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We introduce a context-free grammar G � s⟶ s + d, d⟶ s{ } to generate Fibonacci and Lucas sequences. By applying the
grammar G, we give a grammatical proof of the Binet formula. Besides, we use the grammar G to provide a unifed approach to
prove several binomial convolutions about Fibonacci and Lucas numbers, which were given by Hoggatt, Carlitz, and Church.
Meanwhile, we also obtain some new binomial convolutions.

1. Introduction

Recall that the Fibonacci sequence Fn  and the Lucas se-
quence Ln  are defned through the same recurrence re-
lations: for n≥ 2,

Fn � Fn− 1 + Fn− 2,

Ln � Ln− 1 + Ln− 2,
(1)

with initial values F0 � 0, F1 � 1 and L0 � 2, L1 � 1,
respectively.

Fibonacci and Lucas numbers have close connections
with the golden ratio. Trough this paper, we use α to denote
the golden ratio, that is, α � ((1 +

�
5

√
)/2). Let

β � − 1/α � ((1 −
�
5

√
)/2). α and β are two roots of the

quadratic equation x2 − x − 1 � 0. Te famous Binet for-
mulas for Fibonacci and Lucas numbers show that, for n ∈ Z,

Fn �
αn

− βn

α − β
,

Ln � αn
+ βn

.

(2)

Te binomial identities involving Fibonacci and Lucas
numbers are studied widely in recent decades. Te study of
binomial identities involving Fibonacci and Lucas numbers
is beginning from a group of identities of Hoggatt [1]. After

then, Carlitz [2] and Church and Bicknell [3] enriched the
binomial identities family. Te details of these identities will
be expanded in the next section.

In this paper, we introduce a context-free grammar to
describe Fibonacci and Lucas numbers. Let

G1 ≔ s⟶ s + d, d⟶ s{ }. (3)

We fnd that, for n≥ 0,

D
n
(s − d)

s�d�1 � Fn,

D
n
(3d − s)

s�d�1 � Ln.
(4)

Here, D is the formal derivative associated with G. By
applying this grammar, we give a grammatical framework to
prove the binomial convolutions by Hoggatt, Carlitz,
Church, and Bicknell and obtain some new binomial con-
volutions involving Fibonacci and Lucas numbers.

In Section 2, we posed the binomial identities given by
Hoggatt, Layman, Carlitz, Church, and Bicknell. In Section
3, we give a new context-free grammar, which is called
Fibonacci grammar. Based on the grammar, we give
a grammatical expression of Fibonacci and Lucas numbers.
As the application of this expression, a grammatical proof
of some classic relations associated with Fibonacci and
Lucas numbers are given, including the Binet formula. In
Section 4, we provide a uniform framework to prove
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binomial identities by a grammatical manner. We prove all
the identities given by Hoggatt, Carlitz, Church, and
Bicknell and give some new binomial identities associated
with Fibonacci and Lucas numbers.

2. Binomial Identities of Hoggatt, Carlitz,
Church, and Bicknell

In this section, we recall the work of Hoggatt, Carlitz,
Church, and Bicknell on binomial identities about Fibonacci
and Lucas numbers.

In [1], Hoggatt found that, for n≥ 1,



n

k�0

n

k
 Fk � F2n,



n

k�0

n

k
 F3k � 2n

F2n,



n

k�0

n

k
 F4k � 3n

F2n.

(5)

Carlitz [2] extent Hoggatt’s series of identities to more
general relations: for 0≤ r≤m, n≥ 0 and t≥ 0,



n

k�0

n

k
 (− 1)

r(n− k)
F

n− k
m− rF

k
rFmk+t � F

n
mFrn+t,



n

k�0

n

k
 (− 1)

r(n− k)
F

n− k
m− rF

k
rLmk+t � F

n
mLrn+t.

(6)

Besides, Church and Bicknell provided several diferent
binomial convolutions about Fibonacci and Lucas numbers.
In [3], Church and Bicknell showed that, for m, n, r≥ 0,



n

k�0

n

k

⎛⎝ ⎞⎠FmkFmn− mk �
1
5

2n
Lmn − 2L

n
m( ,



n

k�0

n

k

⎛⎝ ⎞⎠LmkLmn− mk � 2n
Lmn + 2L

n
m,



n

k�0

n

k

⎛⎝ ⎞⎠F4mk+4mr � L
n
2mF2mn+4mr.

(7)

3. Tilings and the Fibonacci Grammar

Te approach of studying combinatorial polynomials by
using context-free grammars was introduced by Chen [4]. In
this decade, many combinatorists have found the relations
between combinatorial polynomials and context-free
grammars; see [4–7], for example. A context-free gram-
mar G is a set of substitution rules on a set of variables X. We
can defne a formal derivative D associated with a context-
free grammar G as a diferential operator on polynomials or
Laurent polynomials in X. In precise, D is a linear operator
satisfying the relation

D(uv) � uD(v) + D(u)v, (8)

which can be in general given as Leibnitz formula

D
n
(uv) � 

n

k�0

n

k
 D

k
(u)D

n− k
(v). (9)

For the purpose of combinatorial enumeration, the
variables are attached to combinatorial structures by
grammatical labelings by Chen and Fu [5]. In order to
provide a combinatorial expression of Fibonacci numbers,
we need a corresponding combinatorial structure. Although
many combinatorial interpretations of Fibonacci numbers
exist (see exercises 1–9 in [8], p.14, for example), we use the
tiling defnition given as below.

For n≥ 1, a tiling of length n is refer to a tiling of
a rectangle with size 1 × n by squares and rectangles with size
1 × 2. Here, we call the rectangle with size 1 × n by an
n-board, and call the rectangle with size 1 × 2 by a domino.

For example, there are 5 tilings of length 4 Figure 1:
A classical result shows that there are exactly Fn+1 tilings

with length n for all n≥ 0. Here, we let F1 � 1 count the
unique empty tiling of 0-board. By counting the number of
blocks of a tiling, we give a generating function Fn(q) as a q-
analogue of Fibonacci numbers:

Fn(q) � 
n

k�1
F(n, k)q

k
, for n≥ 2, (10)

where F(n, k) denotes the number of tilings of an
(n − 1)-board with k blocks. Here, we defne F1(q) � 1 and
F0(q) � 0.

Lemma 1. For n≥ 2, it holds that

Fn(q) � q Fn− 1(q) + Fn− 2(q)( . (11)

Proof. Consider the last block of a tiling T of length n. Tere
are two classes: ending with a square and ending with
a domino. Te frst class corresponds to the function
qFn− 1(q) since the left tiling has size n − 1; and the second
class corresponds to the function qFn− 2(q). Tis completes
the proof.

Let

G ≔ s⟶ sq+d, d⟶ sq , (12)

where q is a constant, that is, q. Since the grammar has close
connections between the function Fn(q), we call the
grammar G as the q-Fibonacci grammar. Let q � 1 in G, the
grammar G degenerates to be

G1 ≔ s⟶ s + d, d⟶ s{ }, (13)

which is called Fibonacci grammar. □

Theorem 2. Let G be the q-Fibonacci grammar, and D be the
formal derivative associated with the grammar G. For n≥ 2,
we have
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D
n
(s − d) � sqFn− 1(q) + dqFn− 2(q), (14)

and for n≥ 0,

D
n
(s − d)

s�d�1 � Fn(q). (15)

Proof. It can be seen that (15) can be obtained from (14) by
setting s � d � 1. To prove (14), we introduce a grammatical
labeling of a tiling by labeling the blocks.We label each block
of a tiling T by q, and label the last block extra by s if it is
a square, and by d if it is a domino. Ten, we defne the
weight of the tiling T to be the sum of labelings of all blocks
in T, that is, for a tiling T having k blocks, w(T) � sqk when
ending at a square and w(T) � dqk when ending at
a domino. Ten it is natural to say that


T

w(T) � sqFn− 1(q) + dqFn− 2(q), (16)

since the sum of the weights of tilings ending at a square
equals sqFn− 1(q) and the sum of the weights of tilings ending
at a domino equals dqFn− 2(q).

Now, we show by induction that, for n≥ 2, it holds

D
n
(s − d) � 

T

w(T), (17)

where T runs over the set of tilings with length n.
For n � 2, D2(s − d) � D(d) � sq, which is equal to the

weight of the unique tiling of length 1. Tus, (17) holds for
n � 2. Assume that (17) holds for n. To show that (17) is valid
for n + 1, we consider the process to generate a tiling of
length n + 1 from a tiling of length n.

For a tiling T ending at a domino, the only way to add the
length ofT is adding a new square in the end ofT. In order to
label the new tiling consistently, we delete the labeling d for
the last domino in old tiling and label the new square by sq.
Tis corresponds to the substitution rule d⟶ sq.

For a tiling T ending at a square, we have two chooses. If
we change the last square to a new domino, we change the
labeling of the last part from sq to dq. If we add a new square
at the end of T, we turn the labeling s from the old last square
to the new last square and add a new labeling q to it. Tese
two chooses correspond to the substitution rule
s⟶ d + sq.

For example, the frst tiling in Figure 1 is labeled by dq2,
and the unique corresponding tiling is labeled by sq3.

Figure 2 And the second tiling in Figure 1 is labeled by
sq3, the two corresponding tilings are labeled by sq4 and dq3,
respectively Figure 3.

Notice that we can generate all tilings of length n + 1 as
above. Tus,

D
n+1

(s − d) � D D
n
(s − d)(  � D 

T

w(T)⎛⎝ ⎞⎠ � 

T′

w T′( ,

(18)

where T′ runs over the set of tilings with length n + 1. Tus
(17) holds for n + 1. Now (17) holds for all n≥ 2 by induction.
Tis completes the proof. □

Theorem 3. Let D1 be the formal derivative associated with
the Fibonacci grammar. For n≥ 0,

D
n
1(s − d) � dFn− 2 + sFn− 1, (19)

and

D
n
1 dFn+2 − sFn+1(  � (− 1)

n+1
(s − d). (20)

Proof. Equation (19) can be deduced from (14) by setting
q � 1.

As for (20), we have

D1 dFn − sFn− 1(  � D1(d)Fn − D1(s)Fn− 1

� sFn − (s + d)Fn− 1

� − dFn− 1 − sFn− 2( .

(21)

Applying the relation n times repeatedly, we obtain

D
n
1 dFn+2 − sFn+1(  � D

n− 1
1 dFn+1 − sFn(  � · · · � (− 1)

n dF2 − sF1( 

� (− 1)
n+1

(s − d),

(22)

which implies (20).
By setting s � d � 1 in (19), we get the following cor-

ollary as a grammatical expression about the Fibonacci
numbers. □

Corollary 4. For n≥ 0, it holds that

D
n
1(s − d)

s�d�1 � Fn, (23)

D
n
1(d)

s�d�1 � Fn+1, (24)

D
n
1(s)

s�d�1 � Fn+2. (25)

As an application of Fibonacci grammar, we give
a grammatical proof of Binet’s formula.

Theorem 5 (Binet’s formula). Let α � 1 +
�
5

√
/2,β � 1 −�

5
√

/2. Forn≥ 0, it holds that

Fn �
αn

− βn

α − β
. (26)

Equivalently,

F(t) � 
∞

n�0
Fn

t
n

n!
�

e
αt

− e
βt

α − β
. (27)

Proof. Let u � s − d, then D(u) � d. Since α + β � 1 and
αβ � − 1, one can verify that

D1(u + αd) � d + αs � αu +(1 + α)s � α(u + αd). (28)

Tus,
D

n
1(u + αd) � αn

(u + αd), (29)

which implies that
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Gen(u + αd) � 
∞

n�0
D

n
1(u + αd)

t
n

n!

� 
∞

n�0
(u + αd)

αn
t
n

n!
� (u + αd)e

αt
.

(30)

Similarly, we have
D1(u + βd) � d + βs � (1 + β)d + βu � β(u + βd), (31)

and

Gen(u + βd) � (u + βd)e
βt

. (32)

Combining (30) and (32), we obtain

Gen(u) �
1

β − α
β(u + αd)e

αt
− α(u + βd)e

βt
 . (33)

By setting s � d � 1 in (33), we obtain

F(t) �Gen(u)|s�d�1 �
e
αt

− e
βt

α − β
. (34)

Now, we complete the proof.
By using the same grammar, we can also generate Lucas

numbers in a grammatical manner, whose proof is
omitted. □

Theorem  . For n≥ 0,

D
n
1(3d − s) � dLn− 2 + sLn− 1,

D
n
1(3d − s)

s�d�1 � Ln.
(35)

Following properties of Fibonacci and Lucas numbers
are classic and useful in this paper. For the sake of com-
pleteness, we provide a grammatical proof.

Lemma 7. For n≥ 1 and m≥ 1,

Fn+m− 1 � FnFm + Fn− 1Fm− 1, (36)

Ln+m− 1 � LnFm + Ln− 1Fm− 1, (37)

Ln � Fn+1 + Fn− 1. (38)

Proof. Notice that

D
n+m− 1
1 (s − d)

� D
m− 2
1 D

n+1
1 (s − d) 

� D
m− 2
1 dFn− 1 + sFn( 

� Fn− 1D
m− 2
1 (d) + FnD

m− 2
1 (s).

(39)

Now, setting s � d � 1 implies (36) by (23)–(25).
We have the equation

D
n+m− 1
1 (3d − s)

� D
m− 2
1 D

n+1
1 (3d − s) 

� D
m− 2
1 dLn− 1 + sLn( 

� Ln− 1D
m− 2
1 (d) + LnD

m− 2
1 (s),

(40)

which implies (37) by setting s � d � 1.
Finally, (38) can be deduced from

D
n
1(3d − s) � D

n− 1
1 (2s − d) � D

n− 1
1 (s) + D

n− 1
1 (s − d),

(41)

by setting s � d � 1. □

Lemma 8. For m≥ n≥ k≥ 0,

FmFn − Fm+kFn− k � (− 1)
n− k

Fm+k− nFk. (42)

Proof. From (20), it holds that

q dq

(a)

q q sq

(b)

Figure 2: An example for the action of the substitution rule d⟶ sq. (a) A tiling labeled by dq2. (b) d⟶ sq.

qq sq

(a)

q q q sq

(b)

qq dq

(c)

Figure 3: An example for the action of the substitution rule s⟶ d + sq. (a) A tiling labeled by sq3. (b) s⟶ sq. (c) s⟶ d.

Figure 1: All fve tilings of length 4.
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D
n− 2
1 (d)Fn − D

n− 2
1 (s)Fn− 1 � (− 1)

n− 1
(s − d). (43)

Acting the operator Dm− n+1
1 on the two hand sides of the

above equation, we obtain

D
m− 1
1 (d)Fn − D

m− 1
1 (s)Fn− 1 � (− 1)

n− 1
D

m− n+1
1 (s − d),

(44)

which is changed to

FmFn − Fm+1Fn− 1 � (− 1)
n− 1

Fm+1− n, (45)

by setting s � d � 1. Tis is the special case of (42) in k � 1.
Notice that

D
m
1 (s − d)Fn − D

m+k
1 (s − d)Fn− k

� D
m
1 (s − d)Fn − D

k
1(s − d)Fn− k 

� D
m
1 (s − d)Fn − dFk− 2 − sFk− 1( Fn− k( 

� D
m
1 (s) Fn − Fn− kFk− 1(  − D

m
1 (d) Fn + Fn− kFk− 2( 

� D
m
1 (s)Fn− k+1Fk − D

m
1 (d)Fn− k+2Fk.

(46)

Te last equation holds from (36). Setting s � d � 1 in
the above relation, we obtain

FmFn − Fm+kFn− k � Fk Fm+2Fn− k+1 − Fm+1Fn− k+2( , (47)

which equals the right hand side of (42) by (45). □

Lemma 9. For n≥ 1,

F4n+1 + 1 � F2n+1L2n, (48)

F4n � F2nL2n, (49)

F4n− 1 + 1 � F2n− 1L2n. (50)

Proof. We can verify that

D
2n
1 (3d − s)F2n+1 − D

4n
1 (d)

� D
2n
1 (3d − s)F2n+1 − D

2n
1 (d) 

� D
2n
1 (3d − s)F2n+1 − dF2n− 1 + sF2n( ( 

� D
2n
1 d 3F2n+1 − F2n− 1(  − s F2n+1 + F2n( ( .

(51)

Since

3F2n+1 − F2n− 1 � 2F2n+1 + F2n � F2n+1 + F2n+2 � F2n+3,

(52)

it holds that

D
2n
1 (3d − s)F2n+1 − D

4n
1 (d) � D

2n
1 dF2n+3 − sF2n+2( 

� (− 1)
2n

(2d − s),
(53)

which is reduced to (48) by setting s � d � 1.
Similarly, equations (49) and (50) can be obtained by

simplifying the expression

D
2n
1 (3d − s)F2n − D

4n− 1
1 (d), (54)

and the expression

D
2n
1 (3d − s)F2n− 1 − D

4n− 2
1 (d), (55)

in the same manner as above and then setting s � d � 1. □

4. m-th Order Fibonacci Grammar, Binomial
Fibonacci, and Lucas Identities

In this section, we provide a framework to prove the
identities involving Fibonacci and Lucas numbers associated
with binomial coefcients.

Let G be a context-free grammar with an alphabet X, and
let k be a constant for G. We defne the product of the
grammar G and k to be the context-free grammar in which
each letter a ∈ X corresponds the substitution rule
a⟶ kG(a), denoted as kG. A grammar G on an alphabet
X is defned to be linear if for each letter a ∈ X, G(a) is
a linear function on X.

Lemma 10. Let G be a linear context-free grammar with an
alphabet X, and let k be a constant for G. For n≥ 0 and each
linear function f, it holds that

D
n
kG(f) � k

n
D

n
G(f). (56)

Proof. Because of the linearity of the operatorD, it is enough
to show (56) holds for every letter a ∈ X. We prove the
assertion by induction on n. Te case for n � 1 is evident.
Assume that the assertion holds for n. Now, consider the
case for n + 1, since

D
n+1
kG (a) � DkG D

n
kG(a)(  � kDG D

n
kG(a)(  � kDG k

n
D

n
G(a)( ,

(57)

which equals kn+1Dn+1
G (a). Tis completes the proof.

Consider the following context-free grammar Gm:

Gm ≔ d⟶ D
m
1 (d), s⟶ D

m
1 (s) . (58)

We call Gm the m-th order Fibonacci grammar. Let Dm

be the formal derivative associated with the grammar Gm.
According to (56), Dm is equivalent to Dm

1 when acting on
a linear functions of s and d. When m � 1, 1-th order
Fibonacci grammar is just the Fibonacci grammar.

From (19), it can be verifed that

D
m
1 (s) � D

m+2
1 (s − d) � dFm + sFm+1,

D
m
1 (d) � D

m+1
1 (s − d) � dFm− 1 + sFm.

(59)

Tus,

Gm ≔ d⟶ dFm− 1 + sFm, s⟶ dFm + sFm+1 . (60)

It should be noticed that Dm is not equivalent to Dm
1 . For

example,

D2 d
2

  � 2dD2(d) � 2d(d + s), (61)
yet
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D
2
1 d

2
  � D1(2ds) � 2d(d + s) + 2s

2
. (62)

Let

α1 � − d
2

+ 2ds,

α2 � s
2

− 2sd + 2d
2
,

α3 � − s
2

+ sd + d
2
.

(63)

One can easy to check that

D1 α1(  � 2α2, D1 α2(  � 2 α1 + α2( ,

D1 α3(  � α3.
(64)

Following assertion is critical for the proof. □

Lemma 11. For n≥ 1, it holds that

D
n
m α1 − α2( 

s�d�1 � 2n
Fmn, (65)

D
n
m α1( 

s�d�1 � 2n
Fmn+2,

D
n
m α2( 

s�d�1 � 2n
Fmn+1.

D
n
m α3( 

s�d�1 � L
n
m.

(66)

Proof. We can verify that

Dm α1(  � Dm − d
2

+ 2sd 

� − 2dDm(d) + 2sDm(d) + 2dDm(s)

� 2(s − d) sFm + dFm− 1(  + 2d sFm+1 + dFm( 

� 2sd − 2d
2

 Fm− 1 + 2s
2
− 2ds + 2d

2
 Fm + 2dsFm+1

� 2sd − 2d
2

  Fm+1 − Fm(  + 2s
2

− 2ds + 2d
2

 Fm + 2dsFm+1

� 2 − d
2

+ 2sd Fm+1 + 2 2d
2

− 2sd + s
2

 Fm

� 2Fm+1α1 + 2Fmα2.

(67)

Similarly, it holds that Dm(α2) � 2Fmα1 + 2Fm− 1α2.
According to Lemma 10,

D
n
m α1(  � 2n D

n α1( ,

D
n
m α2(  � 2n D

n α2( ,
(68)

where D is the formal derivative associated with the
grammar

G � α1⟶ α1Fm+1 + α2Fm, α2⟶ α1Fm + α2Fm− 1 .

(69)

Notice that G is as same as the m-th order Fibonacci
grammar by setting α1 � s and α2 � d. Tus,

D
n
m α1( 

s�d�1 �2n D
n α1( 

s�d�1 �2n
D

n
m(d)

s�d�1 �2n
D

mn
1 (d)

s�d�1 � 2n
Fmn+1,

D
n
m α2( 

s�d�1 �2n D
n α2( 

s�d�1 �2n
D

n
m(s)

s�d�1 �2n
D

mn
1 (s)

s�d�1 � 2n
Fmn+2.

(70)

Tus,

D
n
m α1 − α2( 

s�d�1 � D
n
m α1( 

s�d�1 − D
n
m α2( 

s�d�1 � 2n
Fmn.

(71)

As for α3, one can verify that

Dm α3(  � − 2sDm(s) + sDm(d) + dDm(s) + 2dDm(d)

� (d − 2s) sFm+1 + dFm(  +(s + 2d) sFm + dFm− 1( 

� α3 Fm− 1 + Fm+1(  � α3Lm.

(72)

Te last equation holds from (38). Tis completes
the proof.

Now, we begin to proof binomial convolutions about
Fibonacci and Lucas numbers. □

Theorem 12. For n≥ 0, we have



n

k�0

n

k

⎛⎝ ⎞⎠FmkLmn− mk � 2n
Fmn, (73)



n

k�0

n

k
 FmkFmn− mk �

2mn

5
2Fmn+m − Fmn(  −

2
5
, (74)



n

k�0

n

k
 LmkLmn− mk � 2n

Lmn + 2L
n
m. (75)

Proof. According to (56),

D
k
m(s − d)

s�d�1
� D

mk
1 (s − d)

s�d�1
� Fmk,

D
k
m(3d − s)

s�d�1
� D

mk
1 (3d − s)

s�d�1
� Lmk.

(76)

Tis deduces that the left hand side of (73) equals the
summation:

L.H.S. � 
n

k�0

n

k
 FmkLmn− mk

� 
n

k�0

n

k
 D

k
m(s − d)

s�d�1
D

n− k
m (3d − s)s�d�1

� D
n
m((s − d)(3d − s))

s�d�1

� D
n
m α1 − α2( 

s�d�1,

(77)

which equals 2nFmn by (65).Tis completes the proof of (73).
Te left hand side of (74) can be calculated by a similar

manner. We have
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L.H.S. � 
n

k�0

n

k
 FmkFmn− mk

� 
n

k�0

n

k
 D

k
m(s − d)

s�d�1
D

n− k
m (s − d)

s�d�1

� D
n
m (s − d)

2
 

s�d�1
.

(78)

By using Gaussian elimination, d2 − 2sd + s2 can be
represented as the linear combination of α1, α2 and α3,
namely,

d
2

− 2sd + s
2

� −
1
5
α1 +

2
5
α2 −

2
5
α3. (79)

Tus,

D
n
m (s − d)

2
  � −

1
5
D

n
m α1(  +

2
5
D

n
m α2(  −

2
5
D

n
m α3( .

(80)

So,

D
n
m (s − d)

2
 

s�d�1
� −

1
5
2n

Fmn +
2
5
2n

Fmn+1 −
2
5
L

n
m. (81)

Tis completes the proof of (74).
As for (75), we need consider the following grammatical

convolution Dn
m((3d − s)2). It follows by Leibnitz formula

that

D
n
m((3d − s)

2
 � 

n

k�0

n

k
 D

k
m(3d − s)D

n− k
m (3d − s)

� 
n

k�0

n

k
 D

mk
1 (3d − s)D

m(n− k)
1 (3d − s),

(82)

which reduces by setting s � d � 1 to be



n

k�0

n

k
 LmkLmn− mk. (83)

Now, let us calculate Dn
m((3d − s)2). By using Gaussian

elimination, (3d − s)2 can be represented as the linear
combination of α1, α2 and α3, namely,

(3d − s)
2

� − α1 + 2α2 + 2α3. (84)

Tus,

D
n
m(3d − s)

2s�d�1 � − D
n
m α1( 

s�d�1 +2D
n
m α2( 

s�d�1

+2D
n
m α3( 

s�d�1

� − 2n
Fmn + 2n+1

Fmn+1 + 2L
n
m

� 2n
Lmn + 2L

n
m.

(85)

Te last equation holds from (38). Tis completes
the proof.

Equations (74) and (75) are given by Church and
Bicknell [3]. As far as we know, (73) is new. □

Theorem 13. For n, m≥ 1 and r≥ 0, we have



n

k�0

n

k
 F4mk+4mr � L

n
2mF2mn+4mr. (86)

Proof. According to (19),

F4mk+4mr � D
4mk+4mr
1 s − d|s�d�1

� D
4mk
1 D

4mr
1 (s − d) 

s�d�1

� D
k
4m sF4mr− 1 + dF4mr− 2( 

s�d�1

� F4mr− 1D
k
4m(s)|s�d�1 + F4mr− 2D

k
4m(d)

s�d�1
.

(87)

Tus,



n

k�0

n

k
 F4mk+4mr � F4mr− 1 

n

k�0

n

k
 D

k
4m(s)

s�d�1

+ F4mr− 2 

n

k�0

n

k
 D

k
4m(d)

s�d�1
.

(88)

Let G4m denote the context-free grammar

G4m ≔ d⟶ D4m(d), s⟶ D4m(s), a⟶ a , (89)

and let D4m be the formal derivative associated with G4m.
Ten,



n

k�0

n

k
 F4mk+4mr � F4mr− 1D

n

4m(as)
a�s�d�1

+ F4mr− 2D
n

4m(ad)
a�s�d�1.

(90)

Next, let us turn to calculate D4m(ad) and D4m(as). Let
A � as, B � ad, It can be verifed that

D4m(A) � as + a F4md + F4m+1s( 

� A F4m+1 + 1(  + BF4m,

D4m(B) � ad + a F4m− 1d + F4ms( 

� AF4m + B F4m− 1 + 1( .

(91)

According to (48)–(50), we have

D4m(A) � L2m AF2m+1 + BF2m( ,

D4m(B) � L2m AF2m + BF2m− 1( .
(92)

According to (56),

D
n

4m(A) � L
n
2m

D
n
(A),

D
n

4m(B) � L
n
2m

D
n
(B),

(93)

where D is the formal derivative associated with the fol-
lowing grammar

G ≔ A⟶ AF2m+1 + BF2m, B⟶ AF2m + BF2m− 1 .

(94)

Notice that G is as same as 2m-th Fibonacci grammar
D2m by substituting s, d into A, B, respectively. Tus,
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D
n

4m(A)
A�B�1 � L

n
2mD

n
2m(s)

s�d�1 � L
n
2mD

2mn
1 (s)

s�d�1 � L2mF2mn+2,

D
n

4m(B)
A�B�1 � L

n
2mD

n
2m(d)

s�d�1 � L
n
2mD

2mn
1 (d)

s�d�1 � L2mF2mn+1.
(95)

Tis deduces that



n

k�0

n

k
 F4mk+4mr � F4mr− 1L

n
2mF2mn+2 + F4mr− 2L

n
2mF2mn+1

� L
n
2mF2mn+4mr.

(96)

Te last equation holds from (36). Tis completes
the proof. □

Theorem 14. For n, m≥ 1 and r, t≥ 0, we have



n

k�0

n

k
 (− 1)

r(n− k)
F

n− k
m− rF

k
rFmk+t � F

n
mFrn+t, (97)

and



n

k�0

n

k
 (− 1)

r(n− k)
F

n− k
m− rF

k
rLmk+t � F

n
mLrn+t. (98)

Proof. Consider the grammar G′:

G′ ≔ s⟶ FrDm(s), d⟶ FrDm(d), a⟶ (− 1)
r
Fm− ra .

(99)

Ten, it can be easily see that

D′
k

D
t
1(s − d) 

s�d�1
� F

k
rD

k
m D

t
1(s − d) 

s�d�1

� F
k
rD

mk+t
1 (s − d)

s�d�1
� F

k
rFmk+t,

D′
k
(a)

a�1
� (− 1)

rk
F

k
m− r.

(100)

According to Leibnitz formula, the left hand side of (97)
can be obtained from D′

n
(aDt

1(s − d)) by setting
a � s � d � 1. Now, the proof of (97) can be reduced to the
calculation of D′

n
(aDt

1(s − d)).
Let A � as, B � ad. One can check that

D′(A) � (− 1)
r
Fm− ras + a FrFm+1s + FrFmd( 

� A (− 1)
r
Fm− r + FrFm+1(  + BFrFm,

D′(B) � (− 1)
r
Fm− rad + a FrFms + FrFm− 1d( 

� AFrFm + B (− 1)
r
Fm− r + FrFm− 1( .

(101)

In (42), by setting n � r + 1 and k � 1, we obtain

Fm+1Fr +(− 1)
r
Fm− r � Fr+1Fm. (102)

And by setting n � r − 1 and k � − 1, we obtain

Fm− 1Fr +(− 1)
r
Fm− r � Fr− 1Fm. (103)

Tus,

D′(A) � Fm AFr+1 + BFr( ,

D′(B) � Fm AFr + BFr− 1( .
(104)

Ten, D′ can be viewed as the formal derivative asso-
ciated with FmGr with the alphabet A, B{ }. According to
(56),

D′
n
(A)

A�B�1 � F
n
mD

n
r(s)

s�d�1 � F
n
mD

rn
1 (s)

s�d�1 � F
n
mFnr+2,

D′
n
(B)

A�B�1 � F
n
mD

n
r(d)

s�d�1 � F
n
mD

rn
1 (d)

s�d�1 � F
n
mFnr+1.

(105)

Tus,

D′
n aDt

1(s − d) 
a�s�d�1

� D′
n

Ft− 1ad + Ft− 2as( 
a�s�d�1

� Ft− 1D′
n
(B)

A�B�1 +Ft− 2D′
n
(A)

A�B�1

� Ft− 1F
n
mFnr+1 + Ft− 2F

n
mFnr+2

� F
n
m Ft− 1Fnr+1 + Ft− 2Fnr+2( ,

(106)

which equals Fn
mFnr+t by (36). Tis complete the proof

of (97).
As for (98), we consider the following Leibnitz relation:

D′
n aDt

1(3d − s)  � 
n

k�0
D′

k
D

t
1(3d − s) D′

n− k
(a). (107)

Now, (98) can be obtained from (107) by setting a � s �

d � 1 since

D′
k

D
t
1(3d − s) 

s�d�1
� F

k
rLmk+t, D′

k
(a) � (− 1)

rk
F

k
m− ra,

D′
n aDt

1(3d − s) 
a�s�d�1

�D′
n

Lt− 1ad + Lt− 2as( 
a�s�d�1

� Lt− 1D′
n
(B)

A�B�1 + Lt− 2D′
n
(A)

A�B�1

� Lt− 1F
n
mFnr+1 + Lt− 2F

n
mFnr+2

� F
n
m Lt− 1Fnr+1 + Lt− 2Fnr+2( ,

(108)

which equals Fn
mLnr+t from (37). Tis complete the proof

of (98). □

Remark 15. It is easily to see that the technique of proving
identities by using the simple Fibonacci grammar can be
extended to study corresponding binomial convolutions
involving Fibonacci polynomials Fn(q), just considering the
Fibonacci grammar. Meanwhile, one can extend the Fibo-
nacci grammar to be

G ≔ s⟶ ps + d, d⟶ s , (109)

to get generalized Fibonacci and generalized Lucas numbers,
who are defned as the linear recurrence

Un � pUn− 1 + Un− 2, Vn � pVn− 1 + Vn− 2, (110)
and the initial conditions U0 � 0, U1 � 1 and V0 � 2, V1 � p.

8 Journal of Mathematics



Besides, the identities proved here are all from Leibnitz
formula, hence in form



n

k�0

n

k
 AkBn− k. (111)

Terefore, there are many identities involving Fibonacci
and Lucas numbers who are not in the standard binomial
form. For example, Kilic and Tasdemir [9] provided several
binomial double summations in the form


0≤i,j≤k

i

j
 Uri+4jt, (112)

as well as the alternating binomial double summations in the
form


0≤i,j≤k

(− 1)
i

i

j
 Uri+kjt,


0≤i,j≤k

(− 1)
j

i

j
 Uri+kjt,


0≤i,j≤k

(− 1)
i+j

i

j
 Uri+kjt,

(113)

for k � 2, 4. It’s an interesting question to fnd a universal
grammatical proof of these relations.

Data Availability

No underlying data were collected or produced in this study.

Conflicts of Interest

Te author declares that there are no conficts of interest.

Acknowledgments

Tis work was supported by the National Science Foun-
dation of China (grant 12001404).

References

[1] V. E. Hoggatt, “Some special Fibonacci and Lucas generating
functions,” Fibonacci Quarterly, vol. 9, no. 2, pp. 121–133, 1971.

[2] L. Carlitz, “Some classes of Fibonacci sums,” Fibonacci
Quarterly, vol. 16, pp. 411–426, 1978.

[3] C. A. Church and M. Bicknell, “Exponential generating
functions for Fibonacci identities,” Fibonacci Quarterly, vol. 11,
no. 3, pp. 275–281, 1973.

[4] W. Y. C. Chen, “Context-free grammars, diferential operators
and formal power series,” Teoretical Computer Science,
vol. 117, pp. 113–129, 1993.

[5] W. Y. C. Chen and A. M. Fu, “Context-free grammars, per-
mutations and increasing trees,” Advances in Applied Mathe-
matics, vol. 82, pp. 58–82, 2017.

[6] W. Y. C. Chen and H. R. L. Yang, “A context-free grammar for
the Ramanujan-Shor polynomials,” Advances in Applied
Mathematics, vol. 126, Article ID 101908, 2021.

[7] S. M. Ma, J. Ma, and Y.-N. Yeh, “c-positivity and partial
c-positivity of descent-type polynomials,” Journal of Combi-
natorial Teory- Series A, vol. 167, pp. 257–293, 2019.

[8] S. Vajda, Fibonacci and Lucas Numbers, and the Golden Section:
Teory and Applications, John Wiley and Sons, Inc, New York,
NY, USA, 1989.
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