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In this paper, we derive a spectral collocation method for solving fractional-order integro-diferential equations by using a kind of
Müntz orthogonal functions that are defned on [0, 1] and have simple and real roots in this interval. To this end, we frst construct
the operator of Riemann–Liouville fractional integral corresponding to this kind of Müntz functions. Ten, using the
Gauss–Legendre quadrature rule and by employing the roots of Müntz functions as the collocation points, we arrive at a system of
algebraic equations. By solving this system, an approximate solution for the fractional-order integro-diferential equation is
obtained. We also construct an upper bound for the truncation error of Müntz orthogonal functions, and we analyze the error of
the proposed collocation method. Numerical examples are included to demonstrate the validity and accuracy of the method.

1. Introduction

We consider the fractional-order integro-diferential
equation:

F1 t, f(t), D
q0f(t), D

q1f(t), . . . , D
qu f(t)(  � λF2 t, f(t), 

t

0
κ(t, s)G(s, f(s))ds , (1)

with initial conditions

f
(k)

(0) � dk, k � 0, 1, . . . , m0 − 1, (2)

where

q0 ≥ q1 ≥ . . . ≥ qu ≥ 0, mk − 1< qk ≤mk, 0≤ t≤ 1, λ ∈ R.

(3)

In recent years, several numerical techniques have been
proposed in the literature for solving fractional-order
integro-diferential equations, such as the composite func-
tions [1], collocation method [2], Chebyshev series [3],
fractional Legendre functions [4], modifed hat functions

[5], Bernstein polynomials [6], modifed Adomian de-
composition [7], Sumudu transformation and Hermite
spectral collocation method [8], stable least residue method
[9], discrete Galerkin method [10], Haar wavelet [11], Euler
functions [12], Jacobi spectral method [13], Legendre
wavelet [14], operational matrices [15], Runge–Kutta con-
volution quadrature methods [16], Dhage iteration principle
[17], perturbation-iteration algorithms [18], and composite
collocation method [19].

In several research papers, the topic of existence and
uniqueness of the solution of fractional-order integro-dif-
ferential equations have been discussed [20–24]. In [25],
fractional-order integro-diferential equations are utilized in

Hindawi
Journal of Mathematics
Volume 2023, Article ID 6647128, 13 pages
https://doi.org/10.1155/2023/6647128

https://orcid.org/0009-0005-5728-9778
https://orcid.org/0000-0003-3592-1304
https://orcid.org/0000-0002-1953-5414
mailto:tavassoli_k@yahoo.com
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/6647128


the modeling of some phenomena in fuid dynamic. In [26],
a numerical scheme is proposed based on basis functions.
Moreover, in [27–29], the solvability of fractional-order
integro-diferential equations is assessed using the
Krasnoselskii fxed-point theorem. In [30], nonlinear
fractional-order integro-diferential equations have been
solved by using Riemann–Liouville integral and Caputo
fractional derivative operators. Te asymptotic stability, the
boundedness of nonzero solutions, the stability of Mittag-
Lefer zero solution, and the monotonic stability of solu-
tions of fractional-order integro-diferential equations are
studied in [31]. Furthermore, existence and uniqueness of
the solution of fractional-order integro-diferential equa-
tions in Banach spaces are investigated in [32, 33], and the
authors of [34] obtained similar results using the Schauder
fxed-point theorem and the contraction map principle. In
[35], by using Legendre wavelet collocation and defnite and
stochastic operational matrices, the uncertainty quantity in
solving fractional-order integro-diferential equations has
been assessed. In [36], using the concept of extended
distances with piecewise constant functions, the necessary
criteria for existence and uniqueness are constructed via the
Schauder and Banach fxed-point theorem. In [37], several
classes of fractional-order integro-diferential equations
have been solved by using the Jacobi–Gauss collocation
algorithm.

In the past few decades, fractional calculus has been of
considerable importance due to its several applications in
various felds of science and engineering. Hence, the theory
of fractional diferential and integral calculus is of interest to
many mathematicians, and currently, diferent defnitions of
fractional derivatives and integrals are used. Moreover,
researchers and engineers in diferent scientifc felds have
made eforts to construct fractional models for diferent
problems in felds such as viscoelastic systems, electrode-
electrolyte polarization, electrochemistry, processor and the
process of publication, processing, and control, which have
specifed and defned a general framework for the issue of
fractional calculus. Te subject of fractional diferential and
integral calculus is actually the generalization of integral and
derivative calculations from integer orders to arbitrary real
order. In fact, the subject of fractional calculus is the gen-
eralization of derivation from the integer order and the
ordinary multiple integration. Fractional derivatives are able
to describe memory and inherited properties of materials
and methods. In 1976, Caputo defned a fractional deriva-
tion method that has several good properties in modeling
natural phenomena. Among the most important features
and superiority of the Caputo defnition compared to other
existing defnitions is that the fractional Caputo derivative of
a constant function is equal to zero. Indeed, it can be said
that the Caputo defnition of fractional derivatives is
a generalization of the ordinary derivative. Also, the most
important features of the Riemann–Liouville integral

operator are its commutative and semigroup properties
[38, 39].

Many problems in physics and the real world lead to
equations where zero is the singular point such as fractional-
order equations. On the other hand, one of the most im-
portant features of Müntz orthogonal functions is that zero
is their singular point, and therefore, these functions can
provide suitable approximate solutions for such equations
(40). In this paper, we present a numerical method based on
Müntz orthogonal functions and collocation to approximate
the solution of the fractional integro-diferential (1) and (2).

Te reminder of this paper is organized as follows: In
Section 2, basic defnitions which are required for our
subsequent development are presented. In Section 3, Müntz
orthogonal functions are defned and the best approxima-
tion of an arbitrary function via Müntz orthogonal functions
is given. Moreover, the Riemann–Liouville fractional in-
tegral operator is constructed, which reduces the compu-
tational complexity and speeds up the solution process.
Section 4 is devoted to the numerical solution of fractional-
order integro-diferential equations using the Müntz
functions and collocation method. An error analysis of
the method is also carried out. In Section 5, numerical
examples are given to demonstrate the applicability and
high accuracy of the proposed method. Finally, some
conclusions are given in Section 6.

2. Preliminaries and Notations

2.1. Convolution

Defnition 1. Convolution is a mathematical operator that
has two functions as input and a third function as output.
Te convolution of two functions f and g has the notation
f∗g and is given by [41]:

(f∗g)(t) � 
t

0
f(t − y)g(y)dy. (4)

Lemma 2. Let ∈ L1(R) and g ∈ Lp(R); then, for some
p ∈ [1,∞], the following inequality holds [41]:

‖f∗g‖p ≤ ‖f‖1‖g‖p. (5)

Defnition 3. A function f: S⊆Rn⟶ Rm with t, y ∈ S is
Lipschitz with the Lipschitz constant λ≥ 0 if [42]

|f(t) − f(y)|≤ λ|t − y|. (6)

2.2. Fractional-Order Integral and Derivative

Defnition 4. Te fractional Riemann–Liouville integral Iα of
order α ∈ R+ on the interval [a, b] is defned as follows [43]:
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I
α
f(t) �

1
Γ(α)


t

0

f(s)

(t − s)
1− α ds �

1
Γ(α)

t
α− 1 ∗f(t), α> 0,

f(t), α � 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(7)

Defnition 5. Te Caputo fractional derivative Dα of order
α ∈ R+ is defned as follows [43]:

D
α
f(t) �

1
Γ(n − α)


t

0

f
(n)

(s)

(t − s)
α+1− n

, n − 1< α≤ n, n ∈ N.

(8)

Te following relations between fractional Rie-
mann–Liouville integral and the Caputo fractional de-
rivative also hold [4, 43]:

1.I
α λ1f(t) + λ2g(t)(  � λ1I

α
f(t) + λ2I

α
g(t), α ∈ R+

,

2.I
α
t
β

�
Γ(β + 1)

Γ(β + α + 1)
t
α+β

, β> − 1,

3.D
α
I
α
f(t) � f(t),

4.I
α
D

α
f(t) � f(t) − 

n− 1

k�0
f

(k)
(0)

t
k

k!
, n ∈ N,

5.D
α
f(t) � I

n− α
D

n
f(t),

6.D
α λ1f(t) + λ2g(t)(  � λ1D

α
f(t) + λ2D

α
g(t),

7.D
α
c � 0,

(9)

where λ1, λ2, and c are real constants.

3. Müntz Orthogonal Functions and
Their Properties

3.1.MüntzSpaces. LetΛ � λk 
∞
k�0 be an increasing sequence

of distinct real numbers and let Mn ≔ span tλk : k �

0, 1, . . . , n}. A class of Müntz spaces is defned by
M ≔ ⋃∞n�0Mn. If λ0 � 0, then the classical Müntz theorem
states that the Müntz space M is dense in C(I) if and only if

∞
k�1λ

− 1
k � +∞ [40].Tis Müntz space defnes an orthogonal

basis of polynomials with real powers on the interval [0, 1]

that are called Müntz–Legendre polynomials (see [40]).
Another special space of Müntz orthogonal functions is
given in the following defnition.

Defnition 6. Te logarithmic family of Müntz orthogonal
functions Pn(t) 

∞
n�0 defned on the interval [0, 1] is given by

[40]:

Pn(t) � Rn(t) + Sn(t) ln(t), n � 0, 1, 2, . . . , (10)

where

Rn(t) � 

[n/2]

v�0
a

(n)
v t

v
,

Sn(t) � 

[n− 1/2]

v�0
b

(n)
v t

v
.

(11)

Furthermore, for n � 2m and for every 0≤ v≤m − 1, we
have

a
(2m)
v � −

m + v

m

⎛⎝ ⎞⎠

2
m

v

⎛⎝ ⎞⎠

2
2m + 1
2v + 1

+ 2(m − v) 
m− 1

j�0,j≠v

2j + 1
(j − v)(j + v + 1)

⎡⎢⎢⎣ ⎤⎥⎥⎦,

b
(2m)
v � − (m − v)

m + v

m

⎛⎝ ⎞⎠

2
m

v

⎛⎝ ⎞⎠

2

,

(12)
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and if v � m,

a
(2m)
m �

2m

m
 

2

,

b
(2m)
m � 0.

(13)

In addition, for n � 2m + 1 and for every 0≤ v≤m, we
have

a
(2m+1)
v �

m + v

m

⎛⎝ ⎞⎠

2
m

v

⎛⎝ ⎞⎠

2
2m + 1
2v + 1

+ 2(m + v + 1) 

m

j�0,j≠v

2j + 1
(j − v)(j + v + 1)

⎡⎢⎢⎣ ⎤⎥⎥⎦,

b
(2m+1)
v � (m + v + 1)

m + v

m

⎛⎝ ⎞⎠

2
m

v

⎛⎝ ⎞⎠

2

.

(14)

For more clarity of the defnition, the frst few loga-
rithmic Müntz orthogonal functions are as follows:

P0(t) � 1,

P1(t) � 1 + ln(t),

P2(t) � − 3 + 4t − ln(t),

P3(t) � 9 − 8t + 2(1 + 6t)ln(t),

P4(t) � − 11 − 24t + 36t
2

− 2(1 + 18t)ln(t),

P5(t) � 19 + 276t − 294t
2

+ 3 1 + 48t + 60t
2

 ln(t),

P6(t) � − 21 − 768t + 390t
2

+ 400t
3

− 3 1 + 96t + 300t
2

 ln(t).

(15)

Moreover, the following theorem adopted from [40]
states that this new class of Müntz functions is orthogonal
and has real distinct roots. In Table 1, the roots of Pn(t) for
n � 1, 2, . . . , 5 are listed.

Theorem  . Te Müntz functions Pn(t) and n≥ 0 are or-
thogonal on the interval [0, 1], and Pn(t) has exactly n

distinct real and simple root in this interval.

We now briefy explain the source of defning Pn(t) .
Let Λ � λk 

∞
k�0 be a complex sequence such that Re(λk)> −

1/2 and consider the rational function:

Wn(s) � 
n− 1

k�0

s + λk + 1
s − λk

·
1

s − λn

, n ∈ N0. (16)

Ten,
Pn(t) � Pn t;Λn( 

�
1
2πi


Γ
Wn(s)t

s
ds,

(17)

where Γ is a simple contour surrounding all zero of the
denominator of Wn(s). In the special case, λ2k � λ2k+1 � k

for k � 0, 1, 2, . . ., i.e., taking λ2k � k and λ2k+1 � k + ε where
ε decreases to zero; then, by the limit process, (16) becomes

Wn(s) �



m− 1

v�0

s + v + 1
s − v

 
2 1
s − m

n � 2m,



m

v�0

s + v + 1
s − v

 
2 1
s + m + 1

n � 2m + 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(18)

By applying the Cauchy residue theorem to the in-
tegral in (17) and by the above Wn(s), the orthogonal
Müntz polynomials with logarithmic terms given in (10)
are obtained.

Remark 8. As in other types of orthogonal functions, by the
change of variable t � x − a/b − a, we can convert the in-
terval [0, 1] to the interval [a, b] and defne shifted Müntz
orthogonal functions on [a, b].

3.2. Function Approximation Using Orthogonal Müntz Basis.
Let Pn(t) 

N

n�0 be the set of Müntz orthogonal functions and
Y � span P0(t), P1(t), . . . , PN(t) . Moreover, we suppose
that f ∈ L2(0, 1) and INf ∈ Y are the best approximation to
f in Y, i.e.,

∀y ∈ Y: f − INf
����

����≤ ‖f − y‖. (19)

As INf ∈ Y, there exist unique coefcients c0, c1, . . . , cN

such that

f≃ INf � 
N

n�0
cnPn(t)

� C
Tφ(t),

(20)

where

C � c0, c1, . . . , cN 
T
, (21)

and

φ � P0(t), P1(t), . . . , PN(t) 
T
. (22)
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3.3. Fractional-Order Riemann–Liouville Integral Operator
for Müntz Functions. Applying the fractional-order Rie-
mann–Liouville integral operator Iα defned in (7) to the
Müntz vector φ(t), we can write

I
αφ(t) � φ(t, α), (23)

where

φ(t, α) � I
α
P0(t), I

α
P1(t), . . . , I

α
PN(t) . (24)

Now, taking the Laplace transform of both sides of (10),
we obtain

L Pn(t)  � L 

[n/2]

v�0
a

(n)
v t

v
+ 

[n− 1/2]

v�0
b

(n)
v t

v ln(t)⎛⎝ ⎞⎠

� 

[n/2]

v�0
a

(n)
v

Γ(v + 1)

s
v+1 + 

[n− 1/2]

v�0
b

(n)
v

Γ(v + 1)

s
v+1 

v

k�1

1
k

− ln(s)⎛⎝ ⎞⎠.

(25)

Using (7), we obtain

L I
α
Pn(t)  � L

1
Γ(α)

t
α− 1 ∗Pn(t) 

� 

[n/2]

v�0
a

(n)
v

Γ(v + 1)

s
α+v+1 + 

[n− 1/2]

v�0
b

(n)
v

Γ(v + 1)

s
α+v+1 

v

k�1

1
k

− ln(s)⎛⎝ ⎞⎠.

(26)

Computing the inverse Laplace transform of (26) gives
IαPn(t), so that

I
α
Pn(t) � 

[n/2]

v�0
a

(n)
v

Γ(v + 1)

Γ(v + α + 1)
t
v+α

+ 

[n− 1/2]

v�0
b

(n)
v

Γ(v + 1)

Γ(v + α + 1)
t
v+α



v

k�1

1
k

− 
v+α

l�1

1
l

+ ln(t)⎛⎝ ⎞⎠. (27)

It should be noticed that computing IαPn(t) via (27)
reduces the computational complexity and speeds up the
solution procedure.

4. Numerical Method and Error Estimations

In this section, we frst derive a new Müntz collocation
method for solving the fractional-order integro-diferential
(1) and (2), and then, we investigate some error estimations.

4.1. Müntz Collocation Method. In our new Müntz collo-
cation method, we frst approximate Dq0f(t) by using (20)
to write

D
q0f(t) � C

Tφ(t) � c0P0(t) + c1P1(t) + . . . + cNPN(t).

(28)

Next, from (23), assumption (2), and the property 4 in
subsection 2.2, we arrive at

Table 1: Roots of Pn(t) for n � 1, 2, . . . , 5.

n t1 t2 t3 t4 t5

1 0.3678794412 — — — —
2 0.06442096633 0.6374173264 — — —
3 0.01871588194 0.2651887508 0.7969679223 — —
4 0.007047297639 0.1154772486 0.4569410332 0.8683835323 —
5 0.003221796109 0.05672067679 0.2565492462 0.5974812127 0.9100748739
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f(t) � C
Tφ t, q0(  + 

m0− 1

k�0

t
k

k!
dk, m0 − 1< q0 ≤m0. (29)

Taking the Caputo fractional derivative of order qi of
both sides of (29) and according to the properties 3, 5, and 6
in subsection 2.2, we obtain

D
qi f(t) � D

qi C
Tφ t, q0(  + 

m0− 1

k�0

t
k

k!
dk

⎛⎝ ⎞⎠ � D
qi C

Tφ t, q0(  + 

m0− 1

k�0

D
qi t

k
 

k!
dk

� C
T
D

qi I
q0φ(t) + 

m0− 1

k�0

D
qi t

k
 

k!
dk

� C
T
I

q0− qi D
q0I

q0φ(t) + 

m0− 1

k�0

D
qi t

k
 

k!
dk

� C
Tφ t, q0 − qi(  + 

m0− 1

k�0

D
qi t

k
 

k!
dk.

(30)

Substituting equations (28), (29), and (30) into (1), we
get

F1 t, C
Tφ t, q0(  + 

m0− 1

k�0

t
k

k!
dk, C

Tφ(t), C
Tφ t, q0 − q1( ⎛⎝

+ 

m0− 1

k�0

D
q1 t

k
 

k!
dk, . . . , C

Tφ(t) t, q0 − qu(  + 

m0− 1

k�0

D
qu t

k
 

k!
dk

⎞⎠

− λF2 t, C
Tφ t, q0(  

m0− 1

k�0

t
k

k!
dk, 

t

0
k(t, s)G s, C

Tφ t, q0(  + 

m0− 1

k�0

t
k

k!
dk

⎛⎝ ⎞⎠⎛⎝ ⎞⎠ � 0.

(31)

To approximate the integral term in (31), we utilize the
Gauss–Legendre quadrature rule. To this end, the interval
[0, t] is transformed to [− 1, 1] to obtain

F1 t, C
Tφ t, q0(  + 

m0− 1

k�0

t
k

k!
dk, C

Tφ(t), C
Tφ t, q0 − q1( ⎛⎝

+ 

m0− 1

k�0

D
q1 t

k
 

k!
dk, . . . , C

Tφ(t) t, q0 − qu(  + 

m0− 1

k�0

D
qu t

k
 

k!
dk

⎞⎠

− λF2 t, C
Tφ t, q0(  + 

m0− 1

k�0

t
k

k!
dk, 

m

j�0

t

2
ωjκ t,

t

2
+

t

2
cj ⎛⎝

G
t

2
+

t

2
cj, C

Tφ
t

2
+

t

2
cj, q0  + 

m0− 1

k�0

t/2 + t/2cj 
k

k!
dk⎛⎝ ⎞⎠⎞⎠ � 0,

(32)
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where cj, ωj, and j � 0, 1, . . . , m are the corresponding
Gauss–Legendre points and weights. By collocating (32) at
the roots ti, i � 0, 1, . . . , N of the Müntz function PN+1(t),
we obtain the following collocation equations:

F1 ti, C
Tφ ti, q0(  + 

m0− 1

k�0

t
k
i

k!
dk, C

Tφ(t), C
Tφ ti, q0 − q1( ⎛⎝

+ 

m0− 1

k�0

D
q1 t

k
i 

k!
dk, . . . , C

Tφ ti(  ti, q0 − qu(  + 

m0− 1

k�0

D
qu t

k
i 

k!
dk

⎞⎠

− λF2 t, C
Tφ ti, q0(  + 

m0− 1

k�0

t
k
i

k!
dk, 

m

j�0

ti

2
ωjκ ti,

ti

2
+

ti

2
cj ⎛⎝

G
t

2
+

t

2
cj, C

Tφ
t

2
+

t

2
cj, q0  + 

m0− 1

k�0

t/2 + t/2cj 
k

k!
dk⎛⎝ ⎞⎠⎞⎠ � 0.

(33)

Equation (33) for i � 0, 1, . . . , N gives a system of al-
gebraic equations with N + 1 equations and N + 1 un-
knowns of the vector CT. By solving this system of equations
using standard solvers, such as the Newton iterative method,
and using f in (29), the approximate solution of problem (1)
is obtained. In the Newton iterative method, the starting
point is very important, and to get a suitable starting point,
we frst solve the problem for a small value ofN; based on the
obtained answer, we choose the starting point for larger
values of N.

4.2. ErrorEstimation. We frst consider the following lemma
that will be used in deriving our main convergence results.

Lemma 9. We suppose that f ∈ Hr(0, 1) with integers r≥ 0
where [44],

H
r
(a, b) � v ∈ Cr− 1

([a, b]):
d

dx
v

r− 1 ∈ L
2
(a, b) , (34)

is the Sobolev space. Let INf � 
N
n�0cnPn(t) be the best ap-

proximation of f in Y. Ten, if r≤N + 1

f − INf
����

����L2(0,1)
≤ c(N + 1)

− r
f

(r)
�����

�����L2(0,1)
, (35)

and for 1≤ μ≤ r, we have

f − INf
����

����Hμ(0,1)
≤ c(N + 1)

2μ− 1/2− r
f

(r)
�����

�����L2(0,1)
, (36)

where c is a constant depending only on r.

Proof. We suppose that LNf is the truncated Legendre
series of the function f; then, according to Eq. (5.4.11) in
[45] for r≤N + 1, we have

f − LNf
����

����
2
L2(0,1)
≤ c(N + 1)

− 2r
f

(r)
�����

�����
2

L2(0,1)
. (37)

As INf is the best approximation of f in L2 − norm, we
can write

f − INf
����

����
2
L2(0,1)

� f − LNf
����

����
2
L2(0,1)

≤ c(N + 1)
− 2r

f
(r)

�����

�����
2

L2(0,1)
,

(38)

which proves (35). Equation (36) is proved using equation
(5.5.11) in [45] in a similar manner.

Te next theorem establishes the convergence result of
the proposed Müntz orthogonal collocation method. □

Theorem 10. Let f ∈ Hr(0, 1) with integers r≥ 0, and

K � max|κ(t, s)|, (t, s) ∈ [0, 1] ×[0, 1]. (39)

Moreover, we suppose that the functions F1, F2, and G

satisfy the Lipschitz condition (6) with Lipschitz constants
η1, η2, and η3, respectively.Ten, the residual error EN of the
proposed collocation method has he following bound:

EN

����
����L2(0,1)
≤ η1 + λη2 + λKη2η3( c(N + 1)

− r
f

(r)
�����

�����L2(0,1)

+ η1 

u

k�0

c(N + 1)
2μ− 1/2− r

f
(r)

�����

�����L2(0,1)

Γ mk − qk + 1( 
.

(40)
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Proof. According to (1), we have

EN

����
����L2(0,1)

�

���������
F1 t, INf(t), D

q0INf(t), D
q1INf(t), . . . , D

qu INf(t)( 

− λF2 t, INf(t), 
t

0
κ(t, s)G s, INf(s)( ds 

− F1 t, f(t), D
q0f(t), D

q1f(t), . . . , D
qu f(t)( (

− λF2 t, f(t), 
t

0
κ(t, s)G(s, f(s))ds 

��������
L2(0,1)

.

(41)

Since F1, F2, and G are Lipschitz functions, we deduce
that

EN

����
����L2(0,1)
≤ η1 + λη2 + λKη2η3(  f(t) − INf(t)

����
����L2(0,1)

+ η1 

u

k�0
D

qk f(t) − D
qk INf(t)

����
����L2(0,1)

. (42)

Considering that mk − 1< qk ≤mk and using equations
(5), (7), and (36) and the property 5 in subsection 2.2, we
obtain

D
qk f(t) − D

qk INf(t)‖
2
L2[0,1] �

����
����I

mk− qk D
mk f(t) − D

mk INf(t)( ‖
2
L2(0,1)

�
1

Γ mk − qk( 
t
mk− qk− 1 ∗ D

mk f(t) − D
mk INf(t)( 

��������

��������

2

L2(0,1)

≤
1

mk − qk( Γ mk − qk( 
 

2

D
mk f(t) − D

mk INf(t)
����

����
2
L2(0,1)

≤
1

Γ mk − qk + 1( 
 

2

D
mk f(t) − D

mk INf(t)
����

����
2
L2(0,1)

≤
1

Γ mk − qk + 1( 
 

2

f(t) − INf(t)
����

����
2
Hμ(0,1)

≤
1

Γ mk − qk+1( 
 

2

c(N+1)
2μ− 1/2− r

f
(r)

�����

�����L2(0,1)
.

(43)

Combining equations (35), (42), and (43), the desired
result in (40) is obtained. □

Remark 11. Te upper bound (40) for the residual error
shows that the residual error of the proposed Müntz col-
location method converges exponentially to zeros as N

increases, which demonstrates the spectral accuracy of the
proposed method.

5. Numerical Examples

Example 1. We consider the fractional-order integro-
diferential equation [1, 4]:

D
0.5

f(t) � g(t)f(t) + h(t) +
�
t

√


t

0
f
2
(s)ds,

f(0) � 0,

(44)
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with

g(t) � 2
�
t

√
+2t

3/2
−

�
t

√
+ t

3/2
 ln(1 + t),

h(t) �
2Arcsinh

�
t

√

��
π

√ ����
1 + t

√ − 2t
3/2

.

(45)

Te exact solution to this problem is f(t) � ln(1 + t).
Taking q0 � 0.5 and m � 10 and by solving an algebraic

system of order (N + 1) × (N + 1) with various values of N,
approximate solutions of (42) are obtained using the present
Müntz collocation method. In Table 2, maximum absolute
errors of the present method are compared with the com-
posite functions method given in [1] (in which N and M are
the orders of block-pulse and Bernoulli polynomials, re-
spectively) and the fractional alternative Legendre function
method given in [4] (in which m is the fxed nonnegative
integer). In Figure 1, the logarithmic values of the absolute
errors for diferent values of N are depicted, which show the
exponential convergence.

Example 2. We consider the following system of fractional-
order integro-diferential equations [1, 46]:

D
α
f1(t) � g1(t) − f2(t) − 

t

0
f1(s) + f2(s)ds,

D
α
f2(t) � g2(t) + f1(t) − 

t

0
f1(s) − f2(s)ds,

f1(0) � 1, f2(0) � − 1,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(46)

with

g1(t) � t
2

+ t + 1,

g2(t) � − t − 1.
(47)

For α � 1, the exact solutions are f1(t) � t + et and
f2(t) � t − et.

By setting q0 � α, m � 10 and for various values of N

algebraic systems of order 2(N + 1) × 2(N + 1) with un-
knowns of the vectorsC1 andC2 are obtained. In Tables 3 and 4,
the absolute errors of approximations of f1 and f2 using the
proposed method are compared with those given in [1, 46].
Furthermore, to show the exponential convergence, the loga-
rithmic values of absolute errors are shown in Figure 2.

Example 3. In this example, we consider the following
fractional diferential equation [1]:

D
α
f(t) + f

3/2
(t) �

40320
Γ(9 − α)

t
8− α

− 3
Γ(5 + α/2)

Γ(5 − α/2)
t
4− α/2

+
9
4
Γ(α+1) + t

8
− 3t

4+α/2
+
9
4
t
α

 
3/2

,

f(0) � f
′
(0) � 0.

(48)

Table 2: Comparison between absolute errors for Example 1.

Methods Absolute error
Present method

N � 4 8.4e − 6
N � 6 1.8e − 6
N � 8 2.4e − 6
N � 10 3.9e − 8
N � 12 3.4e − 7

Method in [1]
M � 4, N � 1 6.7e − 5
M � 6, N � 1 2.5e − 6
M � 4, N � 2 7.4e − 6
M � 6, N � 2 1.3e − 7

Method in [4]
m � 4 2.6e − 2
m � 6 8.7e − 4
m � 8 9.7e − 5
m � 10 1.2e − 5
m � 12 1.0e − 7

5 10 15
N

20

–6

–7

–8

–9

Er
ro

r

Figure 1: Logarithmic values of absolute errors for Example 1.
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Table 3: Absolute errors of f1(t) for Example 2.

t
Present method Method in [1] Method in [46]

(N � 9) (M � 5, N � 1) M2 � 5

0.1 4.2e − 9 2.6e − 7 1.0e − 5
0.2 6.9e − 9 2.0e − 7 6.4e − 5
0.3 7.3e − 9 2.1e − 7 9.2e − 5
0.4 3.4e − 9 2.3e − 7 7.2e − 5
0.5 9.7e − 9 2.3e − 7 1.5e − 5
0.6 2.5e − 9 2.2e − 7 4.6e − 5
0.7 1.0e − 8 2.4e − 7 7.6e − 5
0.8 2.2e − 10 2.4e − 7 5.6e − 5
0.9 7.1e − 9 1.7e − 7 5.1e − 6

Table 4: Absolute errors of f2(t) for Example 2.

t
Present method Method in [1] Method in [46]

(N � 9) (M � 5, N � 1) M2 � 5

0.1 3.6e − 9 1.9e − 7 1.5e − 5
0.2 6.1e − 9 1.1e − 7 6.3e − 6
0.3 7.4e − 9 9.9e − 8 1.2e − 5
0.4 2.2e − 9 1.0e − 7 4.9e − 6
0.5 9.9e − 9 9.0e − 8 3.8e − 5
0.6 1.1e − 9 7.7e − 8 6.7e − 5
0.7 1.0e − 8 9.5e − 8 7.2e − 5
0.8 1.5e − 9 9.1e − 8 4.5e − 5
0.9 7.5e − 9 2.1e − 8 3.1e − 6

5 10 15
N

20 5 10 15
N

20
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–10

–15

–20
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ro

r f
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Figure 2: Logarithmic values of absolute errors for Example 2.
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Table 5: Absolute errors of f(t) for Example 3.

t

Present method Method in [1] Present method Method in [1]
(N � 14) (M � 8, N � 1) (N � 14) (M � 8, N � 1)

α � 0.25 α � 0.25 α � 1.25 α � 1.25
0.1 1.4e − 9 5.9e − 8 1.4e − 11 5.5e − 6
0.2 7.5e − 9 5.6e − 8 8.0e − 12 5.9e − 6
0.3 7.4e − 9 2.6e − 8 1.0e − 11 6.2e − 6
0.4 5.6e − 9 2.0e − 8 2.0e − 11 6.2e − 6
0.5 9.5e − 10 1.5e − 8 2.7e − 11 6.0e − 6
0.6 5.0e − 9 1.3e − 8 1.9e − 11 5.7e − 6
0.7 8.7e − 9 8.2e − 9 1.6e − 12 5.3e − 6
0.8 9.2e − 9 2.4e − 8 1.1e − 11 4.8e − 6
0.9 1.0e − 8 7.1e − 8 9.4e − 12 4.5e − 6

Table 6: Comparison between absolute errors for Example 4.

Method Absolute error
Present method

N � 2 6.8e − 5
N � 4 4.3e − 7
N � 5 2.7e − 8
N � 8 1.6e − 10
N � 10 7.2e − 11
N � 12 7.2e − 13
N � 14 2.0e − 13

Method in [1]
M � 2, N � 1 8.0e − 4
M � 2, N � 2 8.0e − 5
M � 2, N � 3 8.0e − 6

Method in [47]
M1 � 2 6.7e − 3
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Figure 3: Logarithmic values of absolute errors for Example 4.
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For 1< α≤ 2, the exact solution is f(t) � t8 −

3t4+α/2 + 9/4tα. Again, we set q0 � α and m � 10 and for
α � 0.25, 1.25; the errors are given in Table 5.

Example 4. We consider the following multiorder fractional
integro-diferential equation [1, 47]:

D
5/3

f(t) + f
′
(t) + tf(t) � g(t) +

1
2


t

0
(t − s)

2
f(s)ds,

f(0) � f
′
(0) � 0,

(49)

with the exact solution f(t) � t10/3/Γ(13/3) + 2t11/3/Γ
(14/3) − t4/12.

Here, we set q0 � 5/3, q1 � 1, and m � 5. Table 6 reports
the absolute errors, and Figure 3 depicts the logarithm values
of absolute errors for diferent values of N.

6. Conclusion

A new Müntz orthogonal collocation method has been
proposed for the numerical solution of fractional-order
integro-diferential equations with the Caputo derivative.
Te fractional integral operator associated with Müntz
orthogonal functions was derived that assists in reducing
the computational cost. An error bound for approximating
function using Müntz series was obtained, and then, the
behavior of the residual error of the proposed collocation
method was analyzed. To demonstrate the applicability and
high accuracy of the method, several numerical examples
were solved. Comparisons between the present spectral
collocation method and some other spectral methods in
the literature show the superiority of the present method.
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Te data that support the fndings of this study are available
from the corresponding author upon request.
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