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The aim of this research is to propose a framework for measuring and analysing China’s economic resilience based on the XGBoost
machine learning algorithm, using Bayesian optimization (BO) algorithm, extreme gradient-boosting (XGBoost) algorithm, and
TOPSIS method to measure China’s economic resilience from 2007 to 2021. The nonlinear effects of its key drivers are also
analysed in conjunction with the SHAP explainable model to explore the path of China’s economic resilience enhancement. The
results show that the level of China’s economic resilience is improving, but the overall level is low; R&D expenditure and the
number of patents granted are important factors affecting China’s economic resilience with a significant positive relationship. The
BO-XGBoost model outperforms the benchmark machine learning algorithm and can provide stable technical support and
scientific decision-making basis for China’s economic resilience measurement analysis and high-quality economic development.

1. Introduction

With the rapid advancement of globalisation and infor-
matization, the domestic and international environments
are becoming increasingly complex, and China’s economic
development is facing increasing external risks [1]. In recent
years, economic resilience, as a new concept that emphasises
the resistance, resilience, and evolution of the economic
system in response to external shocks, is the most powerful
support for risk prevention [2]. Therefore, analysing the
nonlinear effects of key factors that affect China’s economic
resilience is of great significance to China to enhance the risk
absorption capacity of the economic system and promote
long-term stable and high-quality economic development.

At present, relevant studies focus mainly on two aspects
of economic resilience measurement and analysis of influ-
encing factors. In terms of economic resilience influencing
factors, Wang and Wei [3] pointed out that factors such as
human capital, trade openness, and entrepreneurship can
promote economic resilience. Jiang et al. [4] population
agglomeration can enhance the resilience of cities to eco-
nomic crises, and is more conducive to improving the
economic recovery and adjustment capacity of cities, and has

a positive spatial spillover effect on neighbouring cities.
Wang et al. [5] found that innovation and entrepreneurship
dynamics have a significant positive effect on economic
resilience. In terms of economic measurement, many
scholars comprehensively evaluate economic resilience from
multidimensional and multiattribute indicators. Briguglio
et al. [6] evaluated economic resilience based on four di-
mensions: market efficiency, economic stability, social de-
velopment, and political system. Tan et al. [7] used principal
component analysis to measure the level of economic
resilience in 19 resource-based cities in northeast China. The
study found that forests-based cities improved the most in
terms of economic resilience. To overcome the shortcomings
of subjective and objective weights in traditional models,
Xun and Yuan [8] chose the evaluation model with good
comprehensive performance of intuitionistic fuzzy set the-
ory and TOPSIS method to evaluate the economic resilience
of Dalian City, China.

However, the above-mentioned evaluation methods
such as principal component analysis, hierarchical analysis,
and TOPSIS model cannot meet the requirements of non-
normal and nonlinear processing of high-dimensional data
[9]. In recent years, with the continuous development of
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artificial intelligence technology, more scholars have used
BP neural networks, support vector machines (SVMs), and
other machine learning methods for the evaluation of
complex problems [10-12]. Compared to traditional ma-
chine learning models, extreme gradient boosting
(XGBoost) is an integrated gradient-boosting learning al-
gorithm that depicts the underlying mechanism between
input characteristics and target outcomes and has the ad-
vantages of high prediction accuracy and less overfitting
[13]. However, there is little literature on applying the
XGBoost algorithm and the SHAP interpretable framework
to economic resilience in China.

Therefore, this study attempts to introduce the XGBoost
machine learning algorithm into the study of China’s eco-
nomic resilience measurement and fuse it with the Bayesian
optimization (BO) algorithm to optimize the hyper-
parameters. The evaluation index system of China’s eco-
nomic resilience is constructed from three levels of
reactivity, adaptive capacity, and recovery capacity, re-
spectively, and the evaluated values of the TOPSIS model are
used as the target values of the XGBoost regression algo-
rithm for training and testing, and combined with the SHAP
explanatory framework, to accurately excavate the key
variables of economic resilience, and to analyze the non-
linear effects of the factors affecting the resilience of China's
economy. It can provide effective technical support and
scientific decision-making basis for the analysis of China's
economic toughness measurement and high-quality eco-
nomic development.

2. Indicator System and Data Sources

2.1. Construction of the China’s Economic Resilience Indicator
System. The evaluation index system for economic resil-
ience in existing studies has considered multiple dimensions,
including environmental, economic, and social dimensions
[14, 15], but so far a standard evaluation system has not been
formed in academia. Based on the actual situation and
existing studies [2, 7, 16], a resilience evaluation index
system for China is constructed from three dimensions:
resilience, recovery, and evolutionary capacity, as shown in
Table 1.

Resistance indicates the ability of an economy to
maintain stable operation, reduce losses, and avoid recession
when it is subjected to external shocks in the development
process. The stronger the resistance, the less likely an
economy will be affected by a shock, and the strength of the
resistance depends on the economy’s own conditional en-
dowment. Conditional endowments have automatic stabi-
lisation mechanisms, and a well-endowed economy can
spontaneously resist the impact of external shocks. The
registered urban unemployment rate is an important in-
dicator of urban employment and improvement of people’s
livelihood; the value added of the secondary industry reflects
the innovation capacity and productivity of industrial en-
terprises. The natural growth rate of resident population
affects the country’s demographic structure, labour supply,
social security, and resources and environment and is an
important basis for formulating national development
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strategies and policies. Education expenditure is a strategic
investment to modernise education and enhance national
competitiveness and innovation capacity, and the size of the
economy is a strategic investment to achieve the modern-
isation of education. Education expenditure is a strategic
investment to modernise education and improve national
competitiveness and innovation capacity. Profits from in-
dustrial enterprises above the scale reflect the quality and
efficiency of industrial development. The above indicators
are a good reflection of China’s economic condition
endowment.

Resilience indicates that the economy can bounce back
to its original state or close to it quickly, which means that
the economy is able to adapt to external shocks and return to
normal operation quickly after the shocks have passed.
When the shock is over, government departments must
flexibly adjust economic policies to mitigate the shock and
promote economic recovery. Therefore, indicators are se-
lected to fully reflect the country’s economic size, growth,
social stability, and innovation inputs. Among them, GDP
per capita reflects the production capacity, consumption
capacity, investment capacity, and international competi-
tiveness of a country or region; expenditure on science and
technology is an important guarantee to enhance national
competitiveness and promote economic and social devel-
opment. The total import and export is an important basis
for studying balance of payments, economic growth, in-
ternational competitiveness, and economic structure. The
technology market turnover reflects the total supply and
transformation efficiency of scientific and technological
achievements. Total retail sales of consumer goods are an
effective tool to measure the operation of national economy
and the contribution of consumption to economic growth.
Per capita consumption expenditure of urban residents
reflects the level of urban economic development and the
contribution of consumption to economic growth.

The evolutionary force indicates the ability of an
economy to achieve economic structure optimization, de-
velopment model transformation, and growth momentum
conversion through its own adjustment and innovation after
suffering from external shocks, so as to maintain healthy,
sustainable, and high-quality economic development. The
stronger the evolutionary force, the more it can take the
initiative to update and adjust the original economic
structure and choose new development methods and paths,
thus enhancing economic resilience. The selected indicators
need to reflect the improvement of people’s livelihood, the
ability to absorb foreign investment, infrastructure con-
struction, and independent innovation. The accumulated
balance of the basic pension insurance fund for urban
workers reflects the financial status and sustainability of the
basic pension insurance system for urban workers. The total
investment in foreign-invested enterprises reflects the level
of China’s opening up to the outside world and its attrac-
tiveness. R&D expenditure measures the scale, structure, and
efficiency of investment in R&D activities. The total in-
vestment in infrastructure construction is a reflection of the
investment in transportation, energy, water conservancy,
municipal, information, and others. The number of
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invention patents by domestic applicants reflects the level
and competitiveness of domestic scientific and technological
innovation.

2.2. Data Sources. All the data were collected from China's
National Bureau of Statistics (2007-2021)and China Sta-
tistical Yearbook (2007-2021). Considering the availability
of the data, the data sample in this paper involves 30
provinces excluding Tibet, Hong Kong, Macao, and Taiwan,
and a complete and valid sample of 450 groups is obtained
after data collation.

3. Construction and Rationale of China’s
Economic Resilience Assessment Model

3.1. Principle of the Entropy-Weighted TOPSIS Model. The
TOPSIS model is called the distance method of superior and
inferior solutions, which is applicable to multiple indicators
and multiple solutions for comparison to make the best
decision [17]. The advantage of the TOPSIS model is that it
does not have strict requirements for the sample and is
universally applicable, so it is often used in various evalu-
ation works [18].

3.2. Principle of the XGBoost Algorithm. The extreme gra-
dient boosting (XGBoost) algorithm is an integrated
learning algorithm developed by Tianqi Chen et al. in recent
years. It is an efficient implementation of gradient-boosting
decision tree (GBDT). A strong classifier is constructed by
integrating multiple weak classifiers, a second-order Taylor
expansion of the loss function [19], while using a regular
term to prevent overfitting of the model [20], and training
with the objective function. The objective function of the
algorithm is as follows [21]:

M t
Obj(0) = Zl(yi’j/i)'i'zg(fN)' (D)
i1 st

In equation (1), Obj denotes the objective function, 6
denotes the model parameters, M denotes the number of
samples, I(y;, ;) denotes the loss function between the
predicted and true values, t denotes the number of trees, fy
denotes N trees, and Q (fy) denotes the regularization term.
XGBoost solves for the best model parameters by optimising
the objective function to obtain the best prediction results.
The loss function represents the prediction effect of
the model.

Regularization terms help to control the complexity of
the model and avoid overfitting the model. The use of
strongly convex regularization terms makes the model
smoother and reduces the likelihood of overfitting. A
common strongly convex regularization is L2 regularization
(also known as weight decay), which is implemented by
applying a squared penalty to the weights [22]. Another
alternative is the entropy regularization term. This regula-
rization term is based on the concept of information en-
tropy, which bounds the model complexity by relating it to
the information entropy. In this setting, the model
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complexity is not only related to the size of the model
weights but also to the distribution of the model weights
[23]. In XGBoost, L1 and L2 regularization terms are two
important methods used in XGBoost to control model
complexity. L1 regularization generates sparse models for
feature selection, while L2 regularization constrains model
complexity to prevent overfitting.

3.3. SHAP Explanatory Model. Lundberg and Lee proposed
the SHAP model to explain various machine learning al-
gorithms in 2017 [24]. The SHAP value originated from
game theory and is mainly used to quantify the contribution
of each feature to the model prediction by calculating the
marginal contribution of a feature when it is added to the
model, and then by calculating the different marginal
contributions of this feature in all the feature sequences, and
then by finally calculating the SHAP value. The related
calculation formula is shown as follows [25]:

Yi= ybase+f(xil) +f(xi2)+"' +f<xiP)’ (2)

where Ypaqe is the mean value of the target variable over all
samples and f (x;;) is the SHAP value of x;;. The advantage of
the SHAP value is that it reflects the contribution of the
features in each sample and indicates the positivity or
negativity of the effect [26]. This allows for a better un-
derstanding of the prediction results for each sample and
provides insight into the extent to which each feature in-
fluences the prediction results. In this paper, SHAP is uti-
lized to provide explanations for the prediction model.

3.4. TOPSIS-BO-XGBoost Evaluation Model. Based on the
evaluation results of the TOPSIS model, the comprehensive
evaluation values are input into various types of machine
learning models, as previous samples for training and testing.
During the training process, the Bayesian optimization (BO)
algorithm is introduced to optimize the hyperparameters. This
combined TOPSIS and machine learning model is applied to
the analysis of China’s economic resilience measurement. In
this paper, the machine learning algorithm environment is
configured as follows: Alienware x17 R2 Windows 11 64-bit
operating system; GPU model is NVIDIA A100 Tensor Core
GPU 40G; Python configuration environment is TensorFlow
2.8.0, Pytorch 1.11.0, Python 3.9, and CUDA11.6; third-party
libraries: sklearn machine learning library, seaborn library, and
Bayesian-optimization library. In this paper, we use Python
software to first call the Python API from the XGBoost library
to build the XGBoost regression model, then we use the
Bayesian optimizer from the sklearn library to optimize the
hyperparameters of the XGBoost regression model, and finally
we use the SHAP library to interpret the results of the machine
learning regression predictions.

In this paper, the root mean square error (RMSE), mean
absolute error (MAE), mean absolute percentage error
(MAPE), and the coefficient of determination R” are selected
for the comprehensive evaluation of the XGBoost regression
prediction model. Among the four performance measures,
RMSE, MAE, and MAPE can reflect the optimization error
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of the model, and the smaller the value means, the better the
prediction error of the model. Among them, R? can reflect
the fitting accuracy of the prediction results of the XGBoost
regression prediction model with the real value, and the
value of R is between [0, 1], and the bigger the value of the
coefficient of determination, the higher the accuracy of the
model is. The above formula is defined as follows:

(3)

R = Y (0 ‘7)22’
T (i)

(i =)

MAPE :1 i

i=1

x 100%.

Vi

4. Empirical Results and Analysis

4.1. Changes in China’s Economic Resilience. This paper ap-
plies the TOPSIS method to measure the economic resilience
level of China’s 30 provinces, as shown in Table 2, and divided
China’s economic resilience level into five grades: the economic
resilience level in the range of 0 to 0.2 is grade 1, indicating
a low level of economic resilience; the economic resilience level
in the range of 0.2 to 0.4 is grade 2, indicating a relatively low
level of economic resilience; the economic resilience level in the
range of 0.4 to 0.6 range is level 3, indicating a medium level of
economic resilience; the level of economic resilience in the
range of 0.6 to 0.8 is level 4, indicating a relatively high level of
economic resilience; the level of economic resilience in the
range of 0.8 to 1, then the economic resilience is level 5, in-
dicating a high level of economic resilience.

4.1.1. Time Series Analysis of China’s Economic Resilience.
The average level of economic resilience of 30 Chinese
provinces increased from low resilience to lower resilience,
with an overall upward trend, and the average value of their
economic resilience index increased from 0.11 in 2007 to
0.25 in 2021. For space reasons, the economic resilience
values of China in 2007, 2010, 2016, and 2021 are listed, as
shown in Table 2. Based on the average economic resilience
index between provinces, Guangdong has the highest eco-
nomic resilience index of 0.43, which is at the general
economic resilience level; Jiangsu, Shanghai, Zhejiang, and
Beijing have economic resilience indexes in the range of 0.2
to 0.4, which is at the lower economic resilience level, and
the rest of the provinces are at the lower economic resilience
level. From the annual economic toughness index of each
province, the percentage of provinces with general economic
toughness increased from 0% in 2007 to 13.33% in 2021, and
the percentage of provinces with lower economic toughness
increased from 3.33% in 2007 to 33.33% in 2021.

4.1.2. Spatial Analysis of China’s Economic Resilience. In
terms of spatial distribution, the level of economic resilience in
the eastern region is significantly higher than in the central and
western regions. Provinces with lower economic resilience and
above in the eastern region account for 75% and provinces with
lower economic resilience in the central region account for
44.44%, while those in the western region account for only
22.22%. Guangdong in the eastern region is the first to enter the
higher resilient provinces with its well-developed industry,
well-established service sector institutions, and strong science
and technology innovation capabilities. The economic resil-
ience of the central region is slowly increasing, but the overall
level is low, and there is a large gap with the east, which needs to
further strengthen policy support and reform and innovation
to improve the vitality and competitiveness of economic de-
velopment in the central region. The economic resilience of the
western region shows obvious geographical differences, among
which the central region, represented by Sichuan and Shaanxi,
shows a relatively strong level of economic resilience due to its
strong resource endowment and industrial base, while other
regions have relatively weaker economic resilience due to
various constraints and limitations.

4.2. Influencing Factors and Feature Selection. Since the re-
lationship between the economic resilience evaluation in-
dicators selected in this article is unknown and there may be
a problem of multicollinearity. Pearson’s coefficients were
used to divide all explanatory variables and identify high,
moderate, weak, and irrelevant variables in the explanatory
variables [27]. In this paper, indicator factors were used as
explanatory variables and TOPSIS evaluation values were
used as explanatory variables, and the Pearson correlation was
detected using Python language to obtain the correlation
results between the explanatory variables and the explanatory
variables, and then the strength of the correlation between the
explanatory variables and the explanatory variables was de-
termined based on the magnitude of the Pearson coefficients,
and the coeflicient results are shown in Figure 1.

In order to avoid the influence of too many indicators,
which increases the computation time of the machine learning
model and the influence of irrelevant variables on the accuracy
of the experiment. According to the correlation size, RTS, RDE,
SIVA, EXED, NPA, BPIFE, STEX, TPIES, and TIE were se-
lected as the explanatory variables with Pearson’s coefficients
greater than 0.8, representing the total retail sales of consumer
goods, R&D expenditure, value added of the secondary in-
dustry, education expenditure, the number of domestic in-
vention patents licensed, the cumulative balance of the urban
workers’ pension insurance fund, science and technology ex-
penditure, the profit of the industrial enterprises above des-
ignated size, and the total import and export amount,
respectively. The nine explanatory variables with Pearson’s
coeflicients greater than 0.8 are total imports and exports.

4.3. Model Parameter Optimization. In this paper, the
benchmark XGBoost model parameters are set as follows:
the parameters of the XGBoost extreme gradient-boosting
model are set to a base learner of 100, and the maximum
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TaBLE 2: Values of economic resilience of China in 2007, 2010, 2016, and 2021.

2007 2010 2016 2021
Provinces
Rating Grade Rating Grade Rating Grade Rating Grade

Beijing 0.12 I 0.18 I 0.35 1I 0.52 11T
Tianjin 0.10 I 0.11 I 0.15 I 0.21 II
Hebei 0.11 I 0.13 I 0.16 I 0.19 I
Liaoning 0.11 I 0.12 I 0.14 I 0.18 I
Shanghai 0.15 I 0.19 I 0.28 I 0.39 II
Jiangsu 0.16 I 0.23 IT 0.39 II 0.57 111
Zhejiang 0.12 I 016 I 0.27 I 0.44 I
Fujian 0.11 I 0.12 I 0.18 I 0.25 II
Shandong 0.13 I 0.19 I 0.29 I 0.42 I
Guangdong 0.21 I 0.33 I 0.45 I 0.73 v
Hainan 0.10 I 0.09 I 0.09 I 0.30 11
Shanxi 0.09 I 0.10 I 0.11 I 0.13 I
Jilin 0.10 I 0.10 I 0.11 I 0.11 I
Heilongjiang 0.11 I 0.11 I 0.12 I 0.11 I
Anhui 0.11 I 0.11 I 0.17 I 0.26 1I
Jiangxi 0.09 I 0.10 I 0.13 I 0.18 I
Henan 0.10 I 0.13 I 0.19 I 0.26 1I
Hubei 0.11 I 0.13 I 0.18 I 0.27 1I
Hunan 0.11 I 0.12 I 0.17 I 0.22 1I
Inner Mongolia 0.10 I 0.11 I 0.13 I 0.15 I
Guangxi 0.10 I 0.11 1 0.12 I 0.15 1
Chongging 0.10 I 0.11 I 0.14 I 0.18 I
Sichuan 0.11 I 0.12 I 0.18 I 0.28 II
Guizhou 0.10 I 0.10 I 0.11 I 0.16 I
Yunnan 0.11 I 0.12 I 0.12 I 0.16 I
Shaanxi 0.10 I 0.11 I 0.14 I 0.22 II
Gansu 0.09 I 0.09 I 0.09 I 0.12 I
Qinghai 0.10 I 0.11 I 0.10 I 0.09 I
Ningxia 0.12 I 0.12 1 0.12 I 0.13 1
Xinjiang 0.11 I 0.10 I 0.11 I 0.12 1

TIE -0.370 -0.100 0.664 0.760 1.000
TPIES -0.228 -0.126 0.814 1.000 0.760
TMT -0.436 -0.279
STEX -0.394 -0.157 0.818 0.732 0.832
GDPPC -0.389 -0.381
BPIFE | 0.793 0.696 0.791
NPA -0.403 -0.206 gox:{0) 0.763 0.684 0.779
TIIFE
TIIC -0.357 -0.165 JuXe4 0.667
EXED -0.329 -0.162 oAeZy] 1.000 0.763
SIVA -0.239 -0.145 0.901 0.715
RDE -0.377 -0.233 oxelorg 0.841 0.666 0.950

RTS -0.318 -0.182 K[t} 0.941 0.667 0.809
UCEX -0.179 -0.086 K1} -0.182 -0.233 -0.145 -0.162 -0.165 -0.184 -0.206 :Q‘M] -0.381 -0.157 -0.279 -0.126 -0.100
UR -0.360 et} -0.086 -0.318 -0.377 -0.239 -0.329 -0.357 -0.235 -0.403 -0.369 -0.389 -0.394 -0.436 -0.228 -0.370
ER SUETVERVE] 0.893 0.977 0.827 0.833 0.744 0946 0.873 0.741 0936 0.708 0.804 0.870
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FiGURE 1: Pearson’s correlation coefficient.
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depth of the tree is 3. In order to avoid the overfitting
problem of the XGBoost model, we need to optimize the
model parameters.

The hyperparameters in the XGBoost regression pre-
diction model directly affect the performance and prediction
effect of the XGBoost model, and the main hyperparameters
are n_estimators, max_depth, and learning rate. n_esti-
mators is the number of base learners, and the larger the
number is, the better the model’s learning ability is, but the
more prone it is to overfitting. max_depth is the depth of the
tree, and if the maximum depth of the tree is larger, the more
prone it is to overfitting; if it is too small, it will lead to an
oversimplified model. min_child_weight is the minimum
weight of the leaf nodes. learning rate is the speed of it-
erative decision making, and the learning_rate is the min-
imum weight of the leaf nodes. learning_rate is the step size
of the iterative decision tree, which is also known as the
learning rate, which controls the iteration speed of the al-
gorithm and is usually used to prevent overfitting. The values
of these four hyperparameters have a great impact on the
model performance, so they are chosen as optimization
hyperparameters.

Bayesian optimization is a global optimization algorithm
that searches for the optimal solution that minimizes the
objective function in a high-dimensional and nonconvex
search space, proposed by Pelikan et al. [28, 29], which uses
Bayes’ theorem to construct an agent model, and determines
the next step of optimization by continually updating this
agent model with better convergence theory guarantees of
the optimization model’s hyperparametric approach
[30, 31]. In XGBoost hyperparameter tuning, Bayesian
optimization can automatically find the optimal hyper-
parameter configuration to minimize the model validation
error. In addition to Bayesian optimization, there are many
other hyperparameter computation methods, such as grid
search and stochastic search. Grid search works by ex-
haustively enumerating a series of hyperparameter combi-
nations and selecting the optimal one. Random search, on
the other hand, randomly selects a small number of
hyperparameter combinations to search, and then selects the
optimal combination. The Bayesian optimization algorithm
is able to select the next sampling point based on the existing
data and the confidence level of the model construction, thus
achieving efficient and accurate global optimization. The
method shows superior performance in handling complex,
nonconvex, nonlinear optimization problems, even when
the problem size is very large.

In addition, Bayesian optimization has the advantage
that it is computationally efficient and can find the global
optimal solution quickly. This is because it employs
a Gaussian process to take into account previous parameter
information and constantly update the prior, and it is faster
with relatively fewer iterations. In contrast, the lattice search
algorithm does not take into account previous parameter
information, and the search is slower, which may lead to
dimensionality explosion when the number of parameters
increases. In addition, Bayesian optimization remains robust
for nonconvex problems, while grid search is prone to obtain
locally optimal solutions for nonconvex problems. In order

to select the optimal hyperparameters more reasonably and
accurately, this study uses Bayesian optimization to accu-
rately optimize the hyperparameters of the XGBoost model.

This paper identifies the most important parameters and
value ranges that may affect the effectiveness of the XGBoost
model. These parameters and value ranges are replaced in
the Bayesian optimization algorithm. The combinations of
hyperparameters used for the XGBoost model prediction are
as follows: the optimal range of n_estimators is [10, 500]; the
optimal range of max_depth is [1, 15]; and the optimal range
of learning_rate is [0.01, 1]. The optimization parameters of
XGBoost are as follows: the base learning number is 373, the
learning rate is 0.027, the minimum weight of the samples in
the leaf nodes is 3.48, and the maximum depth of the tree is
9.19. The specific parameter adjustments are shown in Ta-
ble 3. In order to reduce the time complexity of the sim-
ulation optimization step, 20% of the original data are used
as the test set and 80% as the training set, and the fitting
degree and error of the model are examined in the test set.

4.4. Model Performance Evaluation. K-fold cross-validation
is a data splitting technique where the data are divided into n
mutually exclusive subsets, and at each iteration, n—1
subsets are taken as the training set and 1 subset as the test
set, so that n sets of test sets and training sets can be ob-
tained, and thus # trainings can be completed [32]. In this
paper, we use the five-fold cross-validation method to verify
the model performance, i.e., the data are divided into 5 parts,
4 of which are used as the training data, and the remaining 1
part is used as the test data, and the cycle is repeated 5 times
in order to ensure that each set of data is tested 1 time. The
final evaluation result is the average of 5 times. When ap-
plying the K-fold method, usually choose 5-fold or 10-fold
cross-validation, based on the consideration of the amount
of data, this paper chooses 5-fold cross-validation, and the
results show that the XGBoost regression prediction model
performs well, and there is no overfitting phenomenon. The
corresponding algorithm evaluation index results are shown
in Table 4.

In Table 5 and Figure 2, it is shown that the Bayesian
optimization algorithm can effectively improve the perfor-
mance of the algorithm.

The accuracy of the XGBoost prediction model opti-
mized by the BO algorithm is improved by 0.62% compared
to the baseline XGBoost model. The BO-XGBoost measure
of China’s economic resilience is shown in Table 6. In ad-
dition, we use random sampling with no restriction on
scrambling the temporal and spatial order of the samples in
the training and test sets, dividing the training set into 8:2
ratios to demonstrate the robustness of the different machine
learning approaches. As can be seen in Figure 3, the BO-
XGBoost model still has a high prediction accuracy, which is
consistent with the conclusions obtained based on time
series sampling.

In addition, we plot the scatter intersection of the real
and predicted values, and Figure 3 shows the prediction
results of China’s economic toughness by the BO-XGBoost
model. The horizontal axis is the real economic toughness



TaBLE 3: Bayesian parameter optimization.

Model name Parameter names Parameter settings

n_estimators 373.13

learning_rate 0.027
BO-XGBoost max_depth 9.19
min_child_weight 3.48

TABLE 4: Predictive evaluation metrics results of the BO-XGBoost
algorithm under 5-fold cross-validation.

.. . 5 5 . Test
Evaluation indicators Train R Test R Train RMSE RMSE
1 0.9999 0.9678 0.0008 0.1842
2 0.9999 0.9664 0.0008 0.1411
3 0.9998 0.9489 0.0009 0.0210
4 0.9999 09175 0.0009 0.2661
5 0.9999 0.9671 0.0008 0.019
Average value 0.9999  0.9535 0.0008 0.0198

TaBLE 5: Model evaluation table.
Model names MAPE R? MAE MAPE
XGBoost 0.01 0.968 0.008 0.059
B0-XGBoost 0.01 0.974 0.007 0.056
0.50
R-square=0.974 3
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FIGURE 2: The forecasting result of the BO-XGBoost model.

and the vertical axis is the predicted economic toughness.
y=x is indicated by the black solid line. The training results
based on the training set are shown by the red scatter in the
figure. Ideally, the scatters should converge on the solid line
y=x. The scatters of the BO-XGBoost model are almost
always clustered around the y=x line, which shows high
prediction accuracy.

4.5. Analysis of Drivers of Economic Resilience. Figure 1
shows the SHAP global feature analysis of the XGBoost
model. The higher the SHAP value of a feature, the more
resilient China’s economy is. RTS, RDE, SIVA, EXED, NPA,
BPIFE, STEX, TPIES, and TIE represent the nine variables of
total retail sales of consumer goods, R&D expenditures,
value added of the secondary industry, education expen-
ditures, the number of domestic invention patents licensed,

Journal of Mathematics

TABLE 6: Measures of China’s economic resilience based on the
BO-XGBoost model.

2021 2021

Provinces

TOPSIS  Grade BO-XGBoost  Grade
Beijing 0.52 11T 0.52 11T
Tianjin 0.21 II 0.20 II
Hebei 0.19 I 0.19 I
Liaoning 0.18 I 0.18 I
Shanghai 0.39 I 0.39 I
Jiangsu 0.57 I 0.58 III
Zhejiang 0.44 III 0.44 III
Fujian 0.25 II 0.24 II
Shandong 0.42 III 0.42 III
Guangdong 0.73 v 0.70 v
Hainan 0.30 II 0.26 II
Shanxi 0.13 I 0.13
Jilin 0.11 I 0.12 I
Heilongjiang 0.11 I 0.12 I
Anhui 0.26 II 0.26 II
Jiangxi 0.18 I 0.17 I
Henan 0.26 II 0.25 II
Hubei 0.27 I 0.27 I
Hunan 0.22 II 0.22 II
Inner Mongolia 0.15 I 0.15 I
Guangxi 0.15 I 0.15 I
Chongging 0.18 I 0.19 I
Sichuan 0.28 I 0.28 I
Guizhou 0.16 I 0.16 I
Yunnan 0.16 I 0.15 I
Shaanxi 0.22 II 0.22 II
Gansu 0.12 I 0.12 I
Qinghai 0.09 I 0.10 I
Ningxia 0.13 I 0.13 I
Xinjiang 0.12 I 0.12 I

0.7 1 R-square=0.977

0.6
0.5
0.4
0.3
0.2
0.1

Predicted Economic resilience

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Economic resilience

FiGUre 3: Prediction results of the BO-XGBoost model under
dataset shuffling.

the cumulative balance of the urban workers’ pension fund,
science and technology expenditures, the profits of industrial
enterprises above the large-scale, and the total amount of
imports and exports, respectively. As can be seen from
Figure 4, R&D expenditures, invention patent authoriza-
tions, and S&T inputs are important factors affecting the
resilience of the Chinese economy.

In order to explore more intuitively how the charac-
teristics affect the output of the model and to extract valuable
information to help relevant government departments take
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FIGURE 4: Summary chart of China’s economic resilience SHAP.

targeted measures, this paper uses SHAP value mapping
plots to show the nonlinear relationships between variables.
Unlike the partial dependency graph, the vertical coordinate
of the SHAP value mapping graph is the SHAP value rather
than the output label value [33]. This leads to the threshold
values of the key variables to improve the resilience of the
Chinese economy. On the one hand, there is a clear seg-
mentation between each variable and the increase in the level
of China’s economic resilience, which can well reflect the
size of the marginal effect.

4.5.1. The Mapping Relationship between Re&*D Funding
Investment and China’s Economic Resilience. In Figure 5,
when the investment in R&D funding is within the interval
of [0, 500], it shows a smooth negative effect. When the
investment in R&D funding exceeds 50 billion, the positive
SHAP reflects that R&D funding investment has a significant
positive effect on economic resilience. It can be seen that
increasing the investment in R&D funding, deeply imple-
menting major scientific and technological special projects
and major projects, focusing on national strategic needs and
frontier fields, breaking through a number of key core
technologies, and forming a number of original, leading and
supportive scientific and technological achievements will
contribute to the improvement of China's economic resil-
ience level.

4.5.2. Mapping the Number of Invention Patents to China’s
Economic Resilience. In Figure 6, when the number of
patents is within the interval of [0, 12000], it shows a rapid
upward trend and the SHAP value is less than 0, which has
a negative effect on the level of economic resilience. When
the number of invention patents exceeds 12,000, it has
a significant positive effect on economic resilience. This
indicates that promoting the transformation and application
of scientific and technological achievements, improving the
institutional mechanism of evaluation and protection of
scientific and technological achievements, motivating
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FIGURre 5: Mapping of R&D investment and China’s economic
resilience.
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researchers and enterprises to strengthen cooperation, and
improving the marketability and social benefits of scientific
and technological achievements will play a positive role in
improving the resilience of China’s economy.

4.6. Importance Analysis. In XGBoost, the importance_type
parameter can be used to specify how feature importance is
calculated. In this paper, the parameter is set to impor-
tance_type = “gain” to calculate the gain of each feature
during the training process, as a way to evaluate the im-
portance of each feature in the model and to find out the
most important features for the prediction results. Gain
reflects the degree of contribution of each factor to the model
prediction. The larger the value of the gain of a feature, the
larger the reduction of that feature to the loss function at the
split node, and the higher the importance of that feature in
the model prediction.

Figure 7 shows the importance of each factor when using
XGBoost-Bayes in training and testing. The importance can
further explain which features contribute more to the pre-
diction results under the XGBoost model. Figure 1 shows that
RD expenditure and the number of invention patents granted
to domestic applicants have the highest correlation with
China’s economic resilience, with feature importance of 67%
and 24%, respectively. It indicates that these characteristics are
the main factors to enhance China’s economic resilience.
Compared to the SHAP summary plot, the feature rankings are
basically the same, which indicates the robustness of the feature
importance rankings produced by the XGBoost model.

5. Conclusion

In this paper, the TOPSIS-BO-XGBoost-SHAP model is used to
implement the fuzzy problem in the quantitative expression of
economic resilience. The collected results show that the overall
level of China’s economic resilience is in steady increase from
2007 to 2021, and the average value of its level of economic
resilience level increases from 0.11 in 2007 to 0.25 in 202l.
Second, the XGBoost model optimized by Bayesian algorithm
shows higher accuracy and stronger generalisation ability, which
indicates that the XGBoost model has good applicability in
China’s economic resilience assessment. Finally, through visual

analysis of the results of SHAP interpretable tool, we found that
the key factors affecting China’s economic resilience are R&D
expenditure, number of invention patents, and science and
technology investment with positive effects.

In conclusion, this paper bridges the gap of machine
learning algorithms in nonlinear causal analysis of economic
resilience by using the TOPSIS-BO-XGBoost-SHAP model.
The method is scientifically sound and reasonable in ex-
ploring and evaluating the resilience and enhancement
mechanisms of economic systems. Future research can focus
more on the interpretable analysis of machine learning, so
that machine learning can be well applied to various fields of
real life by gradually showing its intrinsic mechanisms while
ensuring accuracy.

However, this study also has some limitations. First,
from the perspective of index construction, this paper may
be deficient in the selection of indicators, which may have an
impact on the results of economic resilience assessment due
to the limited availability of indicators and the long sequence
length. In future research, adding suitable indicators can be
considered to improve this problem. Second, in terms of
methodology, a new time series generation framework,
TimeGAN, can be used in the future to combine the flex-
ibility of unsupervised learning and the strong control ad-
vantage of supervised training to generate synthetic time
series data based on the joint training of GAN and self-
encoder, and data augmentation [34] can be used to improve
the prediction accuracy and robustness of the XGBoost
regression prediction model. Using federated learning,
distributed computing is performed to solve the problem of
data availability and invisibility and data immobilization
model movement and enhance privacy computation to
construct a security tree model combining federated
learning and XGBoost [35]. Finally, further research could
be built on the existing foundation by adding variables
related to government policy implementation to measure the
impact of policy implementation on economic resilience.
Therefore, future efforts must be made to fill this gap.
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The data used to support the findings of this study are
available from the corresponding author upon request.
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