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In this work, we consider the regional averaged controllability (RAC) problem governed by a class of semilinear hyperbolic
systems. We start by giving the defnitions of the exact and approximate RAC systems. After that, we state the problem of RAC for
semilinear systems. We propose two methods of solution: using a condition of the analytical operator to the nonlinear part of the
system to characterize the optimal control via the fxed point theorem and the Hilbert Uniqueness Method (HUM) with an
asymptotic condition on the nonlinear part to fnd the optimal control of the considered problem. Finally, we present a numerical
example to show the efectiveness of the main results.

1. Introduction

Te study of hyperbolic partial diferential equations (PDE)
is a historically important subject whose frst steps go back to
d’Alembert with the equation of waves and to Euler, with
equations of the same name describing the evolution of
a fuid [1]. An important example of hyperbolic PDEs is
provided by the conservation laws of the frst order [2],
which appear quite naturally in physics, as soon as a balance
of energy, mass, quantity of movement, matter. . . is carried
out and that the phenomena of difusion (thermal or vis-
cosity) are neglected.

Solutions of this kind of problem have undulating
characterizations. If a localized perturbation is occurred on
the initial input, then points in space far from the support of
the perturbation will not instantaneous feel the efects. With
respect to a fxed spatiotemporal point, the disturbances
have a fnite propagation speed and move according to the
characteristics of the equation. Tis property makes it
possible to distinguish hyperbolic problems from elliptical
or parabolic problems, where the perturbations of the initial
conditions will have immediate efects on all points of the

domain. Although there are specifc requirements that de-
pend on the family of PDEs being investigated, the concept
of hyperbolicity is fundamentally qualitative, see [3, 4] for
instance.

Hyperbolic systems, it is a part of distributed systems
modeling many real-life problems in various areas [5].
Several problems of mechanics are hyperbolic, and therefore
the study of hyperbolic problems is of substantial con-
temporary interest. Furthermore, we primarily use light,
sound, and wave phenomena to perceive the outside world
through sight and hearing. Tey are also utilized in metal
smelting, medicine, in laser printers and communications
technologies, etc. In particular, hyperbolic systems describe
optimal control problems with constraints. In the last few
years a substantial literature is focused on the study of the
control of distributed nonlinear hyperbolic systems and
especially bilinear and semilinear hyperbolic systems [6].

Te idea of regional controllability is one of controll-
ability’s most signifcant practical applications, control
problems when the objective is not fully characterized as
a position have been discussed using this state, but refers
only to a subregion ω of Ω. Exactly, it fnds a control which
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directs the considered system, at the moment T, towards
a prescribed function defned on a subregion ω of Ω.

For controllability problems, one considers a control
system in the time interval [0, T] and specifcally inquires as
to the best way to reach the space of executed instructions
(exact controllability) or a dense set in the space of in-
structions (approximate controllability).

In real-life problems, parameter-dependent system
modeling seems to be difcult, since the issues encountered,
is that we work with space-temporal systems considered as
a nonlinear problem. Others’ difculty comes from the
existence and uniqueness of their solutions. Furthermore, to
solve the average control problem associated with a semi-
linear system a complex formulation of the fxed point
method is introduced and applied in infnite dimension.

Averaged control problems for semilinear distributed
systems involve the design of control laws for a class of
systems described by partial diferential equations (PDEs).
Tese systems are characterized by a linear spatial operator
and a nonlinear temporal operator. Te goal of an averaged
control problem is to stabilize the system around a desired
equilibrium state or to drive it to a target state while taking
into account the efects of averaging.

In this case of an unknown value parameter, it is not
possible to control each realization of the system by a single
control using an independent control of the parameter.
Which motivates this work, is the frst time that we consider
the averaged time of semilinear distributed systems. Such
type of systems is important in theory as in applications and
looked as a compromise between linear and nonlinear
systems. Te average controllability allows us to consider
many types of nonautonomous systems. Te average con-
trollability introduced by Zuazua [7], purpose is to check the
averaged state of a parameterized system instead of the state
against the unknown parameter. Moreover, the problem of
average controllability has recently been introduced in some
papers [8–12].

Te paper is organized as follows. In the second section,
we begin by stating the problem and giving the defnition of
the RAC. Te third section will be our main result, when we
will present two methods to solve the considered problem.
First, using a condition of the analytical operator on the
nonlinear part of the system to characterize the optimal
control via the fxed point theorem. Second, using the HUM
with an asymptotic condition on the nonlinear part to fnd
the optimal control. Te fourth and last section, we propose
a numerical example to show the efectiveness of the main
results.

2. Problem Statement

Let an open bounded subset Ω ⊂ IRn and we denote
Q � Ω× ]0, T[. Let the semilinear hyperbolic state-space
system

z
2
X

zt
2 + A(σ)X + NX � ProjDfu(t), Q,

X(x, 0) � X0(x),
zX

zt
(x, 0) � X1(x), Ω.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1)

Te operator A(σ) is linear elliptic depending on the
uncertainty parameter σ ∈ [a, b], the nonlinear operator N
is independent of σ, ProjD is the indicator ofD such thatD is
a zone of the system domainΩ, f is a function in L2(D), u in
C � L2(0, T) is the control and the initial conditions
(X0, X1) ∈ H1

0(Ω) × L2(Ω). Let Yu � (Xu, zXu/zt) repre-
sent the solution of (1) and suppose that
Yu(T, σ) ∈ (L2(Ω))2 � E. Te following defnitions give the
exact and the approximate averaged controllability of hy-
perbolic system. First, let ω a subregion of Ω

Defnition 1. We say that (1) is ω-exactly RAC, if there is
u ∈ C independent of σ such that

Y
d
1 �

1
b − a


b

a
Xu(T, σ)dσ inω andY

d
2 �

1
b − a


b

a

zXu

zt
(T, σ)dσ inω, (2)

where (Yd
1 , Yd

2) is the fnal target in H1
0(ω) × L2(ω). Defnition 2. We say that (1) is ω-approximately RAC, if

there is u ∈ C independent of σ such that

1
b − a


b

a
Xu(T, σ)dσ − Y

d
1

��������

��������L2(ω)

+
1

b − a


b

a

zXu

zt
(T, σ)dσ − Y

d
2

��������

��������L2(ω)

≤ ε,∀ε> 0. (3)

Now, let the RAC problem for (1) and the actuator type
zone internal (f, D) stated:
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Determinate u ∈ C,

1
b − a


b

a
Xu(T, σ)dσ � Y

d
1 and

1
b − a


b

a

zXu

zt
(T, σ)dσ � Y

d
2 in ω.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

Let A(σ) �
0 I

A(σ) 0 , Y � (X, zX/zt) NY �

(0, − NX)t, Y0 � (X0, X1) and Bu � (0,ProjDfu)t.
So, we rewrite (1) as

zY

zt
+ A(σ)Y � NY + Bu(t), Q,

Y(0) � Y0, Ω,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(5)

and associated linear system.

zY

zt
+ A(σ)Y � Bu(t), Q,

Y(0) � Y0, Ω,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(6)

Consider the operator A(σ) generating the semigroup
S(t, σ)(t≥0) on E, we defne the two operators L(., σ) and Gω

L(t, σ)Y(.) �
1

b − a


b

a


t

0
S(t − s, σ)Y(s)dsdσ,

Gωu � ProjωL(T, σ)Bu(t).

(7)

Now, we introduce the function.

Φ(Y)(.) � S(.)Y0 + L(.)NY(.) + L(.)BG†
ω y

d
− ProjωS(T, σ)y0 − ProjωL(T, σ)NY(.) , (8)

and we denote the inverse of Gω by G†
ω � (G∗ωGω)− 1G∗ω. Te

fxed point Y∗(.) of (8) where
[Yd − ProjωS(T, σ)Y0 − ProjωL(T, σ)NY∗(.)] ∈ ImGω, di-
rectly If (6) is ω-approximately RAC, then

u
∗

� G
†
ω Y

d
− ProjωS(T, σ)Y0 − ProjωL(T, σ)NY∗(.) .

(9)

Conduct (1) to Yd at time T. In the next section, an
important situation will be analyzed in the analytical case.

3. Main Results

3.1. First Case Using Analytical Operator. Consider the
previous problem (2) of the equation (3). By choosing Y0 � 0
and let (− A(σ)) generates the analytic semigroup S(t, σ)(t≥0)

on E.

We consider A1(σ) � A(σ) + aI and we defne Re(A1)

the real part of the spectrum of A1(σ) (a is a real number
providing Re(A1)> δ > 0). On the dance Banach space
Eα � D(Aα

1(σ))E, we defne for 0≤ α< 1 the norm.

.‖Eα �
�����

�����A
α
1(., σ)‖E, (10)

and ‖S(t, σ)‖L(E,Eα) � c.t− αe(a− δ)t � g1(t) ([13]).
Suppose that g1 ∈ Lq(0, T), q≥ 1, and let

1/q � 1 + 1/r − 1/s, with r, s≥ 1 and that N is the map
Lr(0, T;Eα)⟶ Ls(0, T;E) verifying.

N(0) � 0,

Na − Nb‖Ls(0,T;E) ≤ k(‖a‖, ‖b‖)
�����

�����a − b‖Lr 0,T;Eα( );∀a, b ∈ L
r 0, T;E

α
( ,

with k: IR+
× IR+⟶ IR+

; lim
μ1 ,μ2⟶0

k μ1, μ2(  � 0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(11)

Tis hypothesis is verifed by several classes of semilinear
hyperbolic systems.

Now, let the functions.

Φ(Y, u(t)) � L(., σ)NY + L(., σ)Bu(t), (12)

ψω Y
d
, u(t)  � G

†
ω Y

d
− ProjωL(T, σ)NYu , (13)
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In the next, ImGω is equipped with the seminorm:

Y
d

�����

�����ImGω
� G

†
ωY

d
�����

�����L2(0,T)
, (14)

which give us the next theorem.

Theorem 1. We suppose that (6) is ω-approximately RAC,
(11) verifed and

L(., σ)Bu(t)

���������Lr 0,T,Eα( )

≤ θ
���������

���������
u(t)

���������L2(0,T)

, (15)

θ is a positive constant.

ProjωS(.)
����

����L E,ImGω( ) � g2(t) ∈ L
p
(0, T) such that

1
p

+
1
s

� 1, p, s≥ 1, (16)

g2(t) is a positive function that is supposed belong
Lp(0, T). Ten

(1) Te solution u∗ ∈ B(0, m) of (2) exists and it is
unique, for m> 0 and ρ> 0 such that
∀Yd ∈ B(0, ρ) ⊂ ImGω.

(2) Te map Yd⟶ u∗(Yd) from B(0, ρ)⟶ L2(0, T)

is Lipschitz.

Proof
(1) Knowing that limθ1 ,θ2⟶ 0 k(θ1, θ2) � 0, then there exists

c> 0 such that.

C1 ≔ g2
����

����Lq(0,T)
sup

θ1 ,θ2<c
k θ1, θ2( . (17)

While (6) is ω-approximately RAC, then (14) is
a norm. Using Schauder fxed-point theorem see [4],
Te function Φ(., u(t)) is a contraction on the
nonempty convex closed ball B(0, c), then admit
a unique fxed point Y ∈ B(0, c) ⊂ Lr(0, T,Eα) so-
lution of (3), for all u(t) ∈ B(0, m) with

m ≔
c

θ
1 − g1

����
����Lq(0,T)

sup
μ≤c

k(μ, 0) . (18)

Furthermore, for Yd ∈ ImGω we have

ψω Y
d
, u(t)  − ψω Y

d
, v 

�����

�����L2(0,T)

� G
†
ωProjωL(T, σ) NYv − NYu( 

����
����L2(0,T)

� ProjωL(T, σ) NYv − NYu( 
����

����ImGω

≤ g2‖Lp(0,T)

�����

�����NYv − NYu‖Ls(0,T,E)

≤
θ

1 − C1
g2

����
����Lp(0,T)

sup
μ1 ,μ2<c

k μ1, μ2( ‖u − v‖.

(19)

We deduce that ψω is contraction while

ψω Z
d
, u(t)  − ψω T

d
, v 

�����

�����L2(0,T)
≤C2‖u − v‖. (20)

with

C2 ≔
θ

1 − C1
g2

����
����Lp(0,T)

sup
μ1 ,μ2<c

k μ1, μ2( < 1. (21)

From (18) we have

���������
Y

d

���������
≤

c

θ
1 − g1

���������Lq(0,T)

+ θ

���������

���������
g2

���������Lp(0,T)

⎛⎝ ⎞⎠ sup
μ≤c

k(μ, 0)⎛⎝ ⎞⎠≕ ρ. (22)

Terefore, if Yd ∈ B(0, ρ) ⊂ ImGω, then ψω(zd, .)

admit a unique fxed point in B(0, m) solution of (2).
(2) To prove that the map Yd⟶ u∗(Yd) is Lipshitz, let

consider Yd, Xd ∈ B(0, ρ), such that

u
∗

Y
d

  − u
∗

X
d

  � ψω Y
d
, u
∗

Y
d

   − ψω y
d
, u
∗

y
d

  

� ψω Y
d
, u
∗

Y
d

   − ψω Y
d
, u
∗

X
d

   + ψωY
d
, u
∗

X
d

  − ψω X
d
, u
∗

X
d

  ,
(23)

but
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ψω Y
d
, u
∗

Y
d

   − ψω Y
d
, u
∗

X
d

  
�����

�����≤C3 u
∗

Y
d

  − u
∗

X
d

 
�����

�����

ψω Y
d
, u
∗

X
d

   − ψω X
d
, u
∗

X
d

  
�����

����� � Y
d

− X
d

�����

�����,
(24)

hence,

u
∗

Y
d

  − u
∗

X
d

 
�����

�����≤
1

1 − C3
Y

d
− X

d
�����

�����, (25)

which concludes the result. □

Proposition 1. Let Yun
is the solution of the system (3) as-

sociate to the control un. Te solution of the problem (2) is
represented by the control sequences

un+1 � G
†
ω Y

d
− ProjωL(T, σ)NYun

 ,

u0 � 0.

⎧⎨

⎩ (26)

Which converges to u∗ ∈ C.

Proof. Te proof is obtained using (20) and (14). □

3.1.1. Second Case Using HUM. Here, we address the issue
(4) that arises when it is anticipated that the system (1) would
verify

lim
∣ r ∣ ⟶+∞

N(r)

r
� α (α≥ 0)withN′ ∈ L

∞
(IR) (see [14]). (27)

Temethod we will choose is an expansion of the HUM,
which has been used to prove controllability in the linear

situation (see [3]), as well as the semilinear situation (see
[14]).

We consider the set G

G � Z1, − Z0(  ∈ C∞(Ω) × C
∞

(Ω) such thatZ0 � Z1 � 0 on
Ω
ω

 , (28)

and let

G � Z1, − Z0(  ∈ C∞(Ω) × C
∞

(Ω) such that Z0 � Z1 � 0 on ω . (29)

For (Z1, − Z0) ∈ G, the following system admit a unique
solution Z ∈ C(0, T, H1

0(Ω))∩C1(0, T, L2(Ω)) ([3]).

z
2
Z

zt
2 + A(σ)Z � 0, Q,

Z(x, T) � Z0(x),
zZ

zt
(x, T) � Z1(x), Ω,

Z(ξ, t) � 0, Σ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(30)

And the solution of (1) can be expressed as

X � ϕ0 + ϕ1 + ϕ2, (31)

where ϕ0 and ϕ1 are respectively solutions of systems

z
2ϕ0
zt

2 + A(σ)ϕ0 � 0, Q,

ϕ0(x, 0) � X0(x),
zϕ0
zt

(x, 0) � X1(x), Ω,

ϕ0(ξ, t) � 0, Σ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(32)

z
2ϕ1
zt

2 + A(σ)ϕ1 � − <Z, f> L2(D)ProjDf, Q,

ϕ1(x, 0) � 0,
zϕ1
zt

(x, 0) � 0, Ω,

ϕ1(ξ, t) � 0, Σ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(33)

that verify (see [3])
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ϕ0, ϕ1 ∈ C 0, T, H
1
0(Ω) ∩C

1 0, T, L
2
(Ω) , (34) and the exist θ1 a positive constant verifying

ϕ0
����

����L∞ 0,T,H1
0(Ω)( ) +

zϕ0
zt

�������

������� L∞ 0,T,L2(Ω)( ) ≤ θ1 X0, X1( 
����

����H1
0(Ω)×L2(Ω)

,

ϕ0
����

����L∞ 0,T,H1
0(Ω)( ) +

zϕ1
zt

�������

������� L∞ 0,T,L2(Ω)( ) ≤ θ1 Z0, Z1( 
����

����H1
0(Ω)×L2(Ω)

,

(35)

and ϕ2 is solution of the system

z
2ϕ2
zt

2 + A(σ)ϕ2 + N ϕ0 + ϕ1 + ϕ2(  � α ϕ0 + ϕ1( , Q,

ϕ2(x, 0) � 0,
zϕ2

zt
(x, 0) � 0, Ω,

ϕ2(ξ, t) � 0, Σ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(36)

Te map ϕ⟶N(ϕ0(t) + ϕ1(t) + ϕ(t)) is Lipschitz
continuous, since N′ ∈ L∞(IR). So (36) admits a unique
solution.

ϕ2 ∈ C 0, T, H
1
0(Ω) ∩C

1 0, T, L
2
(Ω) . (37)

Now, we defne the operator

η Z1, − Z0(  � χ ϕ1(T),
zϕ1

zt
(T)  + χ ϕ2(T),

zϕ2
zt

(T) ,

(38)

where χ � Proj∗ωProjω.
Ten, the problem of RAC of (1) turns up to solve the

equation

η Z1, − Z0(  � Proj
∗
ω z

d
1 , z

d
2  − χ ϕ0(T),

zϕ0
zt

(T)  . (39)

Te equation (39) is equivalent to the equation

Λ Z1, − Z0(  � Proj
∗
ω z

d
1 , z

d
2  − χ ϕ2(T),

zϕ2
zt

(T)  − χ ϕ0(T),
zϕ0
zt

(T)  . (40)

For a positive constant θ2, let

G � Z1, − Z0(  ∈ G ; Z0, Z1( ‖H1
0(Ω)×L2(Ω) ≤ θ2

�����

����� Z1, − Z0( ‖G . (41)

Solve the problem (39), became a fxed point of

η Z1, − Z0(  � Λ− 1Proj
∗
ω z

d
1 , z

d
2  − Λ− 1

Kω Z1, − Z0(  − Λ− 1χ ϕ0(T),
zϕ0
zt

(T) . (42)

We defne the operator Kω by

Kω: G⟶ G
∗
,

Z1, − Z0( ⟶ χ ϕ2(T),
zϕ2
zt

(T) ,

(43)

with G
∗ is the dual of G.

Theorem  . If (6) is ω-approximately RAC, then (42) admit
a unique fxed point (Z1, − Z0) and u∗(t) � − 〈Z(t), f〉L2(D)

steer (1) to Zd, where Z is the solution (30).

Proof. Let ϕ2 ∈ C(0, T, H1
0(Ω))∩C1(0, T, L2(Ω)), for all

t> 0 there is θ3 > 0 verifying
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���������
χ

zϕ2
zt

(t), − ϕ2(t) 

���������G
∗
≤ θ3 ϕ2(t)

���������H1
0(Ω)

+

����������

����������

zϕ2(t)

zt

���������L2(Ω)

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(44)

Ten χ(zϕ2/zt, − ϕ2) ∈ C(0, T, G
∗
).

From [3], there is ε> 0 and θ4 > 0 such that

�������
ϕ2

�������L∞ 0,T,H1
0(Ω)( )

+

�������

zϕ2
zt

�������L∞ 0,T,L2(Ω)( )

≤ ε
�������

y0, y1( 

�������H1
0(Ω)×L2(Ω)



+ Z0, Z1( 
����

����H1
0(Ω)×L2(Ω)

 + θ4.

(45)

Hence, while (Z1, − Z0) ∈ G, then for all t> 0

���������
χ

zϕ2
zt

(t), − ϕ2(t) 

���������G
∗
≤ ε

���������
y0, y1( 

���������H1
0(Ω)×L2(Ω)

+ θ2

���������
Z1, − Z0( 

���������G

+
θ4
ε

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (46)

Using (46) with ε � [2θ2‖Λ− 1‖L(G∗ ,G)]
− 1 and for some

constant θ5 > 0, we have

���������
η Z1, − Z0( 

���������G

≤
���������
Λ− 1

Kω Z1, − Z0( 

���������G

+

���������
Λ− 1

Proj
∗
ω z

d
1 , z

d
2  − Λ− 1χ ϕ0(T),

zϕ0
zt

(T) 

���������G

≤
1
2

���������
Z1, − Z0( 

���������G

+ θ5.

(47)

Furthermore, by (44) and (46)Kω is a compact operator,
we deduce that η is compact and there is M≥ 2θ5 such that

����η Z1, − Z0( 
����G
≤M∀ Z1, − Z0(  ∈ G such that

���� Z1, − Z0( 
����G
≤M. (48)

To complete the proof, (42) admit at least one fxed point
by using the Schauder’s fxed point theorem in [13]. □

4. Simulations

In this section, we present a numerical example which il-
lustrates the previous results. It shows that there exists a link

between the subregion area and the reached state Consider
the one dimensional system excited by a zone actuator lo-
cated in D.

z
2
X(x, t)

zt
2 − σ2

z
2
X(x, t)

zx
2 + 

m

i�1
|〈X(t), wi〉|〈X(t), wi〉wi(x) + ProjD11(x)u(t) � 0, ]0, 1[,

X(x, 0) � 0,
zX

zt
(x, 0) � 0, ]0, 1[,

X(0, t) � X(1, t) � 0, ]0, 1[,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(49)
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where wi(x) �
�
2

√
sin(iπx), i ∈ IN∗, σ ∈ [0, 1] and

D � [0, 52; 0, 63]. To solve the considered problem, we
consider the following Algorithm 1.

Remark 1. In the next simulation, we will apply the previous
algorithm to the second case where the optimal control is
given by u(t) � − 〈Z(t), f〉L2(D). Te characterization

established in the frst case by Proposition 1 can be tested
using the same algorithm.

Choosing the time optimal control T � 3, ω � [0.2.0.4]

and applying the previous algorithm the system (49), we
have the following results.

Tables 1 and 2 show numerically how the cost and the
error respectively grow with respect to the subregion area.

Figures 1 and 2 represent the profle of the energy
dissipated to command the system (49) from its initial states
to the desired ones at the time T � 3 with the cost
E � 2.031 × 10− 4.

From the reached state solution of the system (49)
presented by Figure 1, we can remark that the desired
position given by Figure 1 is very close to the reached
position. Terefore, for the reached speed of the system (49)
presented by Figure 2, we will have that the desired speed is
very close to the reached one.

5. Conclusion

In this study, we describe the regional averaged controlla-
bility problem governed by a class of semilinear hyperbolic
systems. Te defnitions of the precise and approximate
regional averaged controllability systems are provided frst.
Te issue of regional averaged controllability for semilinear

Step 1:
(i) We choose (Yd

1 , Yd
2 ) and the region ω.

(ii) Defne the precision ε and the location D.
Step 2: Repeat

(i) Solve the system (30) to fnd Z.
(ii) Compute the control u∗(t) by the formula u(t) � − 〈Z(t), f〉L2(D).
(iii) Solve (49) to obtain Xu(T, σ) and zXu/zt(T, σ).
(iv) Until E � ‖

1
0 Xu(T, σ)dσ − Yd

1‖ω + ‖
1
0 zXu/zt(T, σ) − Yd

2‖ω ≤ ε, repeat step 1 and step 2.
Step 3: Ten, 

1
0 Xu(T, σ)dσ � Yd

1 and 
1
0 zXu/zt(T, σ)dσ � Yd

2 in ω.

ALGORITHM 1: Algorithm for solving the considered problem.

Table 1: Relation subregion-cost.

Subregion ω Cost
]0.43, 0.62[ 1.02∗ 10− 4

]0.38, 0.63[ 3.41∗ 10− 3

]0.32, 0.65[ 1.32∗ 10− 3

]0.12, 0.68[ 4.36∗ 10− 2

]0.21, 0.7[ 1.31∗ 10− 2

Table 2: Relation subregion-error.

Subregion ω E

]0.43, 0.62[ 3.02∗ 10− 4

]0.38, 0.63[ 1.032∗ 10− 4

]0.32, 0.65[ 3.31∗ 10− 3

]0.32, 0.68[ 1.03∗ 10− 3

]0.21, 0.7[ 3.24∗ 10− 2

0.8 1.20.60.40.20 1
-0.05

0
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0.1

Figure 1: Desired position (green) and reached position (red) onω.
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Figure 2: Desired speed (green) and reached speed (red) on ω.
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systems is then raised. We suggest two approaches to the
problem: the Hilbert Uniqueness Method with an asymp-
totic condition on the nonlinear part to fnd the optimal
control of the considered problem, and using a condition of
the analytical operator to the nonlinear part of the system to
characterize the optimal control via the fxed point theorem.
Finally, we give a numerical example to illustrate the ef-
fectiveness of our approach and to validate our results.
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