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In this paper, we study the infnite dimensional widths and optimal recovery of Wiener–Sobolev smooth function classes
WM,1(Pr(D)) determined by the r-th diferential operator Pr(D) in Orlicz spaces with L(R) metric. Using tools such as the Hölder
inequality, we give the exact values of the infnite dimensional Kolmogorov width and linear width ofWM,1(Pr(D)) in L(R) metric.
We also study the related optimal recovery problem.

1. Introduction

In [1], the infnite dimensional widths problem and the
optimal recovery problem of the Wiener–Sobolev class
determined by diferential operators in Lp spaces in L(R)

metric are studied (where L(R) metric means the L1 metric
onR). In this paper, we study the infnite dimensional widths
problem and the optimal recovery problem of the Wie-
ner–Sobolev class WM,1(Pr(D)) determined by diferential
operators in Orlicz spaces.

It is well known that Orlicz spaces are extensions and
refnements of Lp spaces. In particular, the Orlicz spaces
generated by N-functions that do not satisfy the ∆2-con-
dition are a substantial generalization and promotion of the
Lp spaces. Terefore, the study of approximation problems
in Orlicz spaces has potential application value and devel-
opment prospect, such as in references [2–4]. In recent years,
the research on widths problem in Orlicz spaces has made
some progress, such as references [5–8].

In this paper, let M(u) and N(v) be complementary
N-functions, the defnition and properties of N-function are
as follows.

Defnition 1. A real valued function M(u) defned on R is
called an N-function, if it has the following properties:

(1) M(u) is an even continuous convex function and
M(0) � 0

(2) M(u)> 0 for u> 0
(3) limu⟶0(M(u)/u) � 0, limu⟶∞(M(u)/u) �∞

Te complementary N-function is given by N(v) �


v

0 (M′)− 1(u)du. Te properties of N-functions are dis-
cussed in [9]. Te Orlicz norm is defned by the following
expression:

‖u‖M � sup
ρ(v;N)≤1


I
u(x)v(x)dx




. (1)

All measurable functions u(x){ } with fnite Orlicz norms
constitute the Orlicz space L∗M(I) associated with the
N-function M(u), where ρ(v; N) � 

I
N(v(x))dx expresses

the modulus of v(x) with respect to N(v). According to the
reference [9], the Orlicz norm can also be defned as follows:

‖u‖M � inf
β>0

1
β

1 + 
I
M(βu(x))dx . (2)

In this paper, ‖·‖M[a,b] represents the Orlicz norm taken
on the corresponding interval [a, b], and ‖·‖M represents the
Orlicz norm taken on the interval of the defnition domain
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involved in the conditions of the relevant conclusions. C is
used to represent a constant, and in diferent places, its value
can be diferent.

Set

‖f‖M,1 ≔ 
j∈Z

‖(∙ + j)‖M[0,1], (3)

where Z is the set of integers. As in references [10, 11], defne
a function space

L
∗
M,1(R) ≔ f: f ismeasurable onR and ‖f‖M,1 < +∞ ,

(4)

by reference [1], L∗M,1(R) is a Banach space.
Given a natural number r, let Cr

0(R) represent the set of
smooth functions

C
r
0(R) ≔ f: f, . . . , f

(r− 1)are absolutely continuous functions in an arbitrary finite interval . (5)

Let

Pr(t) � 
r

j�1
t − tj , tj ∈ R, j � 1, 2, . . . , r, (6)

be a polynomial with only real roots, and Pr(D)(D � d/dt)

is the induced diferential operator of Pr(t). Defne the
Wiener–Sobolev space and the Wiener–Sobolev class in the
Orlicz spaces as follows:

L
∗
M,1 Pr(D)(  ≔ f ∈ C

r
0(R): Pr(D)f ∈ L

∗
M,1(R) ,

WM,1 Pr(D)(  ≔ f ∈ L
∗
M,1 Pr(D)( : Pr(D)f

����
����M,1≤ 1 .

(7)

2. Preliminaries

For arbitrary λ> 0, let

Φr,λ(x) ≔
2
πi



+∞

]�− ∞

e
i(2]+1)λπx

(2] + 1)Pr((2] + 1)λπi)
, (8)

be a standard function with period (2/λ) defned by the
diferential operator Pr(D). Specially, if Pr(D) � Dr, then
the function Φr,λ(x) has the following form:

φr,λ(x) ≔ Φr,λ(x) �
4

π(λπ)
r

· 
+∞

]�0

cos((2] + 1)λπx − (r + 1)(π/2))

(2] + 1)
r+1 .

(9)

Set

‖f‖∞,∞ � supj∈Z‖f(∙ + j)‖∞[0,1], (10)

where ‖f(∙ + j)‖∞[0,1] represents ‖f(∙ + j)‖L∞[0,1]. Ten,
according to reference [1], we know

L∞,∞(R) � f: f ismeasurable onR and ‖f‖∞,∞ < +∞ ,

(11)

is a Banach space with metric ‖·‖∞,∞. Let

L∞ Pr(D)(  � f ∈ C
r
0(R): Pr(D)f ∈ L∞,∞(R) ,

W∞ Pr(D)(  � f ∈ L∞ Pr(D)( : Pr(D)f
����

����∞,∞≤ 1 ,

(12)

be the corresponding Wiener–Sobolev space and
Wiener–Sobolev class.

Lemma 2 (see [1]). Let g ∈W∞(Pr(D)) satisfy

‖g‖∞ ≤ Φr,λ
����

����∞, g ξ0(  � Φr,λ η0( , (13)

and do not have any other restrictions. If [α, β] is the interval
that contains the point η0 and Φr,λ(x) is monotonous on
[α, β], then the following statements are true:

(1) If Φr,λ(x) increases monotonically on [α, β], the
following inequalities are true:

g ξ0 + u( ≤Φr,λ η0 + u( , 0≤ u≤ β − η0,

g ξ0 − u( ≥Φr,λ η0 − u( , 0≤ u≤ η0 − α,
(14)

(2) If Φr,λ(x) decreases monotonically on [α, β], the
following inequalities are true:

g ξ0 + u( ≥Φr,λ η0 + u( , 0≤ u≤ β − η0,

g ξ0 − u( ≤Φr,λ η0 − u( , 0≤ u≤ η0 − α.
(15)

Lemma 3. If g ∈W∞(Pr(D)) satisfes

‖g‖∞ ≤ Φr,λ
����

����∞, supx,y 
y

x
g(t)dt




≤ 2 Φr+1,λ

����
����∞, (16)

and [a, b] is an interval such that g has only two zeros a and b

on [a, b], then

‖g‖M[a,b] ≤ Φr,λ
����

����M[0,(1/λ)]
, (17)

where Φr+1,λ(x) represents the standard function defned
by DPr(D).

Proof. From Lemma 2, similar to the proof ofTeorem 5.7.1
in reference [12], Lemma 3 is easy to be proved. □

2 Journal of Mathematics



According to Lemma 3, we have the following
expression.

Lemma 4. Let Φr+1,λ(x) represent the standard function
defned by DPr(D), and Φr,λ(x) be defned by (8), if
G ∈W∞(DPr(D)) satisfes

‖G‖∞ ≤ 2 Φr+1,λ
����

����∞. (18)

Ten, for arbitrary c ∈ R,

‖g(∙ + c)‖M[0,(1/λ)] ≤ Φr,λ
����

����M[0,(1/λ)]
, (19)

holds, where G′ � g.

Proof. Without losing generality, suppose c � 0, and we just
consider this case.

(1) If g has not any zero on (0, (1/λ)), by the proof of
Teorem 1 in reference [1], we defne a non-negative
function χr(t):

χr(t) �

1, − 1≤ t≤ 1,

(− 1)
r
(t − 2)

r


r− 1

j�0
C

j

r+j− 1(t − 1)
j
, 1≤ t≤ 2,

(t + 2)
r



r− 1

j�0
C

j
r+j− 1(t + 1)

j
, − 2≤ t≤ − 1,

0, |t|≥ 2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

For given α ∈ (0, 1) and every natural number N, let

FN(t) � αG(t)χr

1
N

 , (21)

by reference [1], FN(t) satisfes the following
properties:

(i) If N is sufciently large, then FN(t) ∈W∞(D

(Pr(D))) holds.
(ii) ‖FN‖∞≤ ‖Φr+1,λ‖∞, supx,y| 

y

x
FN
′(t)dt|≤ 2‖

Φr+1,λ‖∞.

For sufciently large N, we have [0, (1/λ)] ⊂ [− N,

N], and for arbitrary t ∈ [0, (1/λ)], FN
′(t) � αg(t),

now we need to prove

F
′
N

�����

�����M[0,(1/λ)]
≤ Φr,λ

����
����M[0,(1/λ)]

. (22)

Obviously, if g has not zeros in (0, (1/λ)), then there
exist two points a, b in [− 2N, 2N] such that FN

′(t)

has only two zeros on [a, b]. Terefore, by Lemma 3,
we can obtain

α‖g‖M[0,(1/λ)] � F
′
N

�����

�����M[0,(1/λ)]
≤ F
′
N

�����

�����M[a,b]

≤ Φr,λ
����

����M[0,(1/λ)]
,

(23)

let α⟶ 1 for both sides of (23), the lemma is
proved.

(2) If there exists zeros a, b(a≤ b) of g(t) in interval
(0, (1/λ)) such that for every t ∈ (0, a)∪ (b, (1/λ)),

g(t)≠ 0, then

‖g‖M[0,a] ≤ Φr,λ x0 − ∙( 
����

����M[0,a]
, (24)

‖g‖M[b,(1/λ)] ≤ Φr,λ x0 + ·( 
����

����M[0,(1/λ)− b]
, (25)

where x0 is the zero of Φr,λ(t). If one of (24) and (25) is not
valid, assume that (24) is not true, then

‖g‖M[0,a] > Φr,λ x0 − ∙( 
����

����M[0,a]
. (26)

Ten by (26), Lemma 2 and g(a) � Φr,λ(x0) � 0, there
exists a point x1 ∈ (0, a) such that

g a − x1( 


 � Φr,λ x0 − x1( 


, |g(a − u)|

≥ Φr,λ x0 − u( 


, x1 ≤ u≤
1
λ

.

(27)

On one hand, by (26) and (27), we have the following
expression:

‖g(a − ·)‖M[0,(1/λ)] > Φr,λ x0 − ∙( 
����

����M[0,(1/λ)]
. (28)

On the other hand, according to Lemma 2 and (27), we
have g(t)≠ 0 for any t ∈ ((a − 1/λ), a). Moreover, according
to case (1), we have the following expression:

‖g(a − ·)‖M[0,(1/λ)] ≤ Φr,λ x0 − ∙( 
����

����M[0,(1/λ)]
. (29)

Tis contradicts inequation (28). Terefore, inequations
(24) and (25) hold.

From Lemma 2, we have the following expression:

|g(t)|≤ Φr,λ x0 + t( 


, t ∈ (a, b). (30)

Hence, according to inequations (24) and (25) and the
inequation above, the lemma can be proved. □

3. Infinite Dimensional Widths Problem

Let T � tj 
j∈Z be a real sequence and satisfy

tj ≤ tj+1,∀j ∈ Z,

lim
j⟶ − ∞

tj � − ∞, lim
j⟶ +∞

tj � +∞.
(31)
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For each natural number m≥ r, let Pm(t) be an algebraic
polynomial of degree m with only real roots, and Pr(t) be its
factor. Defne

ST Pm(D)(  ≔ s(t) ∈ C
m− 2

(R): Pm(D)s(t) � 0,∀t ∈ tj, tj+1 ,∀j ∈ Z , (m≥ 2),

ST P1(D)(  ≔ s(t): P1(D)s(t) � 0,∀t ∈ tj, tj+1 ,∀j ∈ Z .
(32)

If T � j/n j∈Z, we replace ST(Pm(D)) with Sn(Pm(D)).
For f ∈ L∗M(R), let

E f, ST Pm(D)( ( M � inf ‖f − g‖M: g ∈ ST Pm(D)(  .

(33)

Defne

L
r
N(R) � f: f ∈ L

∗
N(R)∩C(R), f

(r− 1) is locally absolutely continuous, f
(r) ∈ L

∗
N(R) ,

W
r
N(R) � f: f ∈ L

r
N(R), f

(r)
�����

�����N
≤ 1 ,

(34)

where N(·) is the complementary N-function of M(·). Lemma 5. (1) Let g ∈ L∗M(R), then

inf
α

g −  αjNj,r

�����

�����M
� sup 

R
g(x)f

(r)
(x)dx: f ∈W

r
N(R), f tj  � 0(j ∈ Z) , (35)

where α � αj 
j∈Z is a real sequence, Nj,r(x) is the

standardized B-spline

Nj,r(x) �
tj+r − tj Mj,r(x)

r
, (36)

while

Mj,r(x) � r tj, . . . , tj+r (· + x)
r− 1
+ , (37)

and  αjNj,r ∈ Sm,T ∩ L∗M(R),

Sm,T � s(t): s(t) ∈ C
(m− 2)

(R), D
m

s(t)
tj′tj+1( 


� 0, j � 0, ± 1, ± 2, · · · , (38)

where Mj,r(x) is B-spline, its detailed defnition refer
to reference [13], there is no need to go into
details here.

(2) (see [1])

sup Pr,m(− D)g
����

����∞: g ∈W∞ Pm(− D)( , g
j

n
  � 0,∀j ∈ Z  � Φr,n

����
����∞, (39)

where Pr,m(t) � (Pm(t)/Pr(t)) is an algebraic poly-
nomial of degree m − r.

Proof
(1) According to reference [14], we know

sup 
R
g(x)f

(r)
(x)dx: f ∈W

r
N(R), f tj  � 0(j ∈ Z) 

� sup 
R
g(x)f

(r)
(x)dx: f ∈W

r
N(R), 

R
Nj,r(x)f

(r)
(x)dx � 0(j ∈ Z) .

(40)
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Terefore, to prove (35), we just need to prove

inf
α

g −  αjNj,r

�����

�����M
� sup 

R
g(x)f

(r)
(x)dx: f ∈W

r
N(R), 

R
Nj,r(x)f

(r)
(x)dx � 0(j ∈ Z) . (41)

Since 
R
Nj,r(x)f(r)(x)dx � 0 and ‖f(r)‖N ≤ 1, using the

H€older inequality in the Orlicz spaces, we have the following
expression:


R
g(x)f

(r)
(x)dx � 

R
g(x) −  αjNj,r(x) f

(r)
(x)dx

≤ g −  αjNj,r

�����

�����M
f

(r)
�����

�����N

≤ g −  αjNj,r

�����

�����M
,

(42)

where the H€older inequality in the Orlicz spaces is


I
u(x)v(x)dx≤ ‖u‖M‖v‖N. (43)

See the reference [9].
Terefore,

sup
R
g(x)f

(r)
(x)dx≤ inf

α
g −  αjNj,r

�����

�����M
. (44)

Defne IN � [t− N, tN],

EN � h: supph ⊂ IN, ‖h‖N ≤ 1, 
R
Nj,r(x)h(x)dx � 0(j ∈ Z) , (N � 1, 2, · · ·). (45)

Also, for h ∈ EN, defne

fh(x) �
1

(r − 1)!


IN

(x − t)
r− 1
+ h(t)dt. (46)

According to reference [14], we have fh ∈Wr
N

(R), suppfh ⊂ IN, moreover

sup 
R
g(x)f

(r)
(x)dx: f ∈W

r
N(R), 

R
Nj,r(x)f

(r)
(x)dx � 0(j ∈ Z) 

≥ sup 
IN

g(x)h(x)dx: ‖h‖N IN( )≤ 1, 
IN

Nj,r(x)h(x)dx � 0(j ∈ Z) .

(47)

We notice that Nj,r(x) has compact support [tj, tj+r]

and the orthogonal condition 
IN

Nj,r(x)h(x)dx � 0 sat-
isfes for j≤ − N − r and j≥N. So, the orthogonal condition
is necessary only if − N − r< j<N.

According to the duality theorem of the best approxi-
mation of a function in a fnite dimensional subspace, we
have

sup 
IN

g(x)h(x)dx: ‖h‖N IN( )≤ 1, 
IN

Nj,r(x)h(x)dx � 0(j ∈ Z) 

� inf g −  αjNj,r

�����

�����M IN( )
: αj ∈ R, − N − r< j<N 

� g −  α∗j,NNj,r

�����

�����M IN( )
,

(48)

where α∗j,N � 0 if j≤ − N − r and j≥N. Te right-hand side
of (47) defnes a monotonically increasing bounded se-
quence, and we need to prove

lim
N⟶∞

g −  α∗j,NNj,r

�����

�����M IN( )
≥ inf

α
g −  αjNj,r

�����

�����M
≔ d> 0. (49)
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Assume (49) is not true, then there exists ε> 0, such that
when N is sufciently large, we have

g −  α∗j,NNj,r

�����

�����M IN( )
< d − ε. (50)

According to [14], there exists a constant C such that for
every j ∈ Z, such that

α∗j,N



 tj+r − tj ≤C 
tj+r

tj

 α∗k,NNk,r(x)dx

≤C  α∗k,NNk,r

�����

�����M tj,tj+r 
‖1‖

N tj,tj+r .

(51)

Let N≥max − j, j + r , then [tj, tj+r] ⊂ [t− N, tN] � IN,
and

α∗j,N



≤C tj+r − tj 
(− 1)

 α∗k,NNk,r

�����

�����M t− N,tN[ ]
‖1‖N t− N,tN[ ]

≤ 2C tj+r − tj 
(− 1)

‖g‖M t− N,tN[ ]‖1‖N t− N,tN[ ]

≤ 2C tj+r − tj 
(− 1)

‖g‖M t− N,tN[ ]<∞.

(52)

Tus, using the diagonal rule we can fnd a sequence of
positive integers Nn 

+∞
n�1 that satisfes for every j ∈ Z, we

have the following expression:

lim
n⟶∞

α∗j,Nn
� βj ∈ R. (53)

Set

fn(x) �
g(x) −  α∗j,Nn

Nj,r(x)


v(x), x ∈ INn
,

0, x ∈ R\INn
 .

⎧⎪⎨

⎪⎩

(54)

For ∀x ∈ R, we have x ∈ INn
if n is sufciently large.

Since the support of Nj,r(x) is compact,  α∗j,Nn
Nj,r(x)

contains a fnite number of terms which is not zero.
According to (53) and (54), we have

lim
n⟶∞

fn(x) � g(x) −  βjNj,r(x)


v(x)(x ∈ R), (55)

where v(x) satisfes ρ(v; N) � 
INn

N(v(x))dx ≤ 1. By Fatou
Lemma, we have the following expression:

g −  βjNj,r

�����

�����M
� supρ(v;N)≤1 

R
g(x) −  βjNj,r(x)



v(x)dx





≤ supρ(v;N)≤1 lim
n⟶∞

inf 
R
fn(x)dx





� supρ(v;N)≤1 lim
n⟶∞


INn

g(x) −  α∗j,Nn
Nj,r(x)



v(x)dx





� lim
n⟶∞

g −  α∗j,Nn
Nj,r

�����

�����M INn
( 
≤d − ε.

(56)

It indicates α∗j,Nn
∈ Sm,T ∩L∗M(R). However, in this case,

g −  βjNj,r

�����

�����M IN( )
≥ d. (57)

So, we draw a contradiction. Terefore, inequation (49)
holds. When the limit of (47) on the right side is taken, we
can get the opposite inequation of (44). (1) is proved. □

As seen in the proof of Lemma 5(1), for f ∈ L∗M(R), we
have the following expression:

E f, ST Pm(D)( ( M � sup 
R
f(t)Pm(− D)g(t)dt




: g ∈W

r
N Pm(− D)( , g tj  � 0,∀j ∈ Z , (58)

where Wr
N(Pm(− D)) � f: f ∈ Lr

N(R), ‖Pm(− D)f‖N≤ 1 .
Defne

‖f‖N,∞ � supj∈Z‖f(· + j)‖N[0,1]. (59)

Also, a function space

L
∗
N,∞(R) � f: f  is measurable on R and  ‖f‖N,∞ <∞. ,

(60)

according to reference [1], we know L∗N,∞(R) is also
a Banach space.

Lemma 6 (see [10, 15]). Let f ∈ L∗M,1(R), g ∈ L∗N,∞(R), then
f(t)g(t) ∈ L(R), and

‖fg‖1 ≤ ‖f‖M,1‖g‖N,∞. (61)
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For g ∈ L∗M,1(R), quantity

E g, Sn Pm(D)( ( 1 � inf ‖g − f‖1: f ∈ Sn Pm(D)(  , (62)

is called the best approximation of g by Sn(Pm(D)), and

E WM,1 Pr(D)( , Sn Pm(D)(  1 ≔ sup E g, Sn Pm(D)( ( 1: g ∈WM,1 Pr(D)(  , (63)

is called the best approximation of WM,1(Pr(D)) by
Sn(Pm(D)) in L(R) metric.

Let n≥ 0 be a fxed number (not necessarily an integer),
Fn represent the set of all linear subspaces F on L(R), such
that for every F ∈ Fn, we have the following expression:

lim
a⟶ +∞

dim F | [− a,a] 

2a
≤ n, (64)

where F|[− a,a] indicates the limit of F on [− a, a] and
dim(F | [− a,a]) is the dimension of the linear space F|[− a,a].

Quantity

dn WM,1 Pr(D)( , L(R) 

≔ inf
F∈Fn

supf∈WM,1 Pr(D)( ) infg∈F
‖f − g‖1,

(65)

represents the infnite dimensional n − K width of
WM,1(Pr(D)) in L(R) metric. If there is a subspace F∗ ∈ Fn

that satisfes

dn WM,1 Pr(D)( , L(R)  � supf∈WM,1 Pr(D)( ) infg∈F∗
‖f − g‖1.

(66)

Ten, F∗ is the optimal subspace that reaches dn.

Theorem  . Let Pr(t), Pm(t) be defned as above. If n is
a natural number, then

E WM,1 Pr(D)( , Sn Pm(D)(  1≤ Φr,n

����
����N([0,1])

, (67)

where m≥ r, and Pm(0) � 0, limt⟶ 0(Pm(t)/Pr(t)) � 0 for
m> r.

Proof. From (58) and integrating by parts, we can obtain the
following expression:

E WM,1 Pr(D)( , Sn Pm(D)(  1

� sup 
R
Pr(D)f(t)Pr,m(− D)g(t)dt: f ∈WM,1 Pr(D)( , g ∈WN,∞ Pm(− D)( , g

j

n
  � 0,∀j ∈ Z .

(68)

From Lemma 6, we have the following expression:

Pr(D)f · Pr,m(− D)g
����

����1≤ Pr(D)f
����

����M,1 Pr,m(− D)g
����

����N,∞

≤ Pr,m(− D)g
����

����N,∞.

(69)

Terefore, from Lemma 2, Lemma 4, and Lemma 6, we
have the following expression:

Pr,m(− D)g(· + i)
����

����N[0,1]

� supρ(u;M)≤1 
1

0
Pr,m(− D)g(x + i)u(x)dx





≤ supρ(u;M)≤1 

n

j�1


(j/n)

(j− 1/n)
Pr,m(− D)g(x + i)u(x)dx





≤ 
n

j�1
supρ(u;M)≤1 

(j/n)

(j− 1/n)
Pr,m(− D)g(x + i)u(x)dx





� 
n

j�1
Pr,m(− D)g(· + i)

����
����N[(j− 1/n),(j/n)]

≤ 
n

j�1
Φr,n

����
����N[(j− 1/n),(j/n)]

 � Φr,n

����
����N[0,1]

,

(70)

Journal of Mathematics 7



where u(x) satisfes 
(j/n)

(j− 1)/n M(u(x))dx≤ 1 for any

j � 1, . . . , n, and 
1
0 M(u(x))dx ≤ 1.

Note that

Pr,m(− D)g
����

����N,∞ � supi∈Z Pr,m(− D)g(· + i)
����

����N[0,1]
. (71)

So, the theorem is proved. □

Theorem 8. Let n be a natural number, m≥ r, then

dn WM,1 Pr(D)( , L(R)  � E WM,1 Pr(D)( , Sn Pm(D)(  1

� Φr,n

����
����N[0,1]

,

(72)

where Pm(0) � 0, lim
t⟶ 0

(Pm(t)/Pr(t)) � 0 for m> r.

Proof. First of all, we have

dn WM,1 Pr(D)( , L(R) ≤E WM,1 Pr(D)( , Sn Pm(D)(  1.

(73)

To prove the opposite inequality, let dn(A, X) represent
the n − Kwidth of A in the usual sense of X (X is the space of
functions defned on a fnite interval). For every fnite in-
terval I � [a, b], let

WM Pr(D), I(  ≔ f ∈ C
r
0(R): f has period b − a and  Pr(D)f

����
����M(I)
≤ 1 , (74)

WM Pr(D), I( 0 ≔ f ∈ WM Pr(D), I( : f
(j)

(a) � 0, j � 0, 1, . . . , r − 1 , (75)

E(A, B)X ≔ sup
x∈A

inf
y∈B

‖x − y‖, A ⊂ X, B ⊂ X, (76)

where ‖·‖ represents the norm on X.
For every F ∈ Fn and N≥ 1, let Nn ≔ dim(F | [− N,N]),

and IN � [− N, N]. For every f ∈ WM(Pr(D), I)0, it’s easy
to prove

(2(N + 1))
− 1

fχIN
∈WM,1 Pr(D)( , (77)

where χI represents the characteristic function on the
interval I.

Terefore, we have the following expression:

E WM,1 Pr(D)( , F 1≥ (2(N + 1))
− 1

E WM Pr(D), IN( 0, F | [− N,N] 
L IN( )

≥ (2(N + 1))
− 1

dNn

WM Pr(D), IN( 0, L IN( ( 

≥ (2(N + 1))
− 1

dNn+2r
WM Pr(D), IN( , L IN( ( .

(78)

For f ∈ WM(Pr(D), IN), let F(t) � f(Nt/π), t ∈ Iπ ,
then we have the following expression:

dNn+2r
WM Pr(D), IN( , L IN( (  �

N

π
dNn+2r

WM Pr

πD

N
 , Iπ , L Iπ(  

≥
N

π
(2π)λN Φr,λN

�����

�����N 0, 1/λN( )[ ]
,

(79)

where

λN � N
− 1 Nn

2
  + r . (80)

By (78) and (79), we have the following expression:

E WM,1 Pr(D)( , F 1≥
N

N + 1
Φr,λN

�����

�����N 0, 1/λN( )[ ]
λN. (81)

Let N⟶ +∞ on both sides of above-given inequa-
tion, then

E WM,1 Pr(D)( , F 1≥ Φr,λN

�����

�����N[0,1]
. (82)

Hence, we obtain

dn WM,1 Pr(D)( , L(R) ≥ Φr,λN

�����

�����N[0,1]
. (83)
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Te theorem is proved. □ Defne

δn WM,1 Pr(D)( , L(R)  ≔ inf
A,Fn( )

supf∈WM,1 Pr(D)( )‖f − A(f)‖1, (84)

as the infnite dimensional linear n-width of WM,1(Pr(D))

in L(R) metric, where A runs over the set of all linear
operators such that A(D) ⊂ F for some F ∈ Fn, where D

denotes the linear closure of WM,1(Pr(D)) in L(R). If there
is a linear operator A∗: D⟶ A∗(D) ∈ Fn such that

δn WM,1 Pr(D)( , L(R)  � supf∈WM,1 Pr(D)( ) f − A
∗
(f)

����
����1.

(85)

Ten, A∗ is called the optimal linear operator.

Lemma 9 (See [1]). If f ∈ L∗M,1(Pr(D)), then there exists an
unique sr(f) ∈ Sn(Pr(D)) that satisfes

sr f, αn +
j

n
  � f αn +

j

n
 , ∀j ∈ Z, (86)

f(x) − sr(f, x) � 
R
G(x, t)Pr(D)f(t)dt, (87)

where G(x, t) satisfes

‖G(x, ·)‖1 � Φr,n(x)


,

‖G(·, t)‖1 � Φr,n t + 1 − αn( 


.
(88)

Theorem 10. Let n be a natural number, then

δn WM,1 Pr(D)( , L(R)  � sup f − sr(f)
����

����1: f ∈WM,1 Pr(D)(  

� Φr,n

����
����N[0,1]

,
(89)

where sr: L∗M,1(Pr(D))⟶ Sn(Pr(D)) is the interpolation
operator satisfying

sr f, αn +
j

n
  � f αn +

j

n
 ,∀j ∈ Z, (90)

and αn is a fxed constant.

Proof. According to Lemma 9, we have the following
expression:

δn WM,1 Pr(D)( , L(R)  � sup f − sr(f)
����

����1: f ∈WM,1 Pr(D)(  . (91)

So, we just need to prove

sup f − sr(f)
����

����1: f ∈WM,1 Pr(D)(   � Φr,n

����
����N[0,1]

.

(92)

By (66) and (84), we have the following expression:

dn WM,1 Pr(D)( , L(R) ≤ δn WM,1 Pr(D)( , L(R) .

(93)

Now we prove

sup f − sr(f)
����

����1: f ∈WM,1 Pr(D)(  ≤ Φr,n

����
����N[0,1]

.

(94)

From Lemma 9, Lemma 6, and equation (88), we have the
following expression:

f − sr(f)
����

����1≤
R


R
|G(x, t)dx  Pr(D)f(t)


dt

≤ Pr(D)f
����

����M,1 Φr,n ∙ + 1 − αn( 
����

����N,∞

≤ Φr,n

����
����N[0,1]

.

(95)

Terefore, the theorem can be proved by the above-given
expressions and Lemma 4. □

4. Optimal Recovery Problem

Let Θn be the set of all sequence ξ � ξj 
j∈Z satisfying

ξj < ξj+1,∀j ∈ Z,

lim
a⟶ +∞

inf
card(ξ ∩ [− a, a])

2a
≤ n,

(96)

where card(ξ ∩ [− a, a]) is the number of elements in
ξ ∩ [− a, a]. For every ξ ∈ Θn, let Iξ represent an information
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operator defned by ξ, while Iξ(f) � f(ξj) 
j∈Z is called the

information of f defned by ξ.

Dn WM,1 Pr(D)( , S, L  � 2 inf
ξ∈Θn

supf∈WM,1 Pr(D)( ),Iξ(f)�0‖Sf‖1, (97)

is called the minimal information diameter of WM,1(Pr(D))

with respect to the solution operator S: D⟶ L(R) in L(R)

metric. If there exists ξ∗ ∈ Θn such that

Dn WM,1 Pr(D)( , S, L  � 2 supf∈WM,1 Pr(D)( ),Iξ∗(f)�0‖Sf‖1,

(98)

then ξ∗ is the optimal sampling. For every ξ ∈ Θn, let
Iξ(WM,1(Pr(D))) represent the image set of Iξ on
WM,1(Pr(D)), and

A: Iξ WM,1 Pr(D)(  ⟶ L(R), (99)

is the mapping from Iξ(WM,1(Pr(D))) to L(R). Sometimes
A is called an algorithm.

Now, we discuss the following optimal recovery
problem:

En WM,1 Pr(D)( , S, L  � inf
ξ∈Θn

inf
A

supf∈WM,1 Pr(D)( ) Sf − A Iξf 
�����

�����1
, (100)

where A takes the mapping set from Iξ(WM,1(Pr(D))) to
L(R). If A only traverses the set of linear maps, En(WM,1
(Pr(D)), S, L) is replaced by EL

n(WM,1(Pr(D)), S, L), and
EL

n(WM,1(Pr(D)), S, L) is called the n-th fundamental error.

If S is the identity operator, Dn(WM,1(Pr(D)), S, L) and
En(WM,1(Pr(D)), S, L) are replaced by Dn(WM,1(Pr(D)),

L) and En(WM,1(Pr(D)), L), respectively.
Let I � [a, b], ξ ≔ ξj 

j∈Z ∈ Θn,∆ ≔ ξ ∩ I,

S
∗
r− 1(∆) ≔ s ∈ C

r− 2
(I): Pr(− D)s(x) � 0, x ∈ ξj, ξj+1 ,∀j, such that ξj, ξj+1 ∩ I≠∅ ;

T
r
M(∆)0 ≔

f: f
(r− 1) is absolutely continuous on I, f ξj  � 0,∀ξj ∈∆,

f
(i)

(a) � f
(i)

(b) � 0, i � 0, 1, . . . , r − 1, Pr(D)f
����

����M(I)
≤ 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(101)

According to reference [1], we know S∗r− 1(∆) is the
splines space corresponding to Pr(− D) and with simple
nodes on ∆.

Lemma 11. (1)

Pr(D)f: f ∈ T
r
M(∆)0  � ψ: ψ⊥S∗r− 1(∆)  and  ‖ψ‖M(I) ≤ 1 , (102)

where ψ⊥S∗r− 1(∆) means


I
ψ(x)s(x)dx � 0,∀s ∈ S

∗
r− 1(∆); (103)

(2)

E T
r,∗
∞ (I)( N(I) � sup ‖f‖L(I): f ∈ T

r
M(∆)0 , (104)

where

T
r,∗
∞ (I) ≔ f: f

(r− 1)   is absolutely  continuous on  I and  Pr(− D)f
����

����∞(I)
≤ 1 . (105)
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Proof
(1) Let

B � Pr(D)f: f ∈ T
r
M(∆)0 ,

C � ψ: ψ⊥S∗r− 1(∆)and‖ψ‖M(I) ≤ 1 ,
(106)

let ψ ∈ B, then there exists f ∈ Tr
M(∆)0 such that

ψ � Pr(D)f, and ‖ψ‖M(I) � ‖Pr(D)f‖M(I)≤ 1. For every
s ∈ S∗r− 1(∆), according to Lemma 2 of reference [16], we have
s ∈ Cr− 2(I), f(i)(a) � f(i)(b) � 0, i � 0, 1, . . . , r − 1, and


I
ψ(x)s(x)dx � 0,ψ ∈ C. Hence B ⊂ C.
On the other hand, let ψ ∈ C, by related knowledge of

ordinary diferential equation, we can fnd a function f,

which satisfes that f(r− 1) is absolutely continuous on I, and
Pr(D)f � ψ, f(i)(a) � 0, i � 0, 1, . . . , r − 1. Terefore,
‖Pr(D)f‖M(I) � ‖ψ‖M(I) ≤ 1. Since ψ⊥S∗r− 1(∆), that is, for
every s ∈ S∗r− 1(∆), 

I
s(x)Pr(D)f(x)dx � 0, according to

[16], we have f(i)(b) � 0, i � 0, 1, . . . , r − 1, and for every
ξk ∈∆, f(ξk) � 0. Terefore f ∈ Tr

M(∆)0, and ψ � Pr(D)

f ∈ B. Hence, C ⊂ B. (1) is proved.
Te proof of (2) is similar to the proof of Lemma 3 in

reference [16]. □

Lemma 12 (see [15, 17]). Let n be a natural number, then

2− 1
Dn WM,1 Pr(D)( , L ≤En WM,1 Pr(D)( , L ≤E

L
n WM,1 Pr(D)( , L . (107)

Theorem 13. Let n be a natural number, then

2− 1
Dn WM,1 Pr(D)( , L  � En WM,1 Pr(D)( , L 

� E
L
n WM,1 Pr(D)( , L 

� Φr,n

����
����N[0,1]

.

(108)

Furthermore, ξ∗ � (j + αn)/n j∈Z is the set of optimal
sampling points, and the basic interpolation operator sr

defned in Lemma 9 is the optimal algorithm.

Proof. First, we give the lower estimate of Dn(WM,1(Pr

(D)), L). Let ξ � ξj 
j∈Z ∈ Θn, for every N≥ 1, set IN �

[− N, N] and Nn ≔ card(ξ ∩ IN).
By (74)–(77), we obtain the following expression:

e WM,1 Pr(D)( , ξ, L  ≔ sup ‖f‖1: f ∈WM,1 Pr(D)( , Iξ(f) � 0 

≥ (2(N + 1))
− 1sup ‖f‖L IN( ): f ∈ T

r
M ∆N( 0 ,

(109)

where ∆N ≔ ξ ∩ IN. Obviously

dimS
∗
r− 1 ∆N( ≤Nn + r. (110)

From the properties of Kolmogorov n-width and Lemma
11(2), we obtain the following expression:

sup ‖f‖L IN( ): f ∈ T
r
M ∆N( 0  � E T

r,∗
∞ IN( , S

∗
r− 1 IN( ( N IN( )

≥dNn+r T
r,∗
∞ IN( , L

∗
N IN( ( 

≥dNn+r
T

r,∗
∞ IN( , L

∗
N IN(  .

(111)

To make the distinction, we replace T
r,∗
∞ (IN) by W∞(Pr

(− D), IN), by appropriate variation, we obtain the following
expression:

dNn+r
W∞ Pr(− D), IN( , L

∗
N IN( (  �

N

π
dNn+r

W∞ Pr −
πD

N
 , Iπ , L

∗
N Iπ(  , (112)
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where

W∞ Pr(− D), IN(  ≔ f ∈ C
r
0(R): f  is of  period 1  and  Pr(− D)

����
����∞ IN( )≤ 1 . (113)

According to reference [15] and the Teorem 7.2− 4 in
reference [17], and make the appropriate calculations, we
obtain the following expression:

N

π
dNn+r

W∞ Pr −
πD

N
 , Iπ , L

∗
N Iπ(  ≤

N

π
2πλN(  Φr,λN

�����

�����N 0, 1/λN( )[ ]
. (114)

By (109)–(114), we get

e WM,1 Pr(D)( , ξ, L ≥
NλN

(N + 1)
  Φr,λN

�����

�����N 0, 1/λN( )[ ]
,

(115)

where λN � N− 1([Nn/2] + r).
Let N⟶ +∞ for inequation (115), we obtain the

following expression:

e WM,1 Pr(D)( , ξ, L ≥ Φr,n

����
����N[0,1]

. (116)

By (98), (109), and (116), we get the lower estimate of
Dn(WM,1(Pr(D)), L).

According toTeorem 10 and Lemma 12, the theorem is
proved. □

Theorem 14. Let n be a natural number, then

Dn W∞ Pr(D)( , L
∗
M,∞  � 2 Φr,n

����
����M[0,1]

. (117)

Proof. For T � tj 
j∈Z ∈ Θn, from Lemma 5(1), we obtain

the following expression:

E WN,1 Pr(− D)( , ST Pr(− D)(  1≤ sup ‖g‖M,∞: g ∈W∞ Pr(D)( , g tj  � 0,∀j ∈ Z . (118)

On one hand, from Teorem 8, we obtain the following
expression:

E WN,1 Pr(− D)( , ST Pr(− D)(  1≥dn WN,1 Pr(− D)( , L  � Φ∗r,n

����
����M[0,1]

, (119)

where Φ∗r,n(x) is the standard function related to Pr(− D).
On the other hand, from Lemma 2, we obtain the fol-

lowing expression:

inf
T∈Θn

sup ‖g‖M,∞: g ∈W∞ Pr(D)( , g tj  � 0,∀j ∈ Z 

≤ sup ‖g‖M,∞: g ∈W∞ Pr(D)( , g
j

n
  � 0,∀j ∈ Z 

� Φr,n

����
����M[0,1]

.

(120)

Hence, according to (119) and (120), the theorem is
proved. □
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