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In this study, we examine the transmission dynamics of global Nipah virus infection under direct (human-to-human) and indirect
(contaminated foods-to-human) transmission routes via the Caputo fractional and fractional-fractal modeling approaches. Te
model is vigorously analyzed both theoretically and numerically.Te possible equilibrium points of the system and their existence
are investigated based on the reproduction number. Te model exhibits three equilibrium points, namely, infection-free, infected
fying foxes free, and endemic. Furthermore, novel numerical schemes are derived for the models in fractional and fractal-
fractional cases. Finally, an extensive simulation is conducted to validate the theoretical results and provide an impact of themodel
on the disease incidence.We believe that this study will help to incorporate suchmathematical techniques to examine the complex
dynamics and control the spread of such infectious diseases.

1. Introduction

1.1. Epidemiology of Nipah Virus. Nipah virus (NiV) is
a zoonotic viral infection that was frst reported in 1998
during an outbreak of encephalitis (infammation of the
brain) in Malaysia and Singapore. It was named after the
village in Malaysia where the frst outbreak occurred. Te
virus is mainly transmitted to humans from animals, par-
ticularly fruit bats (known as fying foxes), pigs, and other
some domestic animals. Te transmissions from human-to-
human can also occur through direct contact with bodily
fuids, such as blood, saliva, or respiratory secretions of
infected individuals. Te clinical symptoms of NiV infection
can range from mild to severe and include headache, fever,
muscle pain, vomiting, and respiratory illness. In severe
cases, the infection can lead to encephalitis, seizures, and
even coma with a higher risk of death. Still, there is no

particular treatment for Nipah virus infection, and the best
approach is supportive care to manage symptoms. Pre-
ventive measures include avoiding contact with infectious
animals or their products and adopting good hygiene
protocols, such as washing hands regularly and properly
cooking meat. NiV outbreaks have occurred in numerous
countries, including India, Bangladesh, and Malaysia, and
have resulted in considerable public health and economic
impacts. Te virus is considered another potential pandemic
threat due to its ability to cause severe illness and the lack of
an efective treatment or vaccination [1, 2].

1.2. Literature Review. Te mathematical modeling ap-
proach has been used substantially in epidemiology to better
understand the transient and dynamics of infectious dis-
eases, including NiV infection. Tese models are helpful for
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researchers and health ofcials in setting the optimal in-
terventions for controlling and preventing the spread of the
disease. Numerous models can be used depending on the
nature of the disease and the available dataset. For instance,
ordinary diferential equation (ODE) models are commonly
used to study the dynamical aspects of infectious diseases in
a homogeneously mixed population [3–5], while partial
diferential equation (PDE) models are suitable to analyze
the spatial heterogeneity in disease spread [6–8]. On the
other hand, stochastic models can incorporate randomness
in disease transmission and help capture the efects of small
populations and rare events [9, 10]. Recently, compart-
mental models with fractional-order diferential equations
have gained attention in the feld of deadly contagious
disease modeling. Tese fractional models are the general-
ization of the classical ODE models and account for
noninteger-order derivatives, which can better capture
complex dynamics and long-term memory efects to study
the diferent epidemiological aspects of communicable
diseases [11–15]. A novel study pertaining to the fractional
fuzzy biological model has been developed in [16]. Fractional
calculus, which involves operators of fractional order, has
been increasingly used in recent years to model the complex
biological and epidemiology phenomena due to its ability to
capture memory and hereditary properties that are often
found in these systems.

Te Caputo operator, introduced by Michel Caputo in
1967, is one of the most commonly used fractional operators
in modeling biological and epidemiological systems. Te
Caputo operator is a modifed form of the Rie-
mann–Liouville operator, and it has the advantage of being
a local operator, which makes it computationally efcient
[17]. Other famous operators with fractional order are the
Caputo–Fabrizio (CF) [18] and the Atanga-
na–Baleanu–Caputo (ABC) operators [19]. Moreover, in
2017, Atangana [20] introduced a new fractal-fractional
operator which opens a new door to the modeling and
understanding of the more complex problems including
infections and diseases with crossover behavior. Te well-
developed fractional calculus and the fractal theory are
combined to derive the new operators. Te use of com-
partmental models with fractional-fractal operators to study
the dynamics of various phenomena such as competition in
commercial and rural banks and the recent COVID-19

pandemic were presented [21–23]. In [24], the authors
successfully applied this new idea to explore the dynamical
behavior of the monkeypox. Many compartmental models
have been formulated and analyzed to explore the NiV
infection dynamics. Te dynamics and possible control of
NiV infection outbreak in Bangladesh have been studied in
[25]. A mathematical analysis via a compartmental model
addressing the efective control intervention of this infection
is being developed and analyzed in [26]. Recently, a number
of NiV infection models with fractional derivatives with
singular as well as nonsingular kernels have been presented
in the literature (for instance, see [27–31]).

In most of the literature, NiV infection models are
developed with the human-to-human transmissionmode. In
this study, we develop a compartmental epidemic model for
the dynamics of NiV disease with food-born as well as
human-to-human transmission from infected humans.
Moreover, unlike the published literature, the model is
constructed via fractional and fractional-fractal derivatives
to gain valuable insights into the phenomena. Te major
sections covered in this study are as follows. Te necessary
defnitions and results relevant to the study are recalled in
Section 2. Model construction via the integer system is
presented in detail in Section 3. Te fractional extension of
the problem with the basic mathematical analysis is studied
in Section 4. Numerical treatment, i.e., derivation of the
scheme and simulation are illustrated in Section 5. Te
extension of the NiV epidemic model in the FF operator
perspective is presented in Section 6. In addition, this section
covers the basic results, iterative scheme, and simulations of
the NiV epidemic model in the FF case. Te conclusion of
the study is accomplished in Section 7.

2. Basic Fractional and Fractal-
Fractional Theory

Fractional and FF diferential operators have proven to play
an essential role in mathematical modeling in various felds
such as science, engineering, and epidemiology. In this
section, we present necessary defnitions that will be con-
sistently utilized in this study [17, 20].

Defnition 1. Te Caputo derivative of Ψ ∈ Cn[t0, T] with t0
is an initial time and is described by the following formula:
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Defnition 2. For r ∈ R, the Mittag–Lefer function in
a generalized form of Eα,β(r) is defned by
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Eα,β(r) � 
∞

m�0

x
m

Γ(αm + β)
, α> 0, β> 0, (2)

such that

Eα,β(r) � rEα,α+β(r) +
1
Γ(β)

. (3)

We defne the Laplace of tβ− 1Eα,β(±λtα) by using the
following equation:

L t
β− 1

Eα,β ±λt
α

(   �
s
α− β

s
α ∓ λ

. (4)

Defnition 3. Te equilibrium point of a system described
via the Caputo-type derivative is

C
D

η
t y(t) � F(t, y(t)), η ∈ (0, 1), (5)

where the point y � y∗ if and only if F(t, y∗) � 0. Let Ψ be
the continuously fractal diferentiable function of (a1, a2).
Ten, the fractional and fractal dimensions are η and ϑ.

Defnition 4. Te FF operator based on power law is stated
as [20]

FF− P
D

η,ϑ
0,t (Ψ) �

1
Γ(n − η)

d

dt
ϑ 

t

0
(t − ζ)

n− η− 1Ψ(ζ)dζ, (6)

where η, ϑ ∈ (n − 1, n] and n ∈ N and dΨ(ξ)/dξϑ �

limt⟶ ξΨ − Ψ(ξ)/tϑ − ξϑ.

Defnition 5. Te integral for the FF operator (6) is stated as
follows:

FF− P
J
η
0,t(Ψ(t)) �

ϑ
Γ(η)


t

0
(t − ζ)

η− 1ζϑ− 1Ψ(ζ)dζ. (7)

3. FormulatingDynamicsof theNiVInfection in
Integer Case

Tis section briefy covers the construction criteria of the
transmission model addressing the dynamical aspects of
NiV disease in the integer case. Te model includes two
modes of transmission. Te food-borne transmission is
when the virus transmits through contaminated food and
the direct person-to-person transmission from both de-
ceased and infected humans. Te model consists of seven
diferential equations that describe the dynamic aspects of
diferent populations. Te virus shedding by infected fying
at time t for foxes is denoted by V(t). Te population of
fying foxes is divided into two subgroups: susceptible fying
foxes denoted by Sf and infected fying foxes denoted by If.
Te infected fying foxes If transmit the virus to the human
population. Te fying foxes are believed to be the natural
hosts of the NiV virus.

Te human population is subdivided into four sub-
groups: susceptible S, infectious I, recovered R, and deceased

D humans, respectively. Te details of each case are as
follows:

(i) S: the susceptible human population that has not
been infected with NiV

(ii) I: the infected human population that is currently
infected with NiV

(iii) H: the hospitalized or under treatment infected
individuals

(iv) R: the recovered human population that has re-
covered from NiV and has developed immunity
against it

(v) D: the deceased human population that has suc-
cumbed due to NiV infection

3.1. Virus Dynamics. Te symbol p indicates the rate at
which the virus is generated via the infected fying foxes. θ is
the rate at which the virus decays over time. Te viruses’
compartment dynamics is, therefore, modeled by the fol-
lowing equation:

dV(t)

dt
� pIf − θV. (8)

3.2. Submodel of Flying Foxes. Te parameter Λf is the re-
spective recruitment rate of Sf and μf is the natural death
rate. Te suspectable fying foxes’ population gained in-
fection at the rate β1 where the force of infection is shown by
β1VSf/Nf. Te infected fying foxes are enhanced by joining
the susceptible fying foxes after getting infected and die at
the rate of μf. Tus, the following subsystem is obtained for
the dynamics of the fying foxes population:

dSf(t)

dt
� Λf −

β1VSf

Nf

− μfSf,

dIf(t)

dt
�
β1VSf

Nf

− μfIf.

(9)

3.3. Submodel of Human Population. Te population in the
susceptible human class is recruited byΛh and reduced at the
natural mortality of μh. Te susceptible humans acquire
infection through indirect transmission routes at the rate of
β2. Tese human populations further become infected as
a result of contracting infections from individuals and dead
bodies (those with the Nipah virus) at a rate of β3 and β4,
respectively. Te term used for describing the infection force
for the human population case is given by

λh �
β2V + κβ3D + β4I

Nh

. (10)

Te parameter κ indicates a fraction of those deceased
humans not properly handled. Te infectious human class is
increased by joining susceptible individuals with the force of
infection λh.Tis population has a decreased recovery rate α1
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with decreased disease-related and natural mortality rates
and μh, respectively. Te infected people joined hospitalized
(or under treatment) classes at the rate of ρ. Te hospitalized
human class is enhanced by hospitalizing the infectious
people at the rate of ρ. Tese populations move to the re-
covered class after proper treatment at the rate of σ. Te
hospitalized population is further decreased due to natural
and disease-induced death rates denoted by μh and μ1, re-
spectively. Te recovered class is enhanced by joining the
infectious and hospitalized individuals after acquiring im-
munity and becoming susceptible due to loss of immunity at
the rate of c. Tis is further decreased due to the natural
death rate μh. Finally, the class of deceased humans is in-
creased due to the Nipah-induced and natural mortality
rates and μh, respectively. Tis class is reduced at the rate of
dead bodies obliteration ]. Tus, the following system is
obtained for the dynamics of the human population:
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dt
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β2V + β3κD + β4I( S

Nh

− μhS + cR,

dI(t)

dt
�

β2V + β3κD + β4I( S
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dt
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dR(t)

dt
� α1I + σH − c + μh( R,

dD(t)

dt
� α2 + μh( I − ]D.

(11)

By combining (8) to (11), we construct the following
model consisting of seven diferential equations and describe
the dynamics of NiV infection:

dV(t)

dt
� pIf − θV,
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dt
� Λf −

β1VSf

Nf

− μfSf,

dIf(t)

dt
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− μfIf,

dS(t)

dt
� Λh −

β2V + κβ3D + β4I( S

Nh

− μhS + cR,

dI(t)

dt
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β2V + κβ3D + β4I( S

Nh

− α1 + α2 + ρ + μh( I,

dH(t)

dt
� ρI − σ + μ1 + μh( H,

dR(t)

dt
� α1I + σH − c + μh( R,

dD(t)

dt
� α2 + μh( I − ]D,

(12)

with respective nonnegative initial conditions (ICs) as

V(0) � V0 ≥ 0, Sf(0) � Sf0
≥ 0, If(0) � If0

≥ 0, S(0) � S0 ≥ 0

I(0) � I0 ≥ 0, H(0) � H0 ≥ 0, R(0) � R0 ≥ 0, andD(0) � D0 ≥ 0
. (13)

4. NiV Dynamics via Fractional Derivative

Using fractional derivatives in modeling can be a powerful
tool for understanding complex biological systems that
exhibit memory and hereditary efects. In many real-life
situations including biological problems, the virus behavior
only at the initial point for t � 0 is not sufcient to refect
the dynamics of the virus at t � t1. For this reason, it is
necessary that all past behavior from 0 to t1 must be

considered. Te inclusion of fractional derivatives is es-
sential to capture the hereditary as well as the memory
efects required for such a scenario. Consequently, the
integer derivative of the NiV model (12) is substituted with
a derivative of a noninteger order. Te Caputo-type of
fractional derivative commonly used in mathematical
modeling is considered in this study. Te subsequent NiV
fractional epidemic model is summarized in the following
system:
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Te expression K(t − t′) in (14) illustrates that the re-
spective kernel depends on time such that
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By introducing (15) in (14) and by making use of the
Caputo derivative of order η − 1, we get
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Te fractional NiV epidemic model leads to the fol-
lowing form after some simplifcations:

C
D

η
t V � pIf − θV,

C
D

η
t Sf � Λf −

β1SfV

Nf

− μfSf,

C
D

η
t If �

β1SfV

Nf

− μfIf,

C
D

η
t S � Λh −

β2V + κβ3D + β4I( S

Nh

− μhS + cR,

C
D

η
t I �

β2V + κβ3D + β4I( S

Nh

− q1I,

C
D

η
t H � ρI − q2H,

C
D

η
t R � α1I + σH − q3R,

C
D

η
t D � q4I − ]D,

(17)

where q1 � (α1 + α2 + ρ + μh), q2 � (σ + μ1 + μh), q3 � (c +

μh), and q4 � (α2 + μh).
With subject to the nonnegative conditions in (13), in

system (17), q1 � (α1 + α2 + ρ + μh), q2 � (σ + μ1 + μh), q3 �

(c + μh), and q4 � (α2 + μh) are the derivatives of Caputo
sense where η ∈ (0, 1].

4.1. Basic Properties of the NiV Epidemic Fractional Model.
Te primary aim of this section is to provide some of the
necessary mathematical features of the NiV epidemic model
developed in (17).

4.1.1. Invariant Region and Boundedness

Theorem 6. Te model in (17) with ICs stated in (12) has an
invariantly positive solution in Ξ � Ξf × Ξh, where

Ξf � V, Sf, If  ∈ R3
+, andNf � Sf + If ≤

Λf

μf

, V≤
pΛf

θμf

 ,

Ξh � (S, I, H, R, D) ∈ R5
+, andNh � (S + I + H + R)≤

Λh

μh

, D≤
Λh α2 + μh( 

]μh

 .

(18)

Proof. We proceed with the proof of the abovementioned
theorem. Initially, by adding the equations of only fying
foxes population in model (17), we get

C
D

η
t Nf �

C
D

η
t Sf+

C
D

η
t If

� Λf − μfNf,
(19)

or
C

D
η
t Nf + μfNf � Λf. (20)

By taking the Laplace transform on both sides, we get

L
C

D
η
t Nf + μfNf  � L Λf ,

s
η
Nf(s) − s

η− 1
Nf(0) + μfNf(s) �

Λf

s
,

s
η

+ μf Nf(s) �
Λf

s
+ s

η− 1
Nf(0),

Nf(s) �
Λf

s s
η

+ μf 
+

s
η− 1

Nf(0)

s
η

+ μf 
.

(21)

By applying the inverse Laplace transform and after
some adstipulation, we obtain

Nf(t)≤
Λf

μf

+ Nf(0) −
Λf

μf

 Eη − μft
η

 , (22)

whereEη(− μftη) is theMittag–Lefer function of parameter
η. Clearly, if Nf(0)≤Λf/μf, then Nf(t)≤Λf/μf as
t⟶∞.

So, Nf(t) converges as t⟶∞. Moreover, for t> 0, the
model solution with IC in Ξf remains in Ξf.

Furthermore, we consider the frst equation denoting the
dynamics of virus concentration and keeping in mind that
FI ≤Λf/μf. Tus, we have

C
D

η
t V(t) + θV≤

pΛf

μf

,

L
C

D
η
t V(t) + θV ≤L

pΛf

μf

 ,

V(s)≤
pΛf

μfs s
η

+ θ( 
+

s
η− 1

V(0)

s
η

+ θ( 
.

(23)

In a similar way, by applying the inverse Laplace
transform and after some adstipulation, we obtain that
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V(t)≤
pΛf

θμf

+ V(0) −
pΛf

θμf

 Eη − θt
η

( . (24)

Tus, if (0)≤Λf/μf, then V(t)≤pΛf/θμf, as t⟶∞.
By following a similar approach, in the case of human
subcompartments, we obtain

Nh(t)≤
Λh

μh

+ Nh(0) −
Λh

μh

 Eη − μht
η

( ,

andD(t)≤
μh + α2( 

]
Λh

μh

+ D(0) −
μh + α2( 

]
Λh

μh

 Eη − ]t
η

( .

(25)

Hence, if Nh(0)≤Λh/μh and D(0)≤ (μh + α2)/]Λh/μh,
then Nh(t)≤Λh/μh and D(t)≤ (μh + α2)/]Λh/μh as t≥ 0 and
t⟶∞. Tus, the set Ξ is positively invariant for the NiV
model (17) and attract all the solutions of the system in
Ξ. □

4.1.2. Existence and Uniqueness of the Problem Solution.
In this section, we aim to prove the problem solution’s
existence and positivity. Te well-known mean value the-
orem from [32] is employed for the said purpose. Te
following theorem is recalled to proceed with the
desired proof.

Lemma 7 (see [32]). Let F(t) ∈ C[m1, m2] and
F(t)C

m1
D

η
t
∈ C(m1, m2], then we have

F(t) � F m1(  +
1
Γ(η)

C
m1

D
η
t
F (ζ) t − m1( 

η
, (26)

such that m1 ≤ ζ ≤ t and ∀t ∈ (m1, m2].

Corollary  (see [32]). Let F(t) ∈ C[m1, m2] and
C
m1

D
η
t
F(t) ∈ C(m1, m2], where η ∈ (0, 1], then if

(i) C
m1

D
η
t
F(t)≥ 0,∀t ∈ (m1, m2), thenF(t)

is nondecreasing
(ii) C

m1
D

η
t
F(t)≤ 0,∀t ∈ (m1, m2), thenF(t)

is nonincreasing

Te theorem that follows provides the proof of the
aforementioned results.

Theorem 9. Te NiV epidemic model in fractional case (17)
has a unique and nonnegative solution.

Proof. To prove the fundamental properties of the model
solution, we follow the facts provided in [33]. It is easy to
confrm the existence of the solution by using the mentioned
literature. Furthermore, by using Remark 3.2 in [33], the
solution’s uniqueness can be shown. Finally, to prove the
solution’s nonnegativity, it is necessary that over each hy-
perplane with bounding positive orthant, the vector feld
points to R8

+. From the NiV epidemic model (17), we
proceed as

C
D

η
t V(t)

V�0
� pIf ≥ 0,

C
D

η
t Sf(t)

Sf�0
� Λf ≥ 0,

C
D

η
t If(t)

If�0
� λfSf ≥ 0,

C
D

η
t S(t)

S�0
� Λh + cR≥ 0,

C
D

η
t I(t)

I�0
� λhS≥ 0,

C
D

η
t H(t)

H�0
� ρI≥ 0,

C
D

α
t R(t)

R�0
� α1I + σH≥ 0,

C
D

α
t D(t)

D�0
� q3I≥ 0.

(27)

Tus, following the results in the above cited literature, it
proves that the entire solution will remain in R8

+, for all
t≥ 0. □

4.1.3. Investigation of Equilibria and Treshold Parameter.
Tis section provides an in-depth examination of the
equilibrium states of the model and the conditions under
which they exist. Te NiV-free equilibrium point (NVFE) of
system (17) is evaluated as

E
0

� V
0
, S

0
f, I

0
f, S

0
, I

0
, H

0
, R

0
, D

0
  � 0,

Λf

μf

, 0,
Λh

μh

, 0, 0, 0, 0 .

(28)

We compute the basic reproductive number R0 via the
well-defned approach, and it can be expressed as

R0 � max R
0
f,R

0
h  � max R

0
f,R

0
h1

+ R
0
h2

 

� max
pβ1
θμf

,
β4
q1

+
q4κβ3
]q1

 ,

(29)

where

R
0
f �

pβ1
θμf

,

R
0
h1

�
β4
q1

,

R
0
h2

�
q4κβ3
]q1

.

(30)

4.1.4. Infected Flying Foxes Free Equilibrium State

Theorem 10. For the NiV model (17), when R0 > 1, an
infected fying foxes free equilibrium (IFFE) point exists,
which is unique in nature.

Proof. By solving equation (17) simultaneously in terms of
virus and human compartments and by setting Sf � Λf/μf,
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If � 0, and V � 0, the resulting expression for the IFFE
point is as follows:

E
∗∗
h � 0,

Λf

μf

, 0, S
∗∗

, I
∗∗

, H
∗∗

, R
∗∗

, D
∗∗

 , (31)

such that

S
∗∗

�
q1q2q3Λ

∗∗
H

q1q2q3 − cρσ + α1cq2(  λ∗∗h + q1q2q3μh

,

I
∗∗

�
λ∗∗h S
∗∗

q1
,

H
∗∗

�
λ∗∗h S
∗∗ρ

q1q2
,

R
∗∗

�
ρσ + α1q2( S

∗∗λ∗∗h
q1q2q3

,

D
∗∗

�
S
∗∗λ∗∗h q4

]q1
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(32)

where

λ∗∗h �
β2V
∗∗

+ β4I
∗∗

+ κβ3D
∗∗

N
∗∗
h

. (33)

Furthermore, by putting (37) in (33), we obtain

b1λ
∗∗
h + b2 � 0, (34)

where the coefcients are
b1 � ]Λh α1q2 + q3 q2 + ρ(  + ρσ( ,

b2 � q1q2q3]ΛH 1 − R
0
h .

(35)

Te term q1q2q3 − (cρσ + α1cq2)  is positive; therefore,
a unique IFFE point exits when R0

h > 1. It means that the
disease is endemic in the human population when
R0

h > 1. □

4.1.5. NiV Endemic Equilibrium Point. By solving (17) si-
multaneously at a steady state in terms of λ∗∗H , we get the NiV
endemic equilibrium (NVEE) as

E
∗∗

� V
∗∗

, S
∗∗
f , I
∗∗
f , S
∗∗

, I
∗∗

, H
∗∗

, R
∗∗

, D
∗∗

 , (36)

where

V
∗∗

�
pβ1Λ
∗∗
f − θΛ∗∗f μf

θβ1μf

,

S
∗∗
f �

θΛ∗∗f
pβ1

,

I
∗∗
f �
Λ∗∗f
μf

−
θΛ∗∗f
pβ1

,

S
∗∗

�
q1q2q3Λ

∗∗
H

q1q2q3 − cρσ + α1cq2(  λ∗∗h + q1q2q3μh

,

I
∗∗

�
λ∗∗h S
∗∗

q1
,

H
∗∗

�
λ∗∗h S
∗∗ρ

q1q2
,

R
∗∗

�
ρσ + α1q2( S

∗∗λ∗∗h
q1q2q3

,

D
∗∗

�
S
∗∗λ∗∗h q4

]q1
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V
∗∗

�
pβ1Λ
∗∗
f − θΛ∗∗f μf

θβ1μf

, F
∗∗
S �

θΛ∗∗f
pβ1

,

F
∗∗
I �
Λ∗∗f
μf

−
θΛ∗∗f
pβ1

,

H
∗∗
S �

q1q2Λ
∗∗
H

q1q2λ
∗∗
H − cα1λ

∗∗
H + q1q2μh

,

H
∗∗
I �

λ∗∗H H
∗∗
S

q1
, H
∗∗
R �

α1H
∗∗
I

q2
,

H
∗∗
D �

q3H
∗∗
I

]
,

(37)

and λ∗∗H as the solution of
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b0λ
∗∗
H

2
+ b1λ
∗∗
H + b2 � 0, (38)

where

b2 � ]q1q2q3 1 − R
0
f β2Λfμh,

b1 � ] q2 q1q3 − cα1(  − cρσ( β2Λf 1 − R
0
f 

+ ]q1q2q3β1Λh 1 − R
0
h ,

b0 � ]Λh α1q2 + q3 q2 + ρ(  + ρσ( .

(39)

Te following theorem regarding NVEE is developed.

Theorem 11
(i) A NVEE point E∗∗ exists and will be unique if

b2 < 0⇔R0
f ≥ 1

(ii) Te point E∗∗ will be unique if
(b1 < 0∧ b2 � 0)∨ b21 − 4b0b2 � 0

(iii) If b1 < 0, b2 > 0, and the discriminant is positive, then
the model possesses two NVEE

(iv) No NVEE will exist elsewhere

In view of condition (i), a unique NVEE exists for
the model.

5. Numerical Investigation of the Caputo
NiV Model

Tis section accomplishes the iterative scheme of the NiV
(17) in the Caputo sense. In addition to confrm the theo-
retical results, simulation will be performed in detail.

5.1. Iterative Scheme. Te modifed Euler’s scheme in the
fractional case is employed to establish the integrative
scheme of the problem [34]. Te method is simple and
provides a reliable solution. To develop the desired solution,
the fractional epidemic model (17) is comprehensively de-
scribed as follows:

C
D

η
t f(t) � G(t, f(t)),

f(0) � f0, 0<T<∞,

⎧⎨

⎩ (40)

where f(t) � (V, Sf, If, S, I, H, R, D) ∈ R8. f0 shows that
the initial state vector corresponds to the problem under
consideration. Furthermore, G(t, f(t)) � (G1(t, f(t)),

G2(t, f(t)),G3(t,f(t)),G4(t, f(t)), G5(t, f(t)),G6(t, f(t)),

G7(t, f(t))) is a real-valued continuous vector function that
fulfls the well-known Lipschitz condition described as
follows:

G1(t, f(t)) � pIf − θV,

G2(t, f(t)) � Λf −
β1SfV

Nf

− μfSf,

G3(t, f(t)) �
β1SfV

Nf

− μfIf,

G4(t, f(t)) � Λh −
β2V + κβ3D + β4I( S

Nh

− μhS + cR,

G5(t, f(t)) �
β2V + κβ3D + β4I( S

Nh

− q1I,

G6(t, f(t)) � ρI − q2H,

G7(t, f(t)) � α1I + σH − q3R,

G8(t, f(t)) � q4I − ]D.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(41)

By taking integral in the Caputo sense over both sides of
(40), it is simplifed as

f(t) � f0 +
1
Γ(η)


t

0
(t − ς)η− 1

G(ς, f(ς))dς. (42)

To proceed, let us consider a uniform grid over [0,T],
having a step size of h � T − 0/m, where m ∈ N. Te ap-
plication of a well-known Euler method in fractional cases
[34] leads to problem (42) as

fn+1 � f0 +
h
η

Γ(η + 1)


n

ι�0
(n − ι + 1)

η
− (n − ι)η( G tι, f tι( ( , n � 0, . . . , m. (43)

Tus, by using the scheme derived in (43), the iterative
formulae for the proposed NiV fractional case model (17) are
obtained as
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Vn+1 � V0 +
h
η

Γ(η + 1)


n

ι�0
(n + 1 − ι)η − (n − ι)η(  pIfι − θVι ,

Sfn+1 � Sf0 +
h
η

Γ(η + 1)


n

ι�0
(n + 1 − ι)η − (n − ι)η(  Λf −

β1SfιVι

Nfι
− μfSfι ,

Ifn+1 � If0 +
h
η

Γ(η + 1)


n

ι�0
(n + 1 − ι)η − (n − ι)η( 

β1SfιVι

Nfι
− μfIf ι ,

Sn+1 � S0 +
h
η

Γ(η + 1)


n

ι�0
(n + 1 − ι)η − (n − ι)η( Λh −

β2Vι + β3κDι + β4Iι( Sι

Nhι
− μhSι + cRι ,

In+1 � I0 +
h
η

Γ(η + 1)


n

ι�0
(n + 1 − ι)η − (n − ι)η(  ×

β2Vι + β3κDι + β4Iι( Sι

Nh ι
− q1Iι ,

Hn+1 � H0 +
h
η

Γ(η + 1)


n

ι�0
(n + 1 − ι)η − (n − ι)η(  ρIι − q2Hι( ,

Rn+1 � R0 +
h
η

Γ(η + 1)


n

ι�0
(n + 1 − ι)η − (n − ι)η(  α1Iι + σHι − q3Rι( ,

Dn+1 � D0 +
h
η

Γ(η + 1)


n

ι�0
(n + 1 − ι)η − (n − ι)η(  q4Iι − ]Dι( .

(44)

5.2. Simulation Predicting the Dynamics of NiV. Tis section
presents the simulation of the Caputo NiV epidemic model
(17) using the aforementioned numerical procedure ob-
tained in (44). Te time interval is taken in days. Te pa-
rameter values are given in Table 1. Te NiV model (17)
simulation is performed for two cases and for the diferent
fractional order of η ∈ (0, 1].

Case 12. In the frst case, the parameters are set such that
R0 > 1. Tis case considers the parameter values to its
baseline values as given in Table 1. Te dynamics of viral
concentration in foods, susceptible fying foxes, and in-
fected fying foxes for both integer and fractional
values of the parameter η are illustrated in plot
Figures 1(a)–1(c). Te dynamic features of susceptible,
infectious, hospitalized recovered, and deceased humans
are illustrated for various values of the fractional order η
in Figures 2(a)–2(e), respectively. Tese plots revealed the
convergence of solution curves to the endemic equilib-
rium for all values of η. Tis means that the epidemic
reaches a stable equilibrium where the virus persists at
a low level in the population, but the disease continues to
circulate.

Case 13. In this scenario, some of the parameters are per-
turbed in order to simulate the model for the case when
R0 < 1. We slightly changed some of the parameters while
the rest remained the same as given in Table 1. We consider
that β1 � 0.25, β2 � 0.25, β3 � 0.15, β4 � 0.35, and μf � 0.25.
Te simulation for virus concentration and fying foxes
population for Case 13 are presented in Figures 3(a)–3(c),
while the human population dynamics are demonstrated in
Figures 4(a)–4(d), respectively. Te graphical results in this
case confrm the convergence of the infection-free equi-
librium state of the NiV fractional epidemic model for all
values of η.

6. Dynamics of NiV Infection in Fractal-
Fractional Perspective

Tis section further extends the NiV epidemic model using
the generalized FF operator in the Caputo sense. To establish
the desired problem, we replace the fractional derivative in
model (17) by the FF operator with fractal and fractional
parameters, respectively, denoted by ϑ and η. Te general-
ized NiV epidemicmodel with this novel modeling approach
can be described as follows:
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FF
D

η,ϑ
0,t (V(t)) � pIf − θV,

FF
D

η,ϑ
0,t Sf(t)  � Λf −

β1SfV

Nf

− μfSf,

FF
D

η,ϑ
0,t If(t)  �

β1SfV

Nf

− μfIf,

FF
D

η,ϑ
0,t (S(t)) � Λh −

β2V + κβ3D + β4I( S

Nh

− μhS + cR,

FF
D

η,ϑ
0,t (I(t)) �

β2V + κβ3D + β4I( S

Nh

− q1I,

FF
D

η,ϑ
0,t (H(t)) � ρI − q2H,

FF
D

η,ϑ
0,t (R(t)) � α1I + σH − q3R,

FF
D

η,ϑ
0,t (D(t)) � q4I − ]D,

(45)

where FFD
η,ϑ
0,t is the Caputo fractal-fractional operator. In

further study, we illustrate the basic necessary properties of
the FF case model (45).

6.1.Uniqueness andExistence. Te uniqueness and existence
of the considered FF problem are the necessary mathe-
matical properties. Terefore, this section proves the
aforementioned feature of the NiV epidemic model in the
fractal-fractional case (45). Te widely used Picard–Lindelöf
theorem of a fxed-point approach is considered for the said
result. In order to achieve the desired goal, FF in (45) is
described as a general Cauchy problem in the following
system:

FF
D

η,ϑ
0,t f(t) � G(t, f(t)),

f(0) � f0, 0< t<T<∞.

⎧⎨

⎩ (46)

In problem (46), the function describing the state var-
iable is f(t) � (V, Sf, If, S, I, H, R, D) and G describes the
ad continuous vector function as described in the previous
part. Moreover, the initial condition for the abovementioned
Cauchy problem is denoted by

f0 � V(0), Sf(0), If(0), S(0), I(0), H(0), R(0), D(0) .

(47)

Te application of integral in FF case over the Cauchy
problem (46) leads to the following form:

1
Γ(1 − η)

d

dt


t

0
(t − ς)− η

G(t, f(t))dς � ϑt
ϑ− 1

G(t, f(t)).

(48)

Te right side in the abovementioned equation is being
replaced with the Caputo derivative, and after the appli-
cation of integral, we get the following result [38]:

f(t) � f(0) +
ϑ
Γ(η)


t

0
(t − ς)η− 1ςϑ− 1

G(ς, g(ς))dς. (49)

Keeping the Picard–Lindelöf theorem in view, we
present the following defnition:



b

a

� In tn(  × B0 p0( , (50)

such that

In tn(  � tn− a, tn+a ,

B0 p0(  � b + t0, t0 + b .
(51)

In addition, we defne the operator as

Table 1: Numerical values of the system parameters used in numerical results.

Parameters Physical meaning Value Source
Λh Recruitment rate of human class 6295.16 [26]
Λf Recruitment rate of fying foxes class 300 [35]
μh Natural mortality in humans 1/365 × 73.57 [26]
μf Natural mortality in fying foxes 0.025 [35]
] Cremation/burial rate of deceased bodies 0.5 [36]
p Virus shedding rate in Fi 0.100 Assumed
θ Viral decay rate 0.09 Assumed
c Rate of immunity losses in recovered human 0.85 [36]
β1 Rate at which Sf becomes infected 0.50 Assumed
β2 Rate at which S becomes infected 0.65 [35]
β3 Unsafe contact rate of S class with deceased bodies 0.75 [36]
β4 Unsafe contact rate of S class with infectious human 0.65 [36]
α1 Recovery rate in I 0.09 [36]
α2 Disease-induced death rate in infected human class 0.77 [35]
μ1 Disease-induced death rate in hospitalized class 0.387 [37]
ρ Hospitalization rate of infected human individuals 0.4 [37]
σ Recovery rate of hospitalized class 0.09 [37]
κ Fraction of dead bodies which are handled unsafely 0.001 [35]
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Λ.C In tn( ,Bb tn(  ⟶ C In tn( ,Ab tn( ( , (52)

such that

Λϕ(t) � f(0) +
ϑ
Γ(η)


t

0
(t − ς)η− 1ςϑ− 1

G(ς, ϕ(ς))dς.

(53)

In the onward proof, we will focus on proving that the
operator given in (53) maps a complete norm empty metric
space over self. In addition, the essential fact is to confrm
that the map has a contraction property. In the frst attempt,
we prove that

‖Λϕ(t) − f(0)‖≤ c. (54)

Te following norm is taken into account:

‖Λϕ(t) − f(0)‖≤
ϑ
Γ(η)


t

0
(t − ς)ηςϑ− 1

‖G(ς, f(ς))‖∞dς

≤
ϑ
Γ(η)

H
t

0
(t − ς)ηςϑ− 1dς,

(55)

with

H � ‖G‖∞, (56)
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Figure 1: Simulation of (a) the virus compartmentV(t), (b) susceptible fying foxes Sf(t), and (c) infected fying foxes If(t) in the fractional
NiV transmission model (17) with η � 1.0, 0.95, 0.90, 0.85, 0.80. Te parameter values are mentioned in Table 1 and R0 > 1.
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Figure 2: Continued.
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Figure 2: Simulation of (a) susceptible humans S(t), (b) infected humans I(t), (c) hospitalized humans H(t), (d) recovered humans R(t),
and (e) deceased humans D in the fractional NiV transmission model (17) with η � 1.0, 0.95, 0.90, 0.85, 0.80. Te parameter values are
mentioned in Table 1 and R0 > 1.
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Figure 3: Continued.
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Figure 3: Simulation of (a) the virus compartmentV(t), (b) susceptible fying foxes Sf(t), and (c) infected fying foxes If(t) in the fractional
NiV transmission model (17) with η � 1.0, 0.95, 0.90, 0.85. Te parameter values are mentioned in Table 1 and R0 < 1.
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where the norm is given by

‖Θ‖∞ � sup
t∈b

a

‖Θ(t)‖. (57)

Moreover, let us suppose that ς � ty, then from the
abovementioned integral, we have

‖Λϕ(t) − f(0)‖≤
ϑH
Γ(η)

t
η+ϑ− 1

B(η, ϑ),

‖Λϕ(t) − f(0)‖ < c⟺H<
cΓ(η)

ϑa
ϑ+η− 1

B(η, ϑ)
.

(58)

By considering ϕ1 and ϕ2 ∈ C[In(tn),Bb(tn)], the in-
equity is obtained as

Λϕ1 − Λϕ2
����

����≤
ϑH
Γ(η)

t
ϑ+η− 1

B(η, ϑ)  ϕ1 − ϕ2
����

����

<
ϑH
Γ(η)

a
ϑ+η− 1

B(η, ϑ)  ϕ1 − ϕ2
����

����.

(59)

Finally, from the abovementioned equation, we deduce
the contraction property under the condition that if the
following criteria are fulflled, then we get

H<
Γ(η)

ϑa
ϑ+η− 1

B(η, ϑ)
. (60)

6.2. Numerical Solution for the FFNiVModel. Te numerical
schemes for the nonlinear complex problem are necessary to
illustrate the dynamical aspect of the problem under con-
sideration graphically. Tis section provides a numerical

procedure for the FF NiV epidemic model (45). Te novel
numerical procedure-based Lagrangian piecewise poly-
nomial interpolation is applied to derive the iterative scheme
of system (45) [38, 39]. Te FF model (45) is rewritten in the
Volterra-type due to the diferentiability of the fractional
integral operator. Moreover, the FF problem in the RL
operator case can be described as

1
Γ(1 − η)

 
d

dt


t

0
(t − ς)− η

f(ς)dς
1

ϑt
ϑ− 1 . (61)

Terefore, problem (46) can be converted as

RL
D

η
0,t(f(t)) � ϑt

ϑ− 1
[G(t, f(t))]. (62)

Moreover, the derivative in the RL sense is replaced by
the Caputo-type operator in order to implement the integer-
order ICs. As a result, (62) can be expressed as

f(t) � f(0) +
ϑ
Γ(η)


t

0
ςϑ− 1

(t − ς)η− 1
G(ς, p(ς))dς. (63)

Now at t � tn+1, (63) gets the following form:

f
n+1

� f0 +
ϑ
Γ(η)


tn+1

0
ςϑ− 1

tn+1 − ς( 
η− 1

G(ς, f)dς

� f0 +
ϑ
Γ(η)



n

v�0


tv+1

tv

ςϑ− 1
tn+1 − ς( 

η− 1
G(ς, f(ς))dς.

(64)

Furthermore, G(ς, f(ς)) in (64) is approximated by
making use of the Lagrangian piecewise interpolation ap-
proach over [tȷ, tȷ+1] as
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Figure 4: Simulation of (a) infected humans I(t), (b) hospitalized humans I(t), (c) recovered humans R(t), and (d) deceased humans D in
the fractional NiV transmission model (17) with η � 1.0, 0.95, 0.90, 0.85. Te parameter values are mentioned in Table 1 and R0 < 1.
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G(ς, f(ς)) ≈ fȷ(ς) �
ς − tȷ− 1

tȷ − tȷ− 1
t
ϑ− 1
ȷ G tȷ, f tȷ   −

ς − tȷ

tȷ − tȷ− 1
t
ϑ− 1
ȷ− 1 G tȷ− 1, f tȷ− 1  . (65)

We lead to the following expression after making use of
the aforementioned approximation:

f
n+1

� f0 +
ϑ
Γ(η)



n

ȷ�0


tȷ+1

tȷ

λϑ− 1
tn+1 − ς( 

η− 1
fȷ(ς)dς. (66)
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Figure 5: Case 14: the dynamics of the FF NiV epidemic model (45) when ϑ � 1.00, 0.95, 0.90, 0.80, 0.85 and η � 1: (a) virus concentration
(b) susceptible fying foxes, and (c) infected fying foxes.
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Figure 6: Case 14: the dynamics of the FF NiV epidemic model (45) when ϑ � 1.00, 0.95, 0.90, 0.80, 0.85 and η � 1: (a) susceptible, (b)
infectious, (c) hospitalized, (d) recovered, and (e) deceased humans.
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Finally, the solution of (66) provides the following it-
erative formulae:

f
n+1

� f
0

+
ϑhη

Γ(η + 2)


n

ȷ�0
t
ϑ− 1
ȷ G tȷ, g tȷ   × (1 + n − ȷ)η(n + 2 − ȷ + η) − (n − ȷ)η(n + 2 − ȷ + 2η)( 

− t
ϑ− 1
ȷ− 1 G tȷ− 1, g tȷ− 1   × (1 + n − ȷ)η+1

− (n − ȷ)η(n − ȷ + 1 + η) .

(67)

Te desired iterative formulae are established as follows
for the FF NiV epidemic model (45):
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Figure 7: Case 15: the dynamics of the FF NiV epidemic model (45) when η � 1.00, 0.95, 0.90, 0.80, 0.85 and ϑ � 1: (a) virus concentration,
(b) susceptible fying foxes, and (c) infected fying foxes.
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Figure 8: Continued.
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Figure 8: Case 15: the dynamics of the FF NiV epidemic model (45) when η � 1.00, 0.95, 0.90, 0.80, 0.85 and ϑ � 1 (a) susceptible, (b)
infectious, (c) hospitalized, (d) recovered, and (e) deceased humans.
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Figure 9: Case 16: the dynamics of the FF NiV epidemic model (45) when η � 1.00, 0.95, 0.90, 0.85 and ϑ � 1.00, 0.95, 0.90, 0.85: (a) virus
concentration, (b) susceptible fying foxes, and (c) infected fying foxes.
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(68)

6.3. Simulation of the FFNiVModel. Tis section illustrates
an extensive simulation of the NiV compartmental model
in the FF case (28) to analyze the infuential efects of both
fractal and fractional parameters on the problem

dynamics. Te numerical scheme derived in (68) is taken
into account for the said purpose. Parameter values are
considered from Table 1 with the same ICs taken for the
fractional case model. We considered four cases in the
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Figure 10: Continued.
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Figure 10: Case 16: the simulation of the FF NiV epidemic model (45) when η � 1.00, 0.95, 0.90, 0.85 and ϑ � 1.00, 0.95, 0.90, 0.85: (a)
susceptible, (b) infectious, (c) hospitalized, (d) recovered, and (e) deceased humans.
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Figure 11: Continued.
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Figure 11: Case 17: the dynamics of the FF NiV epidemic model (45) when η � 1.00, 0.95, 0.95, 0.85, 0.80 and ϑ � 1.00, 0.97, 0.90, 0.85, 0.90:
(a) virus concentration, (b) susceptible fying foxes, and (c) infected fying foxes.
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respective simulation by taking diferent combinations
for the values of fractional order η and fractal order ϑ. Te
simulation results are illustrated in Figures 5–12. Te
detailed discussion and corresponding plots of each
fgure are given as follows.

Case 14. In this case, the NiV transmission model with FF
operator (45) is simulated when η � 1 and by considering the
fractal order ϑ ∈ (0, 1] with fve values. Te visual dynamics
in this case are shown in Figures 5(a)–5(c) and 6(a)–6(e).
Figure 5 shows subplots and Figures 5(a)–5(c) demonstrate
the simulation results for the virus concentration, susceptible,

and infected fying foxes. Figures 6(a)–6(e) analyze the dy-
namics of diferent human groups. It is noted that all pop-
ulation solution trajectories tend to converge towards the
endemic equilibrium states.

Case 15. In the second scenario, we conduct simulations
of the NiV epidemic model in FF case (45) with ϑ � 1
while varying the fractional order η across fve diferent
values within the range of 0 and 1. Te visual dynamics
are depicted in plots 7 and 8 with subplots (a-c) and (a-e),
respectively. Te simulation of viruses’ class, susceptible
fying foxes, and infectious fying foxes is demonstrated
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Figure 12: Case 17: simulation of the FF NiV epidemic model (45) when η � 1.00, 0.95, 0.95, 0.85, 0.80 and ϑ � 1.00, 0.97, 0.90, 0.85, 0.90:
(a) susceptible, (b) infected, (c) hospitalized, (d) recovered, and (e) deceased humans.
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in Figures 7(a)–7(c), while Figures 8(a)–8(e) illustrate
the behavior of susceptible, infected, hospitalized, re-
covered, and deceased human populations, respectively.
Similar to a previous case, the model’s solution tends to
the steady state for all values of the fractional and fractal
dimensions.

Case 16. In this case, we examine the dynamics of diferent
population groups and concentrations of the virus while
considering variations in both the fractional and fractal
dimensions of the Caputo FF derivative. Both parameters, ϑ
and η, are simultaneously varied in an equal manner (i.e., ϑ
takes on values of 1.00, 0.95, 0.9, and 0.85, and η takes on
values of 1.00, 0.95, 0.9, and 0.85) during the simulation of
the NiV compartmental model in FF sense (45). Te
graphical analysis of the present case is illustrated in
Figures 9(a)–9(c) and 10(a)–10(e). Outcomes in this section
reveal that the solution curves reach a steady state over time.

Case 17. In the last case, we simulate the FF NiV
epidemic model (45) where both the fractional and fractal
parameters are changed simultaneously. However, in this
case, both of these parameter values are considered un-
equally, i.e., η � 1.00, 0.95, 0.95, 0.85, 0.80 and ϑ �

1.00, 0.97, 0.90, 0.80, 0.90. Te simulation of this case is ac-
complished in Figures 11(a)–11(c) and 12(a)–12(e). Overall,
from simulation in all cases, the solution treacheries are con-
verged to the endemic steady state. However, in the last two
cases, the convergence to an equilibrium point is obtained after
a comparatively long period. In conclusion, the compartmental
modeling approach utilizing the novel FF operators proves to be
helpful for gaining a deeper understanding of the complex
systems, including infectious diseases.

7. Conclusion

Tis study aims to illustrate the dynamics of NiV infection
using a fractional and fractal-fractional modeling approach.
NiV infection is one of the neglected infectious diseases that
emerged in many Asian countries. We studied a new
compartmental model with multiple transmission modes of
Nipah virus infection. To the best of our knowledge, the
study of NiV via the FF modeling approach could be the frst
attempt in the literature. Te model was initially formulated
using a system of eight nonlinear diferential equations
based on standard incidence rates. Te food-born and hu-
man-to-human transmissions are considered in the model
construction. A well-known Caputo operator in fractional
only and fractal-fractional cases is used to construct the
extended models. Te existence and uniqueness of both
extended models were provided, and possible equilibria of
the problem were investigated based on the reproduction
number. It is found that the model exhibits three equilib-
rium points, namely, infection-free, infected fying foxes
free, and endemic steady state. Te models were solved
numerically using efcient iterative schemes, and an ex-
tensive simulation was performed for various values of only
fractional order and then for both fractal and fractional
dimensions simultaneously. Te simulation results of the

study showed that the FF NiV transmission model provides
biologically more reliable results in all cases.Tus, we believe
that such an advanced modeling approach can be conf-
dently applied to address more complex real-life problems.
In future, the proposed model can be extended using
a fractional and fractal-fractional operator with nonsingular
and nonlocal kernels.
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