Pi(i � 1, 2) are G−

demiclosed at 0.

Proof. Let ek  be a sequence in K∗ such that ek⇀e with
(ek, ek+1) ∈ E∗(G∗). From Lemma 7, we have
limk⟶∞‖Piek − ek‖ � 0. Since K∗ has property WG, there
is a subsequence ekn

  of ek  such that (ekn
, e) ∈ E∗(G∗) for

all k ∈ N. We claim that e � Pie.
Suppose not. By quasi-nonexpansiveness of Pi and

Opial’s property, we have

limsup
k⟶∞

ekn
− e

�����

�����< limsup
k⟶∞

ekn
− Pie

�����

�����

≤ limsup
k⟶∞

ekn
− Piekn

�����

����� + Piekn
− Pie

�����

����� 

≤ limsup
k⟶∞

Piekn
− Pie

�����

�����,

(33)

which is a contradiction. Terefore, e � Pie.
Te following theorem proves that the sequence ek 

defned by (2) converges weakly: □

Theorem 4. Assume that, we have a non-empty convex
closed subset, namely, K∗ of any Hilbert space X∗ such that
K∗ is with the property WG. In this case, suppose
G∗ � (V∗(G∗), E∗(G∗)) is a directed transitive graph with
V∗(G∗) � K∗ and E∗(G∗) is convex. Assume that Pi(i �

1, 2): K∗ ⟶ K∗ are the edge-preserving quasi-nonexpansive
self-maps. Let z∗ ∈ F∗(P) such that
(e1, z∗), (z∗, e1) ∈ E∗(G∗). Let αk , βk  are sequences in
[δ∗, 1 − δ∗] for some δ∗ ∈ (0, 1). Ten, the sequence ek 

defned by (2) converges weakly to a common fxed points
of Pi.

Proof. Let z∗ ∈ F∗(P). From Lemma 7, limk⟶∞‖ek − z∗‖

exists, and by Proposition 1, ek  is bounded. Let ekn
  and

ekm
  be the subsequences of the sequence ek  with weak
limits p∗1 and p∗2 , respectively. Since from Lemma 8, we have
‖Piekn

− ekn
‖ and ‖Piekm

− ekm
‖ approach to 0 as n, m⟶∞.

By Lemma 9, we have Pip
∗
1 � p∗1 and Pip

∗
2 � p∗2 . Terefore,

p∗1 , p∗2 ∈ F∗(P). By Lemma 1, we have p∗1 � p∗2 . Terefore,
sequence ek  converges weakly to a common fxed point
of Pi. □

4. Numerical Example

In support of our main results, we proceed with the help of
the following example. Also, we show the fastness of the
iteration scheme (2) by comparing it with the iteration
scheme (1).

Example 1. Assume that, we have the Hilbert spaceX∗ � R,
and its subset K∗ � [0, 1]. Suppose G∗ � (V∗(G∗), E∗(G∗))

is a directed graph with V∗(G∗) � K∗. Assume that
e, r ∈ V∗(G∗) are such that ‖e‖≤ 1/8, ‖r‖≤ 1/8 and
E∗(G∗) � (e, r): ‖e − r‖≤ 1/2{ }. Now we set
P1, P2: R⟶ R as follows:

P1e �

e

2
sin

e

2
 , e≠ 0,

0, e � 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(34)

and

P2e �

e

4
, e≠ 0,

0, e � 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(35)
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It is clear that P1 and P2 both are edge-preserving quasi-
nonexpansive mappings and they have a common fxed
point 0. In this case, the convergence is shown in Table 1 and
Figure 1.

5. Application in Variational Inequality

Theorem 5. Assume that, we have a non-empty compact
convex subset, namely, K∗ of any Hilbert space X∗. In this
case, suppose G∗ � (V∗(G∗), E∗(G∗)) is a directed transitive
with V∗(G∗) � K∗ and E∗(G∗) is convex. Assume that
P: K∗ ⟶ K∗ is an edge-preserving quasi-nonexpansive self-
map and ψ: K∗ ⟶ K∗ is a contraction with a contraction
coefcient in [0, 1). Fix any point e1 ∈ K∗ such that
(e1, Pe1) ∈ E∗(G∗) and (e1, Pr1) ∈ E∗(G∗). Let αk  and
βk  are sequences in [0, 1].Ten, the sequence ek  defned by
(2) converges strongly to a fxed point q ∈ P, which is also the
unique solution of the following variational inequality:

〈(I − ψ)q, x − q〉≥ 0. (36)

Proof. From Proposition 1, sequence ek  is bounded and
from Lemma 8, we have lim

k⟶∞
‖Pek − ek‖ � 0.We claim that

limsup
k⟶∞
<(I − ψ)q, x − q> ≥ 0, (37)

where q ∈ F(P) is unique fxed point of ψ.

Since K∗ is compact, there exists a subsequence ekp
  of

ek  such that ekp
⟶ p for some p ∈ K∗. By using Lemma 4,

we have

limsup
k⟶∞
<ψ(q) − q, ek − q> � limsup

k⟶∞
<ψ(q) − q, ekp

− q>

� <ψ(q) − q, p − q> ≥ 0.

(38)

Now we claim that ek⟶ q ∈ F(P). By doing similar
procedure as in the proof of Teorem 3,
ek⟶ q ∈ F(P). □

6. Conclusions

We provided the following new outcome:

(i) We provided weak and strong convergence results
of common fxed points for edge-preserving quasi-
nonexpansive self-map in Hilbert spaces along with
directed graph

(ii) We considered the larger class of edge-preserving
nonexpansive mappings that includes the class of
edge-preserving nonexpansive mappings

(iii) Te main outcome is numerically supported by
a numerical example

(iv) As an application, we solve a variational inequality
problem

(v) Our results improve/extend the classical results of
the literature form edge-preserving nonexpansive
mappings to the general class of edge-preserving
quasi-nonexpansive mappings
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