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In this article, we focus on exact traveling wave solutions to an extended Jimbo-Miwa equation, which is an extension of the
Jimbo-Miwa equation. First, an improved (G’/G)-expansion method, extended (G’/G)-expansion method, and improved two
variable ((¢'/¢), (1/¢)) expansion method are introduced. Second, with these introduced methods, many new exact traveling
wave solutions of EJM equation are constructed, including hyperbolic function solutions, trigonometric function solutions, and
rational function solutions which contain many different parameters. Finally, we depict the physical explanation of the extracted
solutions with the free choice of the different parameters by plotting some 3D and 2D illustrations. To the best of our knowledge,
the received results have not been reported in other studies on the new extended JM equations. We hope that our results can help

enrich the study of this new equation.

1. Introduction

Exact solutions of nonlinear evolution equations (NLEEs)
have their significant importance in disclosing the internal
mechanism of the complex physical phenomena. Therefore,
searching for exact solutions to NLEE:s is a crucial concern
for research studies and scientists. Here, we study the exact
solutions of a new extended Jimbo-Miwa equation.

A Jimbo-Miwa equation is a classical mathematical
physics equation and studying its exact solutions attracts
much attention of many scholars. The (3 + 1)-dimensional
Jimbo-Miwa (JM) equation is as follows:

Uyxy T Ul

xUyy T 3uy Uy + 2uy - 3u,, =0, (1)

where u =u(x, y,z,t), which comes from the second
member of a KP hierarchy, is used to describe certain in-
teresting (3 + 1)-dimensional waves in physics [1]. Although
the Jimbo-Miwa equation (1) is non-integrable, exact so-
lutions for the equation have been studied by many re-
searchers. By applying the extended homogeneous balance

method, an iterative formula of finding exact solutions is
given and a lot of solutions are obtained [2]. In [3], lump-
type and interaction solutions are studied. Using the gen-
eralized three-wave method, exact three-wave solutions
including periodic cross-kink wave solutions, doubly peri-
odic solitary wave solutions, and breather type of two-
solitary wave solutions for the (3 + 1)-dimensional Jimbo-
Miwa equation are obtained [4]. By employing the Lie
symmetry method, closed-form invariant solutions and their
dynamics are discussed [5]. Using exp-function algorithm,
two- and three-wave solutions and traveling wave solutions
are constructed [6]. A lot of lump-type solutions and in-
teraction solutions are obtained by symbolic calculation
[7, 8]. Wazwaz employed the Hirota bilinear method to
derive multiple-front solutions for these equations [9]. Their
exact solutions and other properties were extensively studied
in a series of papers.

As a generalization of equation (1), Wazwaz introduced
the two extended Jimbo-Miwa equations as follows and
discussed their multiple-soliton solutions [10].
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Uyyxy + SUylhy + 30Uy + 20 — 3(14XZ +uy, + uzz) =0, (2)

Uyy + SUylhyy + 30Uy + Z(uXt + Uy + uzt) -3u,=0(3)

Lump and lump-kink solutions were obtained for the
Jimbo-Miwa equation (1) and two extended Jimbo-Miwa
equations (2) and (3) were obtained by the Maple computer
algebra system [11]. Many researchers give more and more
attention to these Jimbo-Miwa equations. In [12], four kinds
of localized waves, solitons, breathers, lumps, and rogue
waves of the extended (3 + 1)-dimensional Jimbo-Miwa
equation are constructed by the Hirota bilinear method.
In [13], explicit rational solutions for the Jimbo-Miwa
equation have been presented in the Grammian form. In
[14], an extended (3 + 1)-dimensional Jimbo-Miwa equation
with time-dependent coefficients is investigated, and bilinear
form, Bdcklund transformation, Lax pair, and infinitely-
many conservation laws are derived via the binary Bell
polynomials and symbolic computation. Yin et al. con-
structed the exact solutions to these three Jimbo-Miwa
equations including lump solutions, lump-kink solutions
[15]. Manafian retrieves new periodic solitary wave solutions
for the (3+1)-dimensional extended Jimbo-Miwa equa-
tions, based on the the Hirota bilinear method [16]. Liu
studied the equation (2) by the Bell polynomial and a class of
new type rogue waves solutions are found [17].

In [18], Cheng et al. introduce a new extended Jimbo-
Miwa equation,

uxxxy +X(uxuy)x + Pluxy T Py, T P3uyt +p4uyy =0,

(4)

where y #0 and p;, 1 <i<4 are all arbitrary real constants.
The constants p, and p; satisfy p,p; #0. When y =3,p, =
-3,p; =2 and the other p; =0, the nonlinear evolution
equation (4) becomes the Jimbo-Miwa equation (1). Taking
X=-3p,=-3,p3=-1,p, =p, =0, the equation (4) re-
duces to (3 + 1)-dimensional generalized BKP equation [6].

+3(uu,) +3uy, =0. (5)

uty—u xUy

XXXy

Therefore, the study on new extended Jimbo-Miwa
equations (4) is meaningful. In [18], two-wave and com-
plexiton solutions of (4) are developed through symbolic
computations with Maple.

So far, mathematicians and physicists have established
several effective methods, such as F-expansion method,
[19-21] the first integral method, [22] dynamical system
method, [23, 24] improved Kudryashov method, [25-27]
Hirota bilinear approach, [28-31] tan(®/2) expansion

G b

VA Cysinh((1/2)VA &) + Cycosh ((1/2)VA &)
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approach, [32] exp (—¢(&))-expansion method, [33] gen-
eralized exponential rational function method [34], and
other methods [35]. The (G’/G)-expansion method pro-
posed by Wang et al. [36] is one of the most effective direct
methods to obtain travelling wave solutions of a large
number of nonlinear evolution equations, such as the KdV
equation, the mKdV equation, the variant Boussinesq
equations, the Hirota-Satsuma equations, and so on. Later,
the further developed methods named the generalized
(G,/G)-expansion method, the modified (G,/G)—expansion
method, the extended (G,/G)—expansion method, and the
improved (G'/G)-expansion method have been proposed in
Refs. [37-40], respectively. The aim of this paper is to make
some improvements on (G /G)-expansion method and
derive new traveling wave solutions of the extended Jimbo-
Miwa (4) equation by improved methods.

2. Description of Methods
2.1. Improved (G//G)—Expansion Method

Step 1. Consider a general nonlinear PDE in the form

)=0. (6)

F(u, Uy Uy Uy Ups Uy, Uy - -

Using u(x, y,z,t) =U(§),{=x+y+z—wt, we can
rewrite (6) as the following nonlinear ODE:

F<U, UU> -0, @)

where the prime denotes differentiation with respect to
&

Step 2. Suppose that the solution of ODE (7) can be
written as follows: [41].

n G’ i
u@ =y ai<m+M) , (8)

i=—n

where M, 0,a;(i = —n,-n+1,...) are constants to be
determined later, » is a positive integer, and G = G (§)
satisfies the following second order linear ordinary
differential equation:

n i 2 !
GG - a(G ) “bGG —cG? =0, (9)

where a, b, ¢ are real constants. The general solutions of
(9) can be listed as follows.

When A = b? — 4(a - 1)c > 0, we obtain the hyperbolic
function solution of (9)

(10)

G 20-a) 2(1-a) C,cosh ((1/2)VA &) + Cysinh ((1/2)VA &)

When A =b* - 4(a-1)c<0, we obtain the trigono-
metric function solution of (9)
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3

G _ L V=B Cisin((12)V-A § + Cycos(1/2)V-A §) (11)
G 2(1-a) 2(1-a) C,cos((1/2)V=A &) +C,sin((1/2)V=-A &)

G +uG =0, (14)

When A =b> —4(a—1)c = 0, we obtain the rational
function solution of (9)

G_ 1 LJ,?, (12)
G 1-a\C,+C, ¢ 2

where C; and C, are arbitrary constants.

Step 3. Determine the positive integer n by balancing
the highest order derivatives and nonlinear terms
in (7).

Step 4. Substituting (8) along with (9) into (7) and then
setting all the coefficients of (GIG + oG )*
(k=1,2,...) of the resulting system’s numerator to
zero, yields a set of overdetermined nonlinear algebraic
equations for w and g; (i = -n,-n+1,...).

Step 5. Assuming that the constants w and
a;(i=-n,—n+1,...) can be obtained by solving the
algebraic equations in Step 4, then substituting these
constants and the known general solutions of (9) into
(7), we can obtain the explicit solutions of (6)
immediately.

2.2. The Extended (G'/G)-Expansion Method. In the ex-
tended form of this method, [39] the solution U (&) of (7) can
be expressed as

U(¢) = Zn: ai(%+M>

i=—n

where a;,b;(i =-n,...0,...n,j=1...n), 0= £1and M
are constants to be determined later, 0 = + 1, nis a positive
integer, and G = G(§) satisfies the following second order
linear ODE

G(&) =1 A sin(\/XE)+A2cos(\/XE) +§,

‘%LEZ +AE+ A,

and

where p is a constant. Substituting (13) into (7) and usin%
(14) and collecting all terms with the same order of (G'IG)

and (G'/G)F \/0(1 + (1/p) (G'/G)*) together, and then
equating each coefficient of the resulting polynomial to zero
yield a set of algebraic equations for w,ay, a;,b; (i = 1,.. ., n).
On solving these algebraic equations, we obtain the values of
the constants w, ay,a;,b; (i = 1,...,n) and then substituting
these constants and the known general solutions of (14) into
(13), we obtain the explicit solutions of nonlinear
differential (7).

2.3. Improved Two Variable ((G/G), (1/G)) Expansion
Method. We suppose the solution of (7) owns the following
form: [41].

u= Z a; + Z b’ o, (15)
i=n =1

where ¢ = (G'1G), ¢ = (1/G), a,-,bj(i =-n-n+l,...,
0,1,2,...,m;j=1,2,...,n) are constants and a,b, # 0. The
positive number n can be determined by considering the
homogeneous balance between the highest order derivatives
and nonlinear terms appearing in (7). The function G =
G (&) satisfies the second order linear ODE in the form

G +1G =y, (16)
where A and y are constants. We have
¢ =-A+up-¢'9 =9y (17)

Equation (16) has three types of general solution with
double arbitrary parameters as follows: [42-44].

( Alsinh(\/—_)tf) +A2cosh(\/j£) +%, when 1<0,

when 1>0, (18)

when A =0.



4

M=2u0 + ¢* + 1
g ‘LZKP f 2, when A<0,

V(A -A3)+u

M=2u0 + ¢* + 1

1//2=< %, when A1>0, (19)

(A +A3)—u

M when A=0.

L_2#A2+A§’

where A, A, are arbitrary constants.

By substituting (15) into (7) and using (17) and (19),
collecting all terms with the same order of ¢' and ¢'¢ to-
gether, the left-hand side of (7) is converted into another
polynomial in ¢ and ¢’¢. Equating each coefficient of this
different power terms to zero yields a set of algebraic
equations for a;,b;, A, 4 and w. The other steps are the same
as in the previous subsection. It should be pointed out that
we add in the negative power in (15) which can obtain more
solutions. So we call this method as improved two variable
((G'1G), (1/G)) expansion method. Obviously, taking
b, = 0, it becomes into G /G expansion method.

After the brief description of the methods, we now apply
these methods for solving new extended Jimbo-Miwa
equation.

3. Exact Solutions of a New Extended Jimbo-
Miwa Equation

Let {=x+y+z—wt,w+#0, where w is the wave speed,
equation (4) can be reduced to the following ordinary dif-
ferential equation (ODE)

a;=0,w=

Journal of Mathematics

u® 4 20U+ (=cpy +py+py+p)u =0, (20)
Integrating (20) once with respect to & and setting the
constant of integration to zero, we have

! 2 !
u +X<u> +(=cps+p; +p, +pg)u =0. (21)

Balancing u" with (1')?in 10) we indn+3 =2(n+1),
one has n = 1. In order to find traveling wave solutions of
(4), we would apply three methods to (21).

3.1. Application of the Improved (G /G)-Expansion Method.
Suppose that (21) owns the solutions in the form

!

/ -1
G -+ M |+ b G -+ M .
G +0G G+0G

(22)

u(é) =a0+a1<

Substituting (22) along with (9) into (21) and then setting
all the coefficients of (G + 0G')" of the resulting system’s
numerator to zero, yields a set of overdetermined nonlinear
algebraic equations about ay,a,,b;, M, w,y. Solving the
overdetermined algebraic equations, we can obtain the
following results.

Case 1.

_4ac—b2—4c—p1—p2—p4

P3

(23)

_ 6M’co® — 6M’bo + 6Ma + 12Mco — 6M” — 6Mb + 6¢

X

where b,p; #0.

Case 2.
b, (4ac b - 4c)
a, = 3 ,
4c
M =0,
16ac — 4b* — 16¢ — p; — p, —
_ P1= P2 P4’ (24)
P3
b
o=—,
2c
6¢
X= b

b, ’

where b;cp; #0.

Case 3.

dac b’ —4c—p —p, = p,

P3 (25)

6(c02—b0+a—1)

X= >
a

where a,p; #0.

Case 4.
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a1(4ac - - 4c)

b, = S 5
4(ca - bo+a- 1)
B -2co+b
2c0? —2bg+2a-2 (26)
B 16ac—4b2—16c—p1—p2—p4
P3 '
6(c02—b0+a—1)
X= b

a;

where a,p; #0.

Substituting (23)-(26) into (22), we can find the fol-
lowing formal solutions of Jimbo-Miwa equation (4), where
F=(GIG+0G)=((GIG)/1+0(G/G)).

u (§) = ag + 4 +1M’ (27)
where £ =x + y +z — wt.
b,(4ac - b* - 4¢)F
uZ(f):aO_ 1( 2 ) +h) (28)
4c F

where £ = x + y + z + (16ac — 4b* — 16¢c — p; — p, — p4/p3)t.
us (&) = ay +a, (F+ M), (29)

where £ =x + y +z+ (dac —b* —4c — p; — p, — p4lp;)t.

a1(4ac -v - 4c)

—2co+b )_

u, () =a,+a,| F+
* 0 1( 2c0” —2bo +2a-2

where & = x + y + z + (16ac — 4b* — 16¢ — p; — p, — p4/p3)t.
Using the solutions F of (9), that is (10)-(12), exact
traveling solutions of Jimbo-Miwa (4) can be obtained. Here,
we take (27) for example.
When A = b? —4(a - 1)c >0, we obtain the hyperbolic
function solution of (4)

] -1
G
g (8 =ay+ 1<G+ oG )
(31)
! _1
=a,+b, G—/Gj +M |,
1+0G/G
where G'/G = b/2(1 - a) + (VA /2(1 - a)) (C,sinh (1/2VA
&) + Cycosh ((1/2)VA &)/C,cosh (1/2VA &) + C,sinh (1/2
VA E), E=x+y+z+ (16ac—4b*—16c—p, — p, — p,/
p3)t.

4(c o —bo+a- I)Z(F +(—2w+ b/2c o* - 2bo + 2a — 2))

> (30)

When A =b*-4(a-1)c<0, we obtain the trigono-
metric function solution of (4)

G/ -1
= b|l——+M
(32)
’ 1
=a,+b, Gi/G,+M ,
1+0(G/G)
where G'/G = (b/2(1-a))+ (VA /2(1 -a)) - C, sin(1/2
V=A &)+ C, cos(1/2V-A &)/C, cos(1/2 V-A &) +C, sin
(12V=-A8), &=x+y+z+ (16ac—4b* - 16¢c - p; — p,—

palp3)t.
When A =b*>-4(a—1)c =0, we obtain the rational

function solution of (4)

: -1 ' !
G GG
= b|———+M = b| — 5 +M ’ (33)
U5 (8) =ag + 1<G+0G + ) o+ 1(1+0G/G+ )

where G'/G = (1/1 - a) ((C,/C, + C,&) + (b/2)), £ = x + y+
z+ (py +py +palp3)t.

!

u(5)2a0+a1<%+M>+bl(

3.2. Application of the Extended G /G-Expansion Method.
Suppose that (21) owns the solutions in the form

-1 I\ 2
%+M) +b, a(l+i(%> > (34)



where ay,a,,b,,b,, M are constants to be determined later,
o= +1, and G = G(§) satisfies the second order linear
ODE (14).

Substituting (34) along with (14) into (21) and then
setting all the coefficients of (GG and (G/G)

\/0(1 + (1/u) (G'/G)z) (k=0,1,...) of the resulting system
to zero, yields a set of overdetermined nonlinear algebraic
equations about ay,a;,b;,b,, w, M,y. Solving the over-
determined algebraic equations, we can obtain the following
results.

Case 5.
b, = —pay,
b, =0,
M =0,
(35)
__l6pu—ps—pr—ps
P3
_6
X a’
Case 6.
o
a =+ \/;bz,bl =0,
M =0,
o (36)
W= UH=Ps—Pr—P1 i
P3
. 3unjolu
B b,o
Case 7.
a, =0,
b, =0,
_ M pi—pr—p (37)
P3
6(M* +u)
X= T,
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Case 8.
b, =0,
b, =0,
w=_4.”_P4_P2_P1 (38)
P3
_6
X a
Case 9.
g =3
1 X’
b, =0,
b - 3+/olu (39)
2 P >
w:_/‘_PzL_Pz_Pl.
P3

Substituting (35)-(39) into (34), we can find the fol-
lowing formal solutions of Jimbo-Miwa equation (4).

! I\ —1
G G
u, (&) =ay + ala - pa, (E) , (40)

where E=x+y+z+ (U—py—p, — pi/ps)t.

! I\ 2
G 1/G
u5(5)=a0+b2\jg Eibz a<1+;(a> >, (41)

where E=x+y+z+ (U—ps—py—pi/ps)t-

Gr -1
ug (&) = a, + b1<M +5) , (42)
where E=x+y+z+ (4u—ps—py — pi/ps)t.
GV
u7(f) :a0+a1<E+M>, (43)

where E=x+y+z+ (4u—ps—py—pilps)t.

ug(§) =a +§ g,+M 2P o 1+19’2
R PANE Tx\u u\G) )
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where E=x+y+z+ (U—ps—py—pi/ps)t-

Using the solutions F of (14), exact traveling solutions of
Jimbo-Miwa equation (4) can be obtained. Here, we take
(41) for example.

When u < 0, we have the hyperbolic function solution as

A;sinh (\/=p &) + A,cosh (y/= &)

us_ (&) =ag+by+/-o

A cosh (\/=u&) + A,sinh (/= §)

(45)
+b,\lo| 1- Asinh (7EE) + Aycosh (v=EE)
+b, Ajcosh (= &) + Aysinh (y=p&) ) |
u(&) = ay + by Vocot(1fuf)
(49)

where E=x+y+z+ (U—py—py— pi/p3)t.
In particular, setting A; =0, A, #0, then equation (45)
can be written as

u(é) =ay+b,V-0 coth(/=pé)
£ byo(1 - (coth (v §)?).

Setting A, #0, A, = 0, then equation (45) can be written

(46)

as
u()=ay-by,V-o tanh(ﬁf)
£ by\o(1 - (tanh (=g £)?).

where E=x+y+z+ (u—py—p, — pi/ps)t.
When y > 0, we have the trigonometric function solution

(47)

as

—A;sin(\u &) + A, cos (i &) .
Ay cos(\EE) + Aysin(VEE)

s, (§) = ag+b, Vo

b (—A1 sin (&) + A, cos(\/ﬁf)>2
L \lol 1+ : .
A cos (&) + Aysin(EE)
(48)

where E=x+y+z+ (u—p,—p, — pi/pa)t.
In particular, setting A; =0, A, #0, then equation (48)
can be written as

£ b,\[o(1+ (cot (vAE)?).

Setting A, #0, A, = 0, then equation (48) can be written
as

u(&) =a,—b, Votan(\/ué)

(50)
+ by \[o(1 + (tan (v E)?).
where E=x+y+z+ (u—p,—p, — pi/pa)t.
3.3.  Application of the Improved Two Variable

((G'/G), (1/G)) Expansion Method. Suppose that (21) owns
the solutions in the form

u@ =ay+a,p+a,¢ ' +b9, (51)

where ¢ = (G'1G), ¢ = (1/G), ay,a,,a,, b,, are constants to
be determined later, and G = G () satisfies the second order
linear ODE 16.

Substituting (51) along with (17) and (19) into (21) and
then setting all the coefficients of ¢’ and ¢'¢ of the resulting
system to zero, yields a set of overdetermined nonlinear
algebraic equations about ay,a,,a,,b;,w,y. Solving the
overdetermined algebraic equations, we can obtain the
following results.

Case 10. When 1 >0



A
a =t Aza—‘uzbl)
a, =0,
W= A‘P4‘P2_P1’
P3

a, =0,
b, =0,
4h-p,—p, —
w = Ps— P2 Pl)
P3
u=0,
_ 6)
X a
a, =-Aa,,
b, =0,
16A —p, — p, —
W= Ps— P2 P1)
P3
#=0,
S
a,’
a §
1 X
a, =0,
b, =0,
A -p-py—py
P3
u=0
3
a, =—,
L
a, =0,
3VAo
b=+ ,
X
=0, —p, —
w=— Py —Pr—P1
P3

(52)

(53)

(54)

(55)

(56)
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where 0 = A% + A%. Substituting (52)-(56) into (51), we can
find the following formal solutions of Jimbo-Miwa equation

(4).

A

= + -
I I

bip (§) +b19 (&), (57)

where E=x+y+z+ (A—pys—p,—pi/ps)ts ag, by, are
arbitrary constants.

Uqo &) = ap + (58)

a
¢’
where £ =x+ y+2z+ (4L — py — p, — p1/p3)t, ag,a, are ar-
bitrary constants.

Aa,
¢’

where {=x+y+z+ (16A—p,—p, —pi/p3)t, ay.a, are
arbitrary constants.

uy (@) =ay+a;¢ () - (59)

up (@) =ay+ %(E)> (60)

where £ =x+ y+2z+ (16A —p, — p, — p1/p3)t, ag, x are ar-
bitrary constants.

L@ VWA A)e @ ()
X X

u3(§) = a,

where E=x+ y+z+ (16A—p,—p, —p1/ps)ts ap x> AL A,
are arbitrary constants.

Using the solutions G (&) of (16), exact traveling solu-
tions of Jimbo-Miwa equation (4) can be obtained. Here, we
take (61) for example.

We have the trigonometric function solution as

.“)\/X(A1 cos(VAE) - A, sin(\/Xf))
)((A1 sin (VA &) + A, cos(\/)—Lf))

3A(AT + A7)

i)((A1 sin(VAE) + A, cos(\/XE))’

U3 (§) = ay +

(62)

where& =x+y+z+ (u—py— p, — p1/p3)ts ags x> Ay A, are
arbitrary constants, A > 0.

Case 11. When A <0
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A
a + b)
! Mo+t !
a, =0,
A=pi—pr=p (63)
w=-———""—
P3
3
= +

a, =0,
b, =0,
we B-pPimpr—p
P3 ) (64)
u=0
_
=0
a, = -Aaj,
b, =0,
oo LOA—Pi—py—p
P3 ’ (65)
u=0
_6
X a
a =0
-
a, =0,
b, =0, (66)
A-p,—p, —
w=— Ps— P2 Pl)
P3
u=0,
a, = a,
0 =2
1=y
a, =0,
3vV/-Ao (67)
b=+ ,
X
A=p, —p, —
w=— Ps— P2 Pl)
P3

where 0 = A% - A%. Substituting (63)-(67) into (51), we can
find the following formal solutions of Jimbo-Miwa equation

(4).

-A

T Ot @

uy ) =ay+

(68)
where {=x+y+z+ (A—p,—p, —pi/p3)t, ay, b, are ar-

bitrary constants.

s (§) = ag + ﬁ (69)

where £ =x+ y+2z+ (4L - py — p, — pi/p3)t, ay,a, are ar-
bitrary constants.

Aay
$(&

where {=x+y+z+ (161 —p,—p, —pi/p3)t, ay.a, are
arbitrary constants.

us(§) =ay+a;¢(8) - (70)

u, (&) =ay+ (71)

6¢ (§)
P

where E=x+y+z+ (161 —p,
bitrary constants.

= P2 = Pi/p3)t, g, x are ar-

L3 VAA - A)e® o
X

X

ug(§) = ay

where E=x+ y+z+ (16A—p, —p, — p1/ps)ts ag. xo AL Ay
are arbitrary constants.

Using the solutions G (&) of (16), exact traveling solu-
tions of Jimbo-Miwa equation (4) can be obtained. Here, we
take (72) for example.

We have the hyperbolic function solution as

3V=A(A,cosh (V-18) + Aysinh (V=-1¢))
x(A;sinh (V=1£) + A,cosh (V=-1¢))

3A(AT - A7)

* X(Alsinh(\/——/lf) + Azcosh(ﬂf)) ’

gy (§) = a +

(73)

where§=x+y+z+ (u—p,
arbitrary constants, A <0.

= P2 = P1/p3)ts ags x> Ay, Ay are

Case 12. when A =0
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FiGure 1: Figures on (x, y) of solution (31) with ay =1,b, =1,a=2,b=1,c=-1,C, =1,C,=-2,p,=1,p,=Lp;=1Lp,=1,M =1,
o = 1. (a) Three-dimensional plot. (b) Two-dimensional plot with y=1. (c) Contour plot.
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FiGure 2: Figures on (x, y) of solution (32) with a, =1,b; =1,a=2,b=1,c=1,C,=1,C, =-2,p;, =1L,p,=1L,p;=1p, =1, M =1,
o = 1. (a) Three-dimensional plot. (b) Two-dimensional plot with y=1. (c) Contour plot.
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FiGure 3: Figures on (x, y) of solution (62) witha, =1,A=1,A, =1,A, = -2,p, = 1,p, = 1,p; = 1,p, = 1,y = 1. (a) Three-dimensional
plot. (b) Two-dimensional plot with y=1. (c) Contour plot.
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FIGURE 4: Figures on (x, y) of solution (33) with a; =1,b, =1,a=2,b=2,C, =1,C,=-2,p,=Lp,=1,ps=1p,=1,M=1,0=1.
(a) Three-dimensional plot. (b) Two-dimensional plot with y=1. (c) Contour plot.
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FIGURE 5: Figures on (x, y) of solution (80) with a; = 1,b, = 1,A, =2,A, =1,p, =1,p, = 1,p; = 1,p, = 1, x = 1. (a) Three-dimensional
plot. (b) Two-dimensional plot with y=1. (c) Contour plot.
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FIGUure 6: Figures on (x, y) of solution (45) with a;=1,b,=1,u=-1,A, =1, A, =-2,p,=Lp,=1,ps=1Lp,=1,M=1,0=-1.
(a) Three-dimensional plot. (b) Two-dimensional plot with y=1. (c) Contour plot.
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FIGURE 7: Figures on (x, y) of solution (48) withay, = 1,b, = L,u=1,A, = 1,A, =-2,p, =L,p, = 1,p; = 1,p, = 1, M = 1,0 = 1. (a) Three-
dimensional plot. (b) Two-dimensional plot with y=1. (c) Contour plot.

a; =0,
b, =0,
a, = P3W— Py~ P2~ Py (74)
X
#=0,
6
a; =—,
bx
b, =0,
a, =0, (75)
w=P4+P2+P1’
P3
#=0,
4 3
LTy
a, =0,
w=PitPtP (76)
P3
b -94]
184,

Substituting (74)-(76) into (51), we can find the fol-
lowing formal solutions of Jimbo-Miwa equation (4).

P3@— Py~ P2~ Py

u =ap+———,
where £ = x + y + z — wt, ay, w are arbitrary constants.
6
1y (6) = +%f), (78)

where £ =x+y+z— (p,+p, +pi/ps)t, ay is a arbitrary
constants..

+ by (§), (79)

1, (6) = ay + 6¢ (&)
X
where £ = x+ y +z — (py + p, + p1/p3)t ag, by are arbitrary

constants.

Using the solutions G (&) of (16), exact traveling solu-
tions of Jimbo-Miwa equation (4) can be obtained. Here, we
take (79) for example.

We have the rational function solution as

6(uE+A)
X((yfz/z) +AE+ A2)
b,
+ >
(/4/2){2 + Al + A,

Uy (§) = ay +

(80)

where E=x+y+z— (py+p, +pi/ps)ts ag. by, AL A, are
arbitrary constants, y = — (x?b] — 9A3/184,).

4. Figures of Some Exact Solutions

In order to better understand the physical meaning of the
solutions, we represented a few typical wave figures of new
extended Jimbo-Miwa equation (4).Obviously, solutions
obtained in this paper including kink wave solution (Fig-
ure 1), periodic wave solution (Figures 2 and 3), solitary
wave solution (Figures 4 and 5), sharp wave solution
(Figure 6), and periodic sharp wave solution (Figure 7).

5. Conclusions

Exact solutions of Jimbo-Miwa equation (1) and extended
Jimbo-Miwa equations (2) and (3) are studied by a lot of
researchers and fruitful results are obtained. However,
studies on new extended Jimbo-Miwa equation (4) are few.
In [18], Cheng et al. discussed two-wave solutions and
nonsingular complexiton solutions. In the present work,
improved (G,/G)—expansion method, extended (G'/G)-ex-
pansion method, and improved two variable ( (gb'/ $), (1/¢))
expansion method are introduced by adding in negative
power and constant M, by which more exact solutions can
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be obtained. Using these three methods, a new extended
Jimbo-Miwa equation in the research and development
process of nonlinear physical phenomena is discussed. Many
traveling wave solutions of this equation are constructed,
including hyperbolic function solutions, the trigonometric
function solutions, and the rational functions solutions. The
results we obtained are quite different from those obtained in
reference [18]. To the best of our knowledge, the received
results have not been reported in other studies on the new
extended JM equations. The results of the new extended
Jimbo-Miwa equation (4) have been enriched.
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