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Tis paper proposes some iterative constructions of fxed points for showing the existence and uniqueness of solutions for
functional equations and fractional diferential equations (FDEs) in the framework of CAT (0) spaces. Our new approach is based
on the M∗-iterative scheme and the class of mappings with the KSC condition. We frst obtain some ∆ and strong convergence
theorems using M∗-iterative scheme. Using one of our main results, we solve a FDE from a broad class of fractional calculus.
Eventually, we support our main results with a numerical example. A comparative numerical experiment shows that the
M∗-iterative scheme produces high accurate numerical results corresponding to the other schemes in the literature. Our results
are new and generalize several comparable results in fxed point theory and applications.

1. Introduction

Fixed point theory in recent years has suggested very useful
techniques for solving nonlinear problems (for details, see
the survey article by Karapinar [1, 2]). Iterative solutions for
functional equations and FDEs are a busy feld of research on
their own [3]. It is known that a sought solution of
a functional equation or a FDE can be expressed as a fxed
point of a certain linear or nonlinear operator acting on
a subset of a suitable distance space (see, e.g., [4] and others).
Te existence as well as the iterative construction of the fxed
point of this operator is always desirable. We know that, the
existence of a fxed point is possible but to construct
a suitable algorithm to approximate the value of the fxed
point is not an easy work (see, e.g., [5, 6] and others). For
example, the Banach Contraction Principle (BCP) [7] sug-
gests a unique fxed point for contractions and suggests the
Picard iteration [8], that is, ]i � Ψ]i, to approximate the
values of this unique fxed point [9]. On the other hand, the
Browder–Gohde–Kirk result (see Browder [10], Gohde [11],

and Kirk [12]) proved that every nonexpansive mapping on
a closed convex bounded subset of a uniformly convex
Banach space (UCBS) has a fxed point. Notice that
a self-map Ψ on a subset V of a metric space is essentially
called a contraction if

d(Ψ],Ψξ)≤ αd(], ξ), for all ], ξ ∈ V, (1)

where α ∈ [0, 1).
A fxed point of Ψ in this case is any element, namely,

z ∈ V with the property z � Ψz. Te set of all fxed points of
the operatorΨwill be denoted simply by FΨ throughout in this
research paper. If (1) holds whenwe put α � 1 thenΨ is known
as nonexpansive. An example of a nonexpansive mapping for
which Picard iteration does not converge is the following:

Example 1. Let V � [0, 1] and Ψ] � 1 − ] for all ] ∈ V. It
follows that Ψ is nonexpansive with FΨ � 0.5{ } and the
Picard iteration is not convergent to 0.5 for all the starting
value which is diferent from 0.5.
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Example 1 suggests other iterative schemes instead of
Picard iteration [8] which are convergent in the setting of
nonexpansive mappings (or even generalized nonexpansive
mappings). In 2008, Suzuki [13] introduced a condition on
mappings, called (C) condition.

Defnition 1 (see [13]). Te self-map Ψ of V is said to satisfy
the (C) condition of Suzuki if
1
2

d(],Ψ])≤d(], ξ)⟹ d(Ψ],Ψξ)≤ αd(], ξ), for all ], ξ ∈ V.

(2)

Te (C) condition is essentially weaker than the non-
epensiveness property of any operator Ψ. For instance, see
an example in [13].

Strongly motivated by Suzuki [13], the author Karapinar
and Taş [14] suggested another condition for mappings.

Defnition 2 (see [14]). Te self-map Ψ of V is said to satisfy
KSC condition (or said to satisfy Kannan–Suzuki (C)
condition) if

1
2

d(],Ψ])≤ d(], ξ)⇒d(Ψ],Ψξ)≤
1
2

d(],Ψ]) + d(ξ,Ψξ), for all ], ξ ∈ V. (3)

In fact, there are many iterative schemes in the literature,
that are extensively used for approximating fxed points in
diferent settings of mappings, (see e.g., Mann [15], Ishikawa
[16], S-iteration of Agarwal et al. [17], three-step iteration of
Noor [18], Abbas [19], Takur et al. [20], and others).

Ullah and Arshad [21] constructed a new iteration called
M∗-iteration and proved that this iteration is stable and
suggests highly accurate results corresponding to other it-
erations of the literature. Tis iteration generates a sequence
]i  as follows:

]1 ∈ V,

ωi � 1 − bi( ]i + biΨ]i,

ξi� Ψ 1 − ai( ]i + aiΨωi ,

]i+1� Ψξi.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

In the scheme (4), the operator Ψ is a self-map of the set
V and the sequences ai  and bi  are in the interval (0,1).
Although Ullah and Arshad [21] proved the convergence of
the scheme (4) in the case of contractions. We extend here
their main outcome to the more general setting of mappings
satisfying the KSC condition. Using the same techniques,
convergence of the above mentioned iterations can be
proved on the same line of proof. Using a nontrivial ex-
ample, we show that the iteration scheme M∗ suggests
accurate results corresponding to the other iterations in this
new setting of mappings.

2. Preliminaries

Now, we need some basic results of CAT (0) spaces. For
more details on CAT (0) spaces, please see the books [22, 23].

We now state a result from [24].

Lemma 3. Suppose B is any complete CAT (0) space and
∅≠V⊆B. Ten,

(a) If we have ], ξ ∈ B and there is a fxed element θ in the
set [0,1], then one has a unique point q ∈ [], ξ], such
that

d(], q) � θd(], ξ) and d(ξ, q) � (1 − θ)d(], ξ). (5)

Sometimes, we may write (1 − θ)] ⊕ θξ as the unique
point q that satisfes (5).

(b) If we have ], ξ,ω ∈ B and θ ∈ [0, 1] is fx, then one has

d(ω, θ]⊕ (1 − θ)ξ)≤ θd(ω, ]) +(1 − θ)d(ω, ξ). (6)

Defnition 4. Let ]i  be a bounded sequence in a metric
space B and∅≠V⊆B closed convex. We denote and set the
asymptotic radius of the sequence ]i  in the set V as
R(V, ]i ) � inf lim supi⟶∞d(]i, ]): ] ∈ V . We denote
and set the asymptotic center of the sequence ]i  in the set V

as A(V, ]i ) � ] ∈ V: lim supi⟶∞(]i, ]) � R(V, ]i) . If B

is a complete CAT (0) space then A(V, ]i ) contains one
and only one point.

Te following is the defnition of a ∆ convergence that
can be considered as an analog of the weak convergence in
a Banach space.

Defnition 5. A bounded sequence, namely, ]i  in a com-
plete CAT (0) space B is said to be ∆-convergent to a point,
namely, z ∈ B (and denote it as ∆ − limi]i � z) if it is the case
that the point z is the unique asymptotic center for each
choice of the subsequence si  of ]i .

Te CAT (0) version of the Opial’s [25] condition holds,
that is, if ]i  is any ∆-convergent sequence in a complete
CAT (0) space B with the ∆ limit z, then for any y≠ z ∈ B,
one has
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lim sup
i⟶∞

d ]i, z( < lim sup
i⟶∞

d ]i, y( . (7)

Lemma 6 (see [26]). Suppose we have complete CAT (0)
space B. Ten any bounded sequence ]i ⊆B admits a ∆-
convergent subsequence.

Lemma 7 (see [27]). Suppose we have complete CAT (0)
space B. If∅≠V⊆B is convex and closed then the asymptotic
center of any bounded sequence ]i  is contained in the
space B.

Defnition 8 (see [28]). A self-mapΨ on a subset V of a CAT
(0) space is said to satisfy condition (I) if one has a function c

with c(0) � 0, c(u)> 0 for each u> 0 and
d(],Ψ])≥ c(dist(], FΨ)) for every point ] ∈ V, where the
notation dist(], FΨ) is the distance of the point ] to the set
FΨ.

Lemma 9 (see [14]). Suppose B is any CAT (0) space and
∅≠V⊆B. Let Ψ be a self-map of V satisfying KSC condition
with FΨ ≠∅. Ten for any ] ∈ V and z ∈ FΨ, one has the
following property:

d(Ψ], z)≤ d(], z). (8)

Lemma 10 (see [14]). Suppose B is any CAT (0) space and
∅≠V⊆B. Let T be a self-map of V satisfying KSC condition.
Ten for any ], ξ ∈ V, one has the following property:

d(],Ψξ)≤ 5d(],Ψ]) + d(], ξ). (9)

Lemma 11 (see [14]). Suppose B is any complete CAT (0)
space and ∅≠V⊆B. Let Ψ be a self-map of V satisfying KSC
condition. Ten, the following property holds:

]i ⊆V,∆− lim
i
]i � z, d ]i,Ψ]i( ⟶ 0⇒Ψz � z. (10)

Lemma 12 (see [29]). Consider 0< j≤ bi ≤ k< 1, for every
choice of i≥ 1. If ]i  and ξi  be two sequences in a complete
CAT (0) space B with lim supi⟶∞d(]i, ]0)≤ r and
lim supi⟶∞d(ξi, ]0)≤ r and lim supi⟶∞d((1 − bi)ξi ⊕ ai

]i, ]0) � r for a real number r≥ 0, and some ]0 ∈ B then
limi⟶∞ d(]i, ξi) � 0.

3. Main Results

First, we defne the CAT (0) space version of M∗ iterative
scheme (4) as follows:

]1 ∈ V,

ωi � 1 − bi( ]i ⊕ biΨ]i,

ξi � Ψ 1 − ai( ]i ⊕ aiΨωi ,

]i+1 � Ψξi.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(11)

Now, using (11), we prove our man results. We frst
provide the following lemma that will play a key role.

Lemma 13. Suppose B is any complete CAT (0) space and
∅≠V⊆B is closed and convex. Let Ψ be a self-map of V

satisfying the (KSC) condition with FΨ ≠∅. Ten the se-
quence generated by M∗-iteration (11) satisfes
limi⟶∞ d(]i, z) exists for each z ∈ FΨ.

Proof. Consider any point z ∈ FΨ, then applying Lemma 9,
one has

d ]i+1, z(  � d Ψξi, z( 

≤d ξi, z( 

� d Ψ 1 − ai( ]i ⊕ aiΨωi , z( 

≤d 1 − ai( ]i ⊕ aiΨωi, z( 

≤ 1 − ai( d ]i, z(  + aid Ψωi, z( 

≤ 1 − ai( d ]i, z(  + aid ωi, z( 

� 1 − ai( d ]i, z(  + ai d 1 − bi( ]i + bid Ψ]i, z( ( 

≤ 1 − ai( d ]i, z(  + ai 1 − bi( d ]i, z(  + bid Ψ]i, z( ( 

≤ 1 − ai( d ]i, z(  + ai 1 − bi( d ]i, z(  + bid ]i, z( ( 

� 1 − ai( d ]i, z(  + aid ]i, z( 

� d ]i, z( .

(12)

Hence, we obtained for all z ∈ FΨ, d(]i+1, z)≤ d(]i, z).
Tis means that d(]i, z)  is essentially bounded as well as
nonincreasing and hence it follows that limi⟶∞ d(]i, z)

exists for all z ∈ FΨ.
Now, for the existence of a fxed point, we give the

necessary and sufcient condition for mappings with (KSC)

condition defned on nonempty closed convex subsets of
a UCBS as follows. □

Theorem 1 . Suppose B is any complete CAT (0) space and
∅≠V⊆B is closed and convex. If Ψ is a self-map of V sat-
isfying KSC condition and ]i  is the sequence of M∗-iteration
(11). Ten, FΨ ≠∅, if and only if ]i  is bounded and satisfes
limi⟶∞ d(Ψ]i, ]i) � 0.

Proof. First, we assume the case that the set FΨ ≠∅ and
prove that ]i  is bounded with limi⟶∞ d(]i,Ψ]i) � 0. For
this, Lemma 13 suggests that ]i  is bounded and
limi⟶∞ d(]i,Ψ]i) exists. Put

lim
i⟶∞

d ]i,Ψ]i(  � r, (13)

for some r ∈ R+. We assume the nontrivial case, that is,
when r> 0. Ten in the view of the proof of Lemma 13,
d(ωi, z)≤ d(]i, z). It follows that

lim sup
i⟶∞

d ωi, z( ≤ lim sup
i⟶∞

d ]i, z(  � r. (14)

Now, d(Ψ]i, z)≤ d(]i, z) from Lemma 9. So,

lim sup
i⟶∞

d Ψ]i, z( ≤ lim sup
i⟶∞

d ]i, z(  � r. (15)

Again, we see that, d(]i+1, z)≤ (1 − ai)d(]i, z) + aid

(ωi, z) form the proof of Lemma 13. It follows that
d(]i+1, z)≤d(ωi, z). So,
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r � lim inf
i⟶∞

d ]i+1, z( ≤ lim inf
i⟶∞

d ωi, z( . (16)

Tus from (14) and (16), we have

lim
i⟶∞

d ωi, z(  � r. (17)

From (17), we have

r � lim
i⟶∞

d 1 − bi( ]i ⊕ biΨ]i, z( . (18)

Now, applying Lemma 12 on (13), (15), and (18), we
obtain

lim
i⟶∞

d Ψ]i, ]i(  � 0. (19)

Finally, we shall assume ]i  is bounded with the
property limi⟶∞ d(Ψ]i, ]i) � 0 and show that the set
FΨ ≠∅. For this, we may assume any point, namely, z in the
set A(V, ]i ). By Lemma 10, we have

R Ψz, ]i(   � lim
i⟶∞

sup d ]i,Ψz( 

≤ lim
i⟶∞

sup 5d Ψ]i, ]i(  + d ]i, z( ( 

≤ 0 + lim
i⟶∞

sup d ]i, z( 

� R z, ]i(  .

(20)

Tis implies that Ψz ∈ A(V, ]i ). Since A(V, ]i ) is
singleton, hence, we have Ψz � z and hence FΨ ≠∅.

We frst suggest a ∆ convergence result. □

Theorem 15. Suppose B is any complete CAT (0) space and
∅≠V⊆B is closed and convex. Let Ψ be a self-map of V

satisfying the KSC condition with FΨ ≠∅. Ten the sequence
of the M∗-iteration ]i  (11) ∆-converges to some fxed point
of Ψ provided that the space B has Opial’s property.

Proof. Using Teorem 14, we have the sequence of iterates
]i  is bounded in the set V and satisfes the condition
limi⟶∞ d(]i,Ψ]i) � 0. Set ω∆( ]i ) � ∪A( si ), where si 

denotes any subsequences ]i . We prove ω∆( ]i )⊆FΨ. To
achieve the objective, we let s ∈ ω∆( ]i ), thus one can fnd
a subsequence si  of ]i  such that A( si ) � s{ }. Applying
Lemmas 6 and 7, one has a subsequence ri  of si  such that
ri ∆ converges to a point r in B. Now, usingTeorem 14, we
have limi⟶∞ d(ri,Ψri) � 0. Also, Ψ is endowed with KSC
condition, therefore

d ri,Ψr( ≤ 5d ri,Ψri(  + d ri, r( . (21)

Applying limit on (21), it follows that r ∈ FΨ. Hence,
using Lemma 13, one has limi⟶∞ d(ri, r) exists. Te next
aim is to obtain that s � r. We prove this by contradiction,
that is, we assume that s≠ r. Keeping the uniqueness of
asymptotic centers in mind, one has

lim sup
i⟶∞

d ri, r( < lim sup
i⟶∞

d ri, s( ≤ lim sup
i⟶∞

d si, s( 

< lim sup
i⟶∞

d si, r(  � lim sup
i⟶∞

d ]i.r( 

� lim sup
i⟶∞

d ri, r( .

(22)

Subsequently, we obtained lim supi⟶∞d(ri, r)

< lim supi⟶∞d(ri, r). Since this is a contradiction, we
conclude that s � r ∈ FΨ and hence ω∆( ]i )⊆FΨ.

Eventually, we prove ]i ∆-converges to a fxed point of
Ψ, that is, we need to show ω∆( ]i ) contains only one point.
Suppose si  is a subsequence of ]i  and applying Lemmas 6
and 7, we have a ∆-convergent subsequence ri  of si  that
∆-converges to a point r in B. Suppose A( si ) � s{ } and
A( ]i ) � q . Ten since we proved already that s � r and
r ∈ FΨ, we claim q � r. Because if q≠ r, then limi⟶∞ d(]i, r)

exists and keeping the uniqueness of asymptotic centers in
mind, one has

lim sup
i⟶∞

d ri, r( < lim sup
i⟶∞

d ri, q( ≤ lim sup
i⟶∞

d bi, q( 

< lim sup
i⟶∞

d ]i, r(  � lim sup
i⟶∞

d ri.r( ,

(23)

which is clearly a contradiction. Hence, we conclude that
q � r ∈ FΨ. It follows that ω∆( ]i ) � q . So ]i ∆-con-
verges to a fxed point of Ψ.

Te following theorem is based on compactness. □

Theorem 16. Suppose B is any complete CAT (0) space and
∅≠V⊆B is compact and convex. Let Ψ be a self-map of V

satisfying the KSC condition with FΨ ≠∅. Ten the sequence
of the M∗-iteration (11) converges strongly to some fxed point
of Ψ.

Proof. As assumed, the set V is convex and compact, so the
sequence of iterates ]i  contained in the set V and has
a subsequence ]ik

  of ]i  that converges strongly to ] ∈ V.
Moreover, in the view of Teorem 14, we obtain
limi⟶∞ d(Ψ]ik

, ]ik
) � 0. Hence, using these facts together

with Lemma 10, we have

d ]ik
,Ψ] ≤ 5d Ψ]ik

, ]ik
  + d ]ik

, ] ⟶ 0 as k⟶∞.

(24)

It follows that Ψ] � ]. By Lemma 13, limi⟶∞ d(]i, ])

exists and hence ]i  is strongly convergent to ].
Strong convergence without compactness of the domain

is the following. □

Theorem 17. Suppose B is any complete CAT (0) space and
∅≠V⊆B is closed and convex. Let Ψ be a self-map of V

satisfying the KSC condition with FΨ ≠∅. Ten, the sequence
of the M∗-iteration (11) converges strongly to some fxed point
of Ψ provided that lim inf i⟶∞dist(]i, FΨ) � 0.
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Proof. Te proof of this result is easy and hence we exclude
the proof. □

Theorem 18. Suppose B is any complete CAT (0) space and
∅≠V⊆B is closed and convex. Let Ψ be a self-map of V

satisfying the KSC condition with FΨ ≠∅. Ten, the sequence
of the M∗-iteration (11) converges strongly to some fxed point
of Ψ provided that the Ψ satisfes condition (I).

Proof. According to Teorem 14lim inf i⟶∞d(ξi,Ψξi) � 0.
Now, condition (I) of Ψ gives lim inf i⟶∞dist(]i, FΨ) � 0.
Tus by Teorem 17, ]i  is strongly convergent in FΨ. □

4. Numerical Example

In this section, frst we give a numerical example of
a mapping with (KSC) condition which does not satisfy (C)
condition and then we show that the sequence ]i  generated
by M∗-iteration process converges faster than some other
well-known iteration schemes.

Example 2. Defne a mapping Ψ on [− 1, 1] as follows:

Ψ] �

−
]
2
, if ] ∈ [− 1, 0) −

1
2

 ,

0, if ] � −
1
2

 ,

−
]
4
, if ] ∈ [0, 1].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

Now, we see that the above self-map Ψ is not enriched
with (C) condition. For example, if one chose ] � − (1/2)

and ξ � − (4/5), then Ψ does not satisfy the (C) condition.
Eventually, we shall establish that this map is enriched with
KSC condition. To achieve the objective, some elementary
cases have been omitted, while nontrivial cases are con-
sidered as follows:

C1: When ], ξ ∈ [− 1, 0)/ − (1/2){ }, we have

d(Ψ],Ψξ) � d
]
2
,
ξ
2

 ≤
3
4

[d(], ξ)]≤
1
2

3]
2




+
3ξ
2




 

�
1
2

− ]
2

  − ]



+ ξ −

− ξ
2

 




 

�
1
2

[|] − Ψ]| +|ξ − Ψξ|]

�
1
2

[d(],Ψ]) + d(ξ,Ψξ)].

(26)

C2: When ], ξ ∈ [0, 1], we have

d(Ψ],Ψξ) � d
]
4
,
ξ
4

 ≤
1
4

[|]| +|ξ|]≤
3
8

[|]| +|ξ|]

�
1
2

3]
4




+
3ξ
4




  �

1
2

]
4

− ]


 + ξ −
ξ
4




 

�
1
2

[|] − Ψ]| +|ξ − Ψξ|]

�
1
2

[d(],Ψ]) + d(ξ,Ψξ)].

(27)

C3: When ] ∈ [− 1, 0)/ − (1/2){ } and ξ ∈ [0, 1] we have

d(Ψ],Ψξ) � d
]
2
,
ξ
4

 ≤
1
2

|]| +
1
4

|ξ|≤
3
4

|]| +
3
8

|ξ|

�
1
2

3]
2




+
3ξ
4




  �

1
2

− ]
2

  − ]



+ ξ −

ξ
4




 

�
1
2

[|] − Ψ]| +|ξ − Ψξ|]

�
1
2

[d(],Ψ]) + d(ξ,Ψξ)].

(28)

C4: When ] ∈ [− 1, 0)/ − (1/2){ } and ξ ∈ − (1/2){ }, we
have

d(Ψ],Ψξ) � d
]
2

, 0  �
]
2



≤
3]
4




≤

3]
4




+
ξ
2





�
1
2

3]
2




+|ξ|  �

1
2

− ]
2

  − ]



+|ξ − 0| 

�
1
2

[|] − Ψ]| +|ξ − Ψξ|]

�
1
2

[d(],Ψ]) + d(ξ,Ψξ)].

(29)

C5: When ] ∈ [0, 1] and ξ ∈ − (1/2){ }, we have

d(Ψ],Ψξ) � d
]
4

, 0  �
]
4



≤
3]
8




≤

3]
8




+
ξ
2





�
1
2

3]
4




+|ξ|  �

1
2

]
4

− ]‖+|ξ − 0|

 

�
1
2

[|] − Ψ]| +|ξ − Ψξ|]

�
1
2

[d(],Ψ]) + d(ξ,Ψξ)].

(30)
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Now, we draw a graph and table which show that the
sequence ]i  of the scheme M∗-iteration moving faster to
the fxed point 0 of Ψ as compared to Tukar, Abbas, Noor,
and Ishikawa iterative schemes. Assume that ai � 0.70,
bi � 0.65, and ci � 0.90. Te iterative results are shown in
Table 1 while the behavior of iterates are given in Figure 1.
Te efectiveness of M∗ iterative scheme is clear in both the
table and graph.

We fnish the paper with a nontrivial example.

Example 3. Let B1 � (], 0): ] ∈ R{ } and B2 � (0, ξ): ξ ∈ R{ }.
Put B � B1 ∪B2. Clearly, B ⊂ R2. Defne d on B as follows:

d ]1, ]2( , ξ1, ξ2( (  �

]1 − ξ1


, if ]2 � 0 � ξ2,

]2 − ξ2


, if ]1 � 0 � ξ1,

]1


 + ξ2


, if ]2 � 0 � ξ1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(31)

Here, the space (B, d) is only a CAT (0) space but not
a Banach space [22]. Also, B is closed and convex. Now, letΨ
be the metric projection on B, then by a well-known result
(see, p178 in [22]) that Ψ is nonexpansive and hence it
satisfes KSC condition. By our main results, the sequence
(11) converges to a fxed point of Ψ.

5. Application to Differential Equations

In this section, we study the solution of a FDE in our new
setting of mappings. Tis problem has been considered by
some authors in the class of nonexpansive mappings [30]
and other types of spaces [31, 32]. It is important to note here
that our approach is alternative and based on the class of
mappings with KSC. Te main diference between our ap-
proach and classical approaches to the problems are that
mappings with KSC are not necessarily continuous

throughout on the their domains. Moreover, our iterative
method is more efective and suggests very high accurate
numerical results in less step of iterates. To achieve the
objective, we follow the idea given by [33].

We consider the following general class of boundary
value problems from fractional calculus:

D
c
h(t)+Ω(u, h(t)) � 0

h(0) � h(1) � 0
, (32)

where (0≤ t≤ 1), (1< c< 2), and Dc stands for the Caputo
fractional derivative with order c and Ω: [0, 1] × R⟶ R.

Consider B � C[0, 1] and Green’s function associated
with (32) that reads as follows:

G(t, s) �

1
Γ(ξ)

t(1 − s)
(ξ− 1)

− (t − s)
(ξ− 1)

, if s≤ t≤ 1,

t(1 − s)
(ξ− 1)

Γ(ξ)
, if t≤ s≤ 1.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(33)

Te main result is provided in the following way.

Theorem 19. Set a self-map Ψ: B⟶ B by the following
formula:

Ψ(](t)) � 
1

0
G(t, s)Ω(s, ](s))ds, for each ](t) ∈ B.

(34)

If

|Ω(v, h(v)) − Ω(v, g(v))|≤
1
2

(|h(v)Ψ(h(v))| +|g(v) − Ψ(g(v))|), (35)

Table 1: Some iterates of Ψ given in Example 2.

i M∗ Takur Abbas Noor Ishikawa
1 0.99000000 0.99000000 0.99000000 0.99000000 0.99000000
2 0.07208437 0.07858125 0.13037100 0.13631062 0.28833800
3 0.00524864 0.00623738 0.01716820 0.01876826 0.08397830
4 0.00038216 0.00049509 0.00226083 0.002584156 0.02445800
5 0.00002782 0.00003929 0.00029772 0.00035580 0.00712359
6 0.00000202 0.00000311 0.00003920 0.00004899 0.00207475
7 0.00000014 0.00000024 0.00000516 0.00000674 0.00060427
8 0 0.00000001 0.00000067 0.00000092 0.00017599
9 0 0 0.00000008 0.00000012 0.00005125
10 0 0 0.00000001 0.00000001 0.00001492
11 0 0 0 0 0.00000434
12 0 0 0 0 0.00000126
13 0 0 0 0 0.00000036
14 0 0 0 0 0.00000010
15 0 0 0 0 0.0000003
16 0 0 0 0 0
Te bold values indicate the frst value tends to zero for every iteration scheme.
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then, theM iterates (11) associated with the Ψ (as defend
above) converge to the point of S provided that
liminf i⟶∞dist(]i, S) � 0, where S denotes the set of all so-
lutions of (32).

Proof. Since G is a Green’s function to our problem, so by
[34], the sought solution can be expressed as an integral form
as follows:

h(u) � 
1

0
G(u, v)Ω(v, h(v))dv. (36)

Now, for every choice of h, g ∈ B and 0≤ u≤ 1, it follows
that

d(Ψ(h(u)),Ψ(g(u)))≤ d 
1

0
G(u, v)Ω(v, h(v)) dv, 

1

0
G(u, v)Υ(v, g(v))dv

� 
1

0
G(u, v)[Ω(v, h(v)) − Ω(v, g(v))]dv





≤ 
1

0
G(u, v)|Ω(v, h(v)) − Ω(v, g(v))|dv

≤ 
1

0
G(u, v)

1
2

|h(v)) − Ψ(g(v))| +
1
2

|g(v) − Ψ(h(v))| dv

≤
1
2

‖h(v)  − Ψh(v)‖ +
1
2

‖g(v) − J(g(v))‖

· sup
t∈[0,1]


1

0
G(u, v)dv 

≤
1
2

d(h(v)),Ψ(h(v)) +
1
2
d(g(v)) − Ψ(g(v))

�
1
2

d(h(v)),Ψ(h(v)) +
1
2
d(g(v)) − Ψ(g(v)).

(37)
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Figure 1: Graphical comparison of diferent iterations in the class of mappings with KSC condition.
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Consequently, we obtain

d(Ψ(h),Ψ(g))≤
1
2

(d(h,Ψ(h)) + d(g,Ψ(g))). (38)

Hence, Ψ satisfes the (KSC) condition. In the view of
Teorem 17, the sequence of the M∗ iterates converges to
a fxed point of Ψ and hence to the solution of the given
equation. □

6. Conclusions

Existence as well as iterative constructional for the class of
mappings satisfying the KSC condition is established under
the iterative scheme M∗ in a CAT (0) space setting. We
proved Δ and strong convergence results for these mappings
under certain mild conditions. It has been shown by pro-
viding an example that the class of mappings satisfying the
KSC condition is diferent than the class of mappings sat-
isfying (C) condition. Eventually, we performed a compar-
ative numerical experiment and proved that the M∗ iterative
scheme in the class of KSC mappings is more efective than
the many other iterative scheme. One application is also
carried out. Our results refne and improve some main
results due to Ullah and Arshad [21] from the case of the (C)

condition to the more general case of KSC condition.
Similarly, our results extend the results of Abbas and Nazir
[19], Agarwal et al. [17], Noor [18], Takur et al. [20], and
others.
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