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Te purpose of this paper is to introduce interaction partitioned Bonferroni mean operators under dual hesitant q-rung orthopair
fuzzy environment. Motivated by the idea of q-rung orthopair fuzzy interaction operational laws, partitioned Bonferroni mean,
and dual hesitant q-rung orthopair fuzzy sets, for dual hesitant q-rung orthopair fuzzy numbers, we present dual hesitant q-rung
orthopair fuzzy interaction operational rules and propose several dual hesitant q-rung orthopair fuzzy interaction partitioned
Bonferroni mean aggregation operators, including the interaction partitioned Bonferroni mean operator for dual hesitant q-rung
orthopair fuzzy numbers, the weighted interaction partitioned Bonferroni mean operator for dual hesitant q-rung orthopair fuzzy
numbers, the interaction partitioned geometric Bonferroni mean operator for dual hesitant q-rung orthopair fuzzy numbers, and
the weighted interaction partitioned geometric Bonferroni mean operator for dual hesitant q-rung orthopair fuzzy numbers.
Moreover, some properties and special cases associated with these proposed operators are also analyzed. For dual hesitant q-rung
orthopair fuzzy numbers, based on the proposed operators, a multicriteria group decision-makingmethod is proposed. Finally, an
example for missile purchase problem is illustrated to demonstrate the superiority and feasibility by comparing with other existing
multicriteria group decision-making methods.

1. Introduction

In real life, many problems, from the purchase of commodities
to the formulation of national policies, all refect the wide-
spread application of decision making (DM) [1] ideas, making
the fnal decision results satisfactory, which involves the
importance of correct DM approach. Multicriteria group
decision making (MCGDM) is one of the DMmethods which
can address various uncertain problems. Due to the un-
certainty factors and increase of complexity gradually in the
actual decision-making process, it has been extensively
studied. Intuitionistic fuzzy sets (IFSs) presented by Atanassov
[2] are better than fuzzy sets (FSs) introduced by Zadeh [3],
which can portray the uncertainty information more com-
pletely and accurately from the aspects of hesitancy degree
(HD), nonmembership degree (NMD), and membership
degree (MD). After that, considering that the evaluation value

may exceed the application scope of IFSs, with the limits of the
sum of the squares of MD and NMD to 1, Yager [4] proposed
the Pythagorean fuzzy sets (PFSs), which are more efective
than IFSs in dealing with MCGDM problems. For instance,
the MD and NMD are 0.9 and 0.5, and we can fnd that only
PFSs can express such data information. In addition, to meet
the requirements of increasingly complex data, with the limits
of the sum of the q− th power of MD and NMD to 1, Yager [5]
presented q-rung orthopair fuzzy set (q-ROFS).Tus, q-ROFS
is more efective and comprehensive in processing and
expressing uncertainty data compared with IFSs and PFSs. For
more research on hesitant fuzzy sets, see [6].

However, considering the hesitation from decision-
makers in providing specifc evaluation values in certain
situations. For this, Torra [7] proposed hesitant fuzzy sets
(HFSs) to more reasonably express the epistemic uncertainty
of DMs by giving the possible MD (PMD). In 2012, Zhu et al.
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[8] incorporated the idea of IFS into HFS and proposed
a new dual hesitant fuzzy set (DHFS) to express the mental
cognitive state of DMs more clearly by increasing the
possible NMD (PNMD). So far, many uncertainty theories
have been studied, such as TOPSIS [9] and fuzzy rough set
[10], making it more fexible and comprehensive in de-
scribing the cognitive uncertainty aspects of DMs. For more
research on decision-making problems, see [11].

In this era of big data, information fusion plays an in-
dispensable role, which extracts required information by
integrating various kinds of information in a certain way. As
a method of information fusion, information aggregation
operators (AOs) have attracted more and more attention
and have become a general tool of modern information
processing. In general, the AOs are studied from two aspects,
namely, functions and operations, represented as below:

(i) From the perspective of the AO functions: Some
traditional AOs have been proposed for data ag-
gregation such as the Heronian mean (HM) [12]
operator and the Bonferroni mean (BM) [13] op-
erator, which consider from the perspective of the
interrelationships between aggregating arguments.
Xu et al. [14] presented dual hesitant q-rung
orthopair fuzzy sets (DHq-ROFSs) and proposed
some HM operators for dual hesitant q-rung
orthopair fuzzy numbers (DHq-ROFNs). For all
that, the BM operator is more widely used. Tere-
fore, many studies with respect to the BM operator
have emerged and remarkable results have been
achieved in dealing with fuzzy problems. Te Hes-
itant fuzzy geometric BM (GBM) operators were
proposed by Zhu et al. [15]. Further, Jamil and
Rashid [16] proposed dual hesitant fuzzy GBM
(DHFGBM) operator for DHFNs. Furthermore, in
certain situations, it should be taken into account
that all attributes may not be interconnected, or
certain attributes may exhibit a correlation with each
other. For this, Dutta and Guha [17] frst presented
the partitioned Bonferroni mean (PBM) operator.
Moreover, Saha et al. [18] proposed q-rung orthopair
fuzzy weighted fairly aggregation operators in 2021.

(ii) From the perspective of the AO operations: Te above
AOs do not take into account the interaction be-
tween the NMD and MD of the evaluated value but
merely use traditional operations to independently
aggregate theMD and NMD, respectively.Terefore,
these theories cannot deal with the MD or NMD
with zero values. To solve this issue, He et al. [19]
proposed the interaction operation and some related
intuitionistic fuzzy geometric interaction averaging
(IFGIA) operators. Xing et al. [20] proposed some
interaction Hamy mean operators in 2017. Xu et al.
[21] defned interaction AOs under dual hesitant
fuzzy environment. In recent years, there are in-
creasing research studies regarding AO operations.
Lin et al. [22, 23] proposed linguistic q-rung
orthopair fuzzy interactional partitioned Heronian
mean aggregation operators and picture fuzzy

interactional partitioned Heronian mean aggrega-
tion operators to further address hesitant problems.

Te conclusion we can draw from the above is that the
combination of the functions and operations of the AOs can
better solve practical problems. Meanwhile, it has great
advantages to combine the interaction operational laws with
the PBM operator. Yang et al. [24] proposed Pythagorean
fuzzy interaction PBM (PFIPBM) operators, and Liu et al.
[25] proposed intuitionistic fuzzy interaction PBM
(IFIPBM) operator. However, it is obvious that these existing
operators have the following disadvantages:

(i) Although the interaction operation has been con-
sidered in [19, 23], the DHq-ROFSs and interaction
operator of q-ROFSs have not been combined yet.
So, it is not sufcient to process more problems for
MCGDM.

(ii) Although the PBM operator has been combined
with the interaction operations of IFSs and PFSs to
process MCGDM problems, the PBM operator
cannot get reasonable values by using interaction
operational for DHq-ROFNs, which limits its
application scope.

(iii) In view of the complexity of group decision making
when handling MCGDM, a matrix should frst be
integrated by using the correlation between attri-
butes of BM operator, and then the correlation
between partitioned attributes of PBM operator
should be used for integrated calculation to obtain
the optimal result.

For handling these shortcomings and improving the
efectiveness of existing methods in multicriteria decision-
making problems, we will simultaneously use the
following tools.

Te DHq-ROFSs can reasonably describe hesitation
attitude of DMs when giving the evaluation value. Te in-
teraction operations of q-ROFSs can more efectively depict
uncertain problems by adjusting the parameter q and
considering the interaction between NMD and MD. In
addition, by considering the relationship between partial
attributes, the PBM operator can reduce the loss of fuzzy
information.

According to the aforementioned analysis, motivated by
the characteristic idea of PBM and q-rung orthopair fuzzy
interaction operations, this paper should achieve the fol-
lowing supreme goals:

(i) To propose a MCGDM method relying on the
denoted interaction BM and PBM operators
according to the information aggregation situation
in the actual case.

(ii) To better solve the problem of extreme situation
when the DMs give the evaluation value.

(iii) To propose some novel interaction PBM operators
for DHq-ROFNs.

In this paper, we propose the dual hesitant q-rung
orthopair fuzzy weighted interaction PGBM (DHq-
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ROFWIPGBM) operator, the dual hesitant q-rung orthopair
fuzzy interaction partitioned geometric Bonferroni mean
(PGBM) (DHq-ROFIPGBM) operators, the dual hesitant q-
rung orthopair fuzzy weighted interaction PBM (DHq-
ROFWIPBM) operator, and the dual hesitant q-rung
orthopair fuzzy interaction PBM (DHq-ROFIPBM) opera-
tor and give the several properties of these AOs. Moreover,
we also propose some certain situations of these AOs.
Furthermore, we present a MCGDM approach with DHq-
ROFNs. Finally, we compare the results and characteristics
of the proposed method with the methods in [24–26]. Te
results show that the method proposed in this paper is more
efective than the methods in [24–26] in handling MCGDM
problems.

Tis paper is organized as follows. In Section 2, some
theories of DHq-ROFS, the interaction operational rules of
q-ROFSs, and the BM, GBM, and PBM operators are in-
troduced. In Section 3, we propose the DHq-ROFIPBM,
DHq-ROFWIPBM, DHq-ROFIPGBM, and DHq-
ROFWIPGBM operators for DHq-ROFNs. We also dis-
cuss the properties and special forms associated with AOs. In
Section 4, based on the proposed AOs, we introduce
a MCGDM method based on the novel BM and PBM op-
erators. In Section 5, the feasibility and advantages of the

proposed approach are verifed by giving an example and
comparing it with prevailing approaches. In Section 6, some
conclusions and future research are given.

2. Preliminaries

In the following, we briefy introduce the theories of the BM,
GBM, and PBM operators, q-ROFSs, DHq-ROFSs, and the
interaction operational laws of q-ROFSs.

Defnition 1 (see [5]). For a set X, a q-ROFS R in X is

R � x,φR(x), δR(x)􏼊 􏼋
􏼌􏼌􏼌􏼌 x ∈ X􏽮 􏽯, (1)

where φR: X⟶ [0, 1] is MD, δR: X⟶ [0, 1] is NMD s.t.
0≤ (φR(x))q + (δR(x))q ≤ 1(q≥ 1). Besides, πR(x) � (1 −

(φR(x))q − (δR(x))q)1/q is HD.
In this paper, α � (φ, δ) is called q-ROFN for

convenience [5].

Defnition 2 (see [20]). For q-ROFNs α � (φ, δ),
α1 � (φ1, δ1), and α2 � (φ2, δ2), the interaction operational
laws are as follows:

(1) α1 ⊕ α2 � 1 − 􏽙
2

i�1
1 − φq

i( 􏼁⎛⎝ ⎞⎠

1/q

, 􏽙
2

i�1
1 − φq

i( 􏼁 − 􏽙
2

i�1
1 − φq

i − δq

i( 􏼁⎛⎝ ⎞⎠

1/q

􏼪 􏼫,

(2) α1 ⊗ α2 � 􏽙

2

i�1
1 − δq

i( 􏼁 − 􏽙

2

i�1
1 − φq

i − δq
i( 􏼁⎛⎝ ⎞⎠

1/q

, 1 − 􏽙

2

i�1
1 − δq

i( 􏼁⎛⎝ ⎞⎠

1/q

􏼪 􏼫,

(3) λα � 1 − 1 − φq
( 􏼁

λ
􏼐 􏼑

1/q
, 1 − φq

( 􏼁
λ

− 1 − φq
− δq

( 􏼁
λ

􏼐 􏼑
1/q

􏼜 􏼝, λ> 0,

(4) αλ � 1 − δq
( 􏼁

λ
− 1 − φq

− δq
( 􏼁

λ
􏼐 􏼑

1/q
, 1 − 1 − δq

( 􏼁
λ

􏼐 􏼑
1/q

􏼜 􏼝, λ> 0.

(2)

Defnition 3 (see [14]). For a set X, a DHq-ROFS D on X is

D � x, hu(x), gu(x)􏼊 􏼋
􏼌􏼌􏼌􏼌 x ∈ X􏽮 􏽯, (3)

where hu(x) and gu(x) are the two sets with valued ranging
from 0 to 1, are called PMD and PNMD of x ∈ X are re-
spectively with

φq
+ δq ≤ 1, (4)

where φ ∈ hu(x), δ ∈ gu(x). For convenience,
d(x) � (hu(x), gu(x)) is called a dual hesitant q-rung
orthopair fuzzy number (DHq-ROFN) denoted by
d � (h, g) with φ ∈ h, δ ∈ g, 0≤φ, δ ≤ 1, and φq + δq ≤ 1.

Defnition 4 (see [14]). Te score function S of DHq-ROFN
d � (h, g) is

S(d) �
1
2

1 +
1
#h

􏽘
φ∈h

φq
−

1
#g

􏽘
δ∈g

δq⎛⎝ ⎞⎠, (5)

where #h and #g are the numbers of the elements in h and g,
respectively.

Defnition 5 (see [14]). Te accuracy function A of
DHq-ROFN d � (h, g) is

A(d) �
1
#h

􏽘
φ∈h

φq
+

1
#g

􏽘
δ∈g

δq
. (6)

Defnition 6 (see [14]). For two DHq-ROFNs d1 � (h1, g1)

and d2 � (h2, g2), we have (i) (a) d1 >d2 for A(d1)>A(d2);
(b) d1 � d2 for A(d1) � A(d2), where S(d1) � S(d2); (ii)
d1 >d2 for S(d1)> S(d2).

Defnition 7 (see [13]). Te BM is denoted as

BMs,t ϖ1,ϖ2, . . . ,ϖn( 􏼁 �
1

n(n− 1)
⊕
n

i,j�1,i≠j
ϖs

i ⊗ϖ
t
j􏼐 􏼑􏼠 􏼡

1/s+t

,

(7)

Journal of Mathematics 3



where s + t> 0 for s, t≥ 0, and ϖk ≥ 0(k � 1, 2, . . . , n).

Defnition 8 (see [15]). Te GBM is denoted as

GBMs,t ϖ1,ϖ2, . . . ,ϖn( 􏼁 �
1

s + t
⊕
n

i,j�1,i≠j
sϖi ⊕ tϖj􏼐 􏼑􏼠 􏼡

1/n(n− 1)

,

(8)

where s, t≥ 0 with s + t> 0, and ϖk ≥ 0(k � 1, 2, . . . , n).

Defnition 9 (see [17]). Let s + t≥ 0 where s, t≥ 0, and T �

(ϖ1,ϖ2, . . . ,ϖn) with ϖk ≥ 0(k � 1, 2, . . . , n), which is par-
titioned into x distinct sorts P1, P2, . . . , Px, where
⋃x

h�1Ph� T. Te PBM is denoted by

PBMs,t ϖ1,ϖ2, . . . ,ϖn( 􏼁 �
1
d

􏽘

x

h�1

1
Ph

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽘
i∈Ph

ϖs
i

1
Ph

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌− 1

􏽘
j∈Ph,j≠i
ϖt

j
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/s+t

⎛⎝ ⎞⎠, (9)

where |Ph| denotes the cardinality of Ph, d is the number of
the partitioned sorts, and 􏽐

x
h�1|Ph| � n.

3. Some Dual Hesitant q-Rung Orthopair Fuzzy
Interaction PBM Operators for DHq-ROFNs

In this part, we present some basic operational rules among
the DHq-ROFSs considering the interaction.

Defnition 10. Let d1 � (h1, g1) and d2 � (h2, g2) be two
DHq-ROFNs; then,

(1) d1 ⊕d2 � ∪φ1∈h1,δ1∈g1 ,φ2∈h2,δ2∈g2
1 − 􏽙

2

i�1
1 − φq

i( 􏼁⎞⎠

1/q

⎛⎝
⎫⎪⎬

⎪⎭
, 􏽙

2

i�1
1 − φq

i( 􏼁 − 􏽙
2

i�1
1 − φq

i − δq

i( 􏼁⎞⎠

1/q⎫⎪⎬

⎪⎭
⎛⎜⎝

⎫⎪⎬

⎪⎭
,

⎧⎪⎨

⎪⎩

⎧⎪⎨

⎪⎩

⎧⎪⎨

⎪⎩
(10)

(2) d1 ⊗d2 � ∪φ1∈h1 ,δ1∈g1 ,φ2∈h2 ,δ2∈g2
􏽙

2

i�1
1 − δq

i( 􏼁 − 􏽙
2

i�1
1 − φq

i − δq

i( 􏼁⎞⎠

1/q⎫⎪⎬

⎪⎭
,⎛⎜⎝ 1 − 􏽙

2

i�1
1 − δq

i( 􏼁⎛⎝ ⎞⎠

1/q⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

⎫⎪⎬

⎪⎭
,

⎧⎪⎨

⎪⎩

⎧⎪⎨

⎪⎩
(11)

(3) λd � ∪φ∈h,δ∈g 1 − 1 − φq
( 􏼁

λ
􏼐 􏼑

1/q
􏼚 􏼛, 1 − φq

( 􏼁
λ

− 1 − φq
− δq

( 􏼁
λ

􏼐 􏼑
1/q

􏼚 􏼛􏼚 􏼛, λ> 0, (12)

(4) d
λ

� ∪φ∈h,δ∈g 1 − δq
( 􏼁

λ
− 1 − φq

− δq
( 􏼁

λ
􏼐 􏼑

1/q
􏼚 􏼛, 1 − 1 − δq

( 􏼁
λ

􏼐 􏼑
1/q

􏼚 􏼛􏼚 􏼛, λ> 0. (13)

Ten, based on interaction operations for DHq-ROFNs,
we provide the DHq-ROFIPBM, DHq-ROFWIPBM, DHq-
ROFIPGBM, and DHq-ROFWIPGBM operators along with
their corresponding properties. Besides, we provide their
special cases.

3.1. Te DHq-ROFIPBM Operator

Defnition 11. Let T � (d1, d2, . . . , dn) be a collection of
DHq-ROFNs, which is partitioned into x distinct sorts
P1, P2, . . . , Px, where di � (hi, gi)(i � 1, 2, . . . , n) and
⋃x

h�1Ph � T. Te DHq-ROFIPBM operator is defned as

DHq − ROFIPBMs,t
d1, d2, . . . , dn( 􏼁 �

1
x
⊕
x

h�1

1
Ph

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
⊕

i∈Ph

d
s
i ⊗

1
Ph

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌− 1
⊕

j∈Ph,j≠i
d

t
j􏼠 􏼡􏼠 􏼡􏼠 􏼡

1/s+t

⎛⎝ ⎞⎠, (14)
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where s, t≥ 0, |Ph| denotes the cardinality of Ph, x is the
number of the partitioned sorts, and 􏽐

x
h�1|Ph| � n.

Theorem 12. Let di � (hi, gi)(i � 1, 2, . . . , n) be a collection
of DHq-ROFNs and s, t≥ 0. Ten, the aggregated value of di

obtained by DHq-ROFIPBM operator is a DHq-ROFNs,
shown as follows:

DHq− ROFIPBMs,t
d1, d2, . . . , dn( 􏼁 � ∪φi∈hi,δi∈gi,φj∈hj,δj∈gj

1 − 􏽙
x

h�1
1 − 1 − 􏽙

i∈Ph

1 − αs
i (1 − ζ + c) + βs

i c( 􏼁
1/ Ph| | + 􏽙

i∈Ph

βs
i c( 􏼁

1/ Ph| |⎛⎝ ⎞⎠

1/s+t

+ 􏽙
i∈Ph

βs
i c( 􏼁

1/ Ph| |⎛⎝ ⎞⎠

1/s+t

⎛⎝ ⎞⎠

1/x

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/q
⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

􏽙

x

h�1
1 − 1 − 􏽙

i∈Ph

1 − αs
i (1 − ζ + c) + βs

i c( 􏼁
1/ Ph| | + 􏽙

i∈Ph

βs
i c( 􏼁

1/ Ph| |⎛⎝ ⎞⎠

1/s+t

+ 􏽙
i∈Ph

βs
i c( 􏼁

1/ Ph| |⎛⎝ ⎞⎠

1/s+t

⎛⎝ ⎞⎠

1/x

− 􏽙
x

h�1
􏽙
i∈Ph

βs
i c( 􏼁

1/ Ph| |⎛⎝ ⎞⎠

1/s+t

⎛⎝ ⎞⎠

1/x

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/q
⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(15)

where ζ � 􏽑j∈Ph,j≠i(1 − αt
j + βt

j)
1/|Ph|− 1, c � (􏽑j∈Ph,j≠i

βt
j)
1/|Ph|− 1, and αi � 1 − δq

i , αj � 1 − δq
j , βi � 1 − φq

i − δq
i ,

βj � 1 − φq

j − δq

j .

Proof. By equation (13), we have

d
s
i � ∪φi∈hi,δi∈gi

1 − δq

i( 􏼁
s

− 1 − φq

i − δq

i( 􏼁
s

􏼐 􏼑
1/q

􏼚 􏼛, 1 − 1 − δq

i( 􏼁
s

􏼐 􏼑
1/q

􏼚 􏼛,

d
t
j � ∪φj∈hj,δj∈gj

1 − δq
j􏼐 􏼑

t
− 1 − φq

j − δq
j􏼐 􏼑

t
􏼒 􏼓

1/q
􏼨 􏼩, 1 − 1 − δq

j􏼐 􏼑
t

􏼒 􏼓
1/q

􏼨 􏼩.

(16)

Let αi � 1 − δq
i , αj � 1 − δq

j , βi � 1 − φq
i − δq

i , βj � 1 − φq
j

− δq
j , and thus

⊕
j∈Ph,j≠i

d
t
j � ∪φj∈hj,δj∈gj

1 − 􏽙
j∈Ph,j≠i

1 − αt
j + βt

j􏼐 􏼑⎛⎝ ⎞⎠

1/q⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

⎧⎪⎨

⎪⎩
􏽙

j∈Ph,j≠i
1 − αt

j + βt
j􏼐 􏼑 − 􏽙

j∈Ph,j≠i
βt

j
⎛⎝ ⎞⎠

1/q⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

⎫⎪⎬

⎪⎭
,

1
Ph

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌− 1
⊕

j∈Ph,j≠i
d

t
j � ∪φj∈hj,δj∈gj

1 − 􏽙
j∈Ph,j≠i

1 − αt
j + βt

j􏼐 􏼑
1/ Ph| |− 1⎛⎝ ⎞⎠

1/q⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, 􏽙

j∈Ph,j≠i
1 − αt

j + βt
j􏼐 􏼑

1/ Ph| |− 1
− 􏽙

j∈Ph,j≠i
βt

j
⎛⎝ ⎞⎠

1/ Ph| |− 1
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

1/q⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
.

(17)

Let ζ � 􏽑j∈Ph,j≠i(1 − αt
j + βt

j)
1/|Ph|− 1, c � (􏽑j∈Ph;j≠i

βt
j)
1/|Ph|− 1, and thus
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d
s
i ⊗

1
Ph

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌− 1
⊕

j∈Ph,j≠i
d

t
j􏼠 􏼡 � ∪φi∈hi,δi∈gi,φj∈hj,δj∈gj

αs
i (1 − ζ + c) − βs

i c( 􏼁
1/q

􏽮 􏽯,􏽮 1 − αs
i (1 − ζ + c)( 􏼁

1/q
􏽮 􏽯􏽯,

⊕
i∈Ph

d
s
i ⊗

1
Ph

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌− 1
⊕

j∈Ph,j≠i
d

t
j􏼠 􏼡􏼠 􏼡 � ∪φi∈hi,δi∈gi,φj∈hj,δj∈gj

1 − 􏽙
i∈Ph

1 − αs
i (1 − ζ + c) + βs

i c( 􏼁⎛⎝ ⎞⎠

1/q⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

⎧⎪⎨

⎪⎩
􏽙
i∈Ph

1 − αs
i (1 − ζ + c) + βs

i c( 􏼁 − 􏽙
i∈Ph

βs
i c

⎛⎝ ⎞⎠

1/q⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

⎫⎪⎬

⎪⎭
,

1
Ph

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
⊕

i∈Ph

d
s
i ⊗

1
Ph

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌− 1
⊕

j∈Ph,j≠i
d

t
j􏼠 􏼡􏼠 􏼡􏼠 􏼡

1/s+t

� ∪φi∈hi,δi∈gi,φj∈hj,δj∈gj

􏽙
i∈Ph

1 − αs
i (1 − ζ + c) + βs

i c( 􏼁
1/ Ph| | + 􏽙

i∈Ph

βs
i c( 􏼁

1/ Ph| |⎛⎝ ⎞⎠

1/s+t

− 􏽙
i∈Ph

βs
i c( 􏼁

1/ Ph| |⎛⎝ ⎞⎠

1/s+t

⎛⎝ ⎞⎠

1/q
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

1 − 1 − 􏽙
i∈Ph

1 − αs
i (1 − ζ + c) + βs

i c( 􏼁
1/ Ph| | + 􏽙

i∈Ph

βs
i c( 􏼁

1/ Ph| |⎛⎝ ⎞⎠

1/s+t

⎛⎝ ⎞⎠

1/q
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(18)

Terefore, we can get

1
x
⊕
x

h�1

1
Ph

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
⊕

i∈Ph

d
s
i ⊗

1
Ph

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌− 1
⊕

j∈Ph,j≠i
d

t
j􏼠 􏼡􏼠 􏼡􏼠 􏼡

1/s+t

⎛⎝ ⎞⎠ � ∪φi∈hi,δi∈gi,φj∈hj,δj∈gj

1 − 􏽙
x

h�1
1 − 1 − 􏽙

i∈Ph

1 − αs
i (1 − ζ + c) + βs

i c( 􏼁
1/ Ph| | + 􏽙

i∈Ph

βs
i c( 􏼁

1/ Ph| |⎛⎝ ⎞⎠

1/s+t

+ 􏽙
i∈Ph

βs
i c( 􏼁

1/ Ph| |⎛⎝ ⎞⎠

1/s+t

⎛⎝ ⎞⎠

1/x

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/q
⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

􏽙
x

h�1
1 − 1 − 􏽙

i∈Ph

1 − αs
i (1 − ζ + c) + βs

i c( 􏼁
1/ Ph| | + 􏽙

i∈Ph

βs
i c( 􏼁

1/ Ph| |⎛⎝ ⎞⎠

1/s+t

+ 􏽙
i∈Ph

βs
i c( 􏼁

1/ Ph| |⎛⎝ ⎞⎠

1/s+t

⎛⎝ ⎞⎠

1/x

− 􏽙
x

h�1
􏽙
i∈Ph

βs
i c( 􏼁

1/ Ph| |⎛⎝ ⎞⎠

1/s+t

⎛⎝ ⎞⎠

1/x

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/q
⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(19)

Hence, we have completed the proof. □

Next, we provide some basic properties of the DHq-
ROFIPBM operator.

Theorem 1 (idempotency). Let 􏽥di � (hi, gi)(i � 1, 2, . . . ,

n) be a collection of DHq-ROFNs and s, t> 0. If (􏽥d1,
􏽥d2,

. . . , 􏽥dn) are equal, which is 􏽥d � 􏽥di � (h, g) (i � 1, 2, . . . , n),
then
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DHq − ROFIPBMs,t 􏽥d1,
􏽥d2, . . . , 􏽥dn􏼐 􏼑 � 􏽥d. (20) Proof. When 􏽥d � 􏽥d1 � 􏽥d2 � · · · � 􏽥dn � (h, g), we can get

αi � 1 − δq
i � α, αj � 1 − δq

j � α, βi � 1 − φq
i − δq

i � β,
βj � 1 − φq

j − δq
j � β. Terefore, we have

ζ � 􏽙
j∈Ph,j≠i

1 − αt
j + βt

j􏼐 􏼑
1/ Ph| |− 1

� 􏽙
j∈Ph,j≠i

1 − αt
+ βt

􏼐 􏼑
1/ Ph| |− 1

� 1 − αt
+ βt

,

c � 􏽙
j∈Ph,j≠i

βt
j

⎛⎝ ⎞⎠

1/ Ph| |− 1

� 􏽙
j∈Ph,j≠i

βt⎛⎝ ⎞⎠

1/ Ph| |− 1

� βt
,

DHq − ROFIPBMs,t 􏽥d1,
􏽥d2, . . . , 􏽥dn􏼐 􏼑 � ∪φ∈h,δ∈g

1 − 􏽙
x

h�1
1 − 1 − 􏽙

i∈Ph

1 − αsαt
+ βsβt

􏼐 􏼑
1/ Ph| |

+ βsβt⎛⎝ ⎞⎠

1/s+t

+ βsβt
􏼐 􏼑

1/s+t⎛⎝ ⎞⎠

1/x

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/q
⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

􏽙

x

h�1
1 − 1 − 􏽙

i∈Ph

1 − αsαt
+ βsβt

􏼐 􏼑
1/ Ph| |

+ 􏽙
i∈Ph

βsβt
􏼐 􏼑

1/ Ph| |⎛⎝ ⎞⎠

1/s+t

+ 􏽙
i∈Ph

βsβt
􏼐 􏼑

1/ Ph| |⎛⎝ ⎞⎠

1/s+t

⎛⎝ ⎞⎠

1/x

− 􏽙
x

h�1
􏽙
i∈Ph

βsβt
􏼐 􏼑

1/ Ph| |⎛⎝ ⎞⎠

1/s+t

⎛⎝ ⎞⎠

1/x

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/q
⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

� ∪ φ∈h,δ∈g

1 − 􏽙
x

h�1
1 − 1 − 1 − αs+t

+ βs+t
􏼐 􏼑 + βs+t

􏼐 􏼑
1/s+t

+ + βs+t
􏼐 􏼑

1/s+t
􏼒 􏼓

1/x
⎛⎝ ⎞⎠

1/q⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, 􏽙

x

h�1
1 − 1 − 1 − αs+t

+ βs+t
􏼐 􏼑 + βs+t

􏼐 􏼑􏼐 􏼑
1/s+t

􏼒⎛⎝ + βs+t
􏼐􏼐 􏼑􏼑

1/s+t
􏼓
1/x

− 􏽙
x

h�1
βs+t

􏼐􏼐 􏼑􏼑
1/s+t

􏼒 􏼓
1/x

⎞⎠

1/q⎫⎪⎬

⎪⎭

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

� ∪ φ∈h,δ∈g φ􏼈 􏼉, δ{ }􏼈 􏼉 � 􏽥d.

(21)

□
Theorem 14 (commutativity). Let 􏽥di � (hi, gi) and
􏽥di
′ � (hi
′, gi
′) (i � 1, 2, . . . , n) be two collections of DHq-

ROFNs. If 􏽥di
′ � (hi
′, gi
′) is a permutation of 􏽥di � (hi, gi), then

DHq − ROFIPBMs,t 􏽥d1,
􏽥d2, . . . , 􏽥dn􏼐 􏼑

� DHq− ROFIPBMs,t 􏽥d1′, 􏽥d2′, . . . , 􏽥dn
′􏼐 􏼑.

(22)

Proof. Based on equation (15), we have

DHq − ROFIPBMs,t
d1, d2, . . . , dn( 􏼁 � ∪φi∈hi,δi∈gi,φj∈hj,δj∈gj

1 − 􏽙
x

h�1
1 − 1 − 􏽙

i∈Ph

1 − αs
i (1 − ζ + c) + βs

i c( 􏼁
1/ Ph| | + 􏽙

i∈Ph

βs
i c( 􏼁

1/ Ph| |⎛⎝ ⎞⎠

1/s+t

+ 􏽙
i∈Ph

βs
i c( 􏼁

1/ Ph| |⎛⎝ ⎞⎠

1/s+t

⎛⎝ ⎞⎠

1/x

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/q
⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

􏽙
x

h�1
1 − 1 − 􏽙

i∈Ph

1 − αs
i (1 − ζ + c) + βs

i c( 􏼁
1/ Ph| | + 􏽙

i∈Ph

βs
i c( 􏼁

1/ Ph| |⎛⎝ ⎞⎠

1/s+t

+ 􏽙
i∈Ph

βs
i c( 􏼁

1/ Ph| |⎛⎝ ⎞⎠

1/s+t

⎛⎝ ⎞⎠

1/x

− 􏽙
x

h�1
􏽙
i∈Ph

βs
i c( 􏼁

1/ Ph| |⎛⎝ ⎞⎠

1/s+t

⎛⎝ ⎞⎠

1/x

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/q
⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

DHq − ROFIPBMs,t
d1′, d2′, . . . , dn

′( 􏼁 � ∪φi
′∈hi
′,δi
′∈gi
′,φj
′∈hj
′,δj
′∈gj
′

1 − 􏽙
x

h�1
1 − 1 − 􏽙

i∈Ph

1 − α′si 1 − ζ ′ + c
′

􏼒 􏼓 + β′
s

i c
′

􏼒 􏼓
1/ Ph| |

+ 􏽙
i∈Ph

β′
s

i c
′

􏼒 􏼓
1/ Ph| |

⎛⎝ ⎞⎠

1/s+t

+ 􏽙
i∈Ph

β′
s

i c
′

􏼒 􏼓
1/ Ph| |

⎛⎝ ⎞⎠

1/s+t

⎛⎝ ⎞⎠

1/x

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/q
⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

􏽙

x

h�1
1 − 1 − 􏽙

i∈Ph

1 − α′si 1 − ζ ′ + c
′

􏼒 􏼓 + β′
s

i c
′

􏼒 􏼓
1/ Ph| |

+ 􏽙
i∈Ph

β′
s

i c
′

􏼒 􏼓
1/ Ph| |

⎛⎝ ⎞⎠

1/s+t

+ 􏽙
i∈Ph

β′
s

i c
′

􏼒 􏼓
1/ Ph| |

⎛⎝ ⎞⎠

1/s+t

⎛⎝ ⎞⎠

1/x

− 􏽙
x

h�1
􏽙
i∈Ph

β′
s

i c
′

􏼒 􏼓
1/ Ph| |

⎛⎝ ⎞⎠

1/s+t

⎛⎝ ⎞⎠

1/x

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/q
⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(23)

Since 􏽥di
′ � (hi
′, gi
′) is a permutation of 􏽥di � (hi, gi), then
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DHq − ROFIPBMs,t 􏽥d1,
􏽥d2, . . . , 􏽥dn􏼐 􏼑

� DHq − ROFIPBMs,t 􏽥d1′, 􏽥d2′, . . . , 􏽥dn
′􏼐 􏼑.

(24)

Further, we give several special cases of the
DHq − ROFIPBMs,t operator by adjusting the parameters s

and t.

(1) When t⟶ 0, we can get ζ � 􏽑j∈Ph,j≠i

(1 − αt
j + βt

j)
1/|Ph|− 1 � 1, c � (􏽑j∈Ph,j≠i β

t
j)
1/|Ph|− 1� 1.

Tus, we have

DHq− ROFIPBMs,0
d1, d2, . . . , dn( 􏼁 � ∪φi∈hi,δi∈gi

1 − 􏽙
x

h�1
1 − 1 − 􏽙

i∈Ph

1 − αs
i + βs

i( 􏼁⎛⎝ ⎞⎠

1/ Ph| |

+ 􏽙
i∈Ph

βs
i( 􏼁
1/ Ph| |⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

1/s

+ 􏽙
i∈Ph

βs
i( 􏼁
1/ Ph| |⎛⎝ ⎞⎠

1/s
⎛⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎠

1/x

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/q
⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

,

􏽙
x

h�1
1 − 1 − 􏽙

i∈Ph

1 − αs
i + βs

i( 􏼁
1/ Ph| | + 􏽙

i∈Ph

βs
i( 􏼁
1/ Ph| |⎛⎝ ⎞⎠

1/s

+ 􏽙
i∈Ph

βs
i( 􏼁
1/ Ph| |⎛⎝ ⎞⎠

1/s

⎛⎝ ⎞⎠

1/x

− 􏽙
x

h�1
􏽙
i∈Ph

βs
i( 􏼁
1/ Ph| |⎛⎝ ⎞⎠

1/s

⎛⎝ ⎞⎠

1/x

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/q
⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(25)

(2) When s � 1, t⟶ 0, we can get ζ � 􏽑j∈Ph;j≠i

(1 − αt
j + βt

j)
1/|Ph|− 1 � 1, c � (􏽑j∈Ph;j≠i β

t
j)
1/|Ph|− 1 � 1.

Tus, we have

DHq − ROFIPBM1,0
d1, d2, . . . , dn( 􏼁 � ∪φi∈hi,δi∈gi

1 − 􏽙
x

h�1
􏽙
i∈Ph

1 − φq

i( 􏼁
1/ Ph| |⎛⎝ ⎞⎠

1/x

⎛⎝ ⎞⎠

1/q
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

􏽙

x

h�1
􏽙
i∈Ph

1 − φq
i( 􏼁

1/ Ph| |⎛⎝ ⎞⎠

1/x

− 􏽙
x

h�1
􏽙
i∈Ph

1 − φq
i − δq

i( 􏼁
1/ Ph| |⎛⎝ ⎞⎠

1/x

⎛⎝ ⎞⎠

1/q
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(26)

(3) When s⟶ 0, we can get

DHq − ROFIPBM0,t
d1, d2, . . . , dn( 􏼁 � ∪φj∈hj,δj∈gj

1 − 􏽙
x

h�1
1 − (1 − ζ + c)

1/t
+ c

1/t
􏼐 􏼑

1/x
⎛⎝ ⎞⎠

1/q⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

􏽙

x

h�1
1 − (1 − ζ + c)

1/t
+ c

1/t
􏼐 􏼑

1/x
− 􏽙

x

h�1
c
1/t

􏼐 􏼑
1/x⎛⎝ ⎞⎠

1/q⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

.
(27)

(4) When s � 1, t � 1, we can get ζ � 􏽑j∈Ph;j≠i

(1 − αj + βj)
1/|Ph|− 1, c � (􏽑j∈Ph;j≠i βj)

1/|Ph|− 1. Tus,
we have
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DHq − ROFIPBMs,t
d1, d2, . . . , dn( 􏼁 � ∪φi∈hi,δi∈gi,φj∈hj,δj∈gj

1 − 􏽙
x

h�1
1 − 1 − 􏽙

i∈Ph

1 − αi(1 − ζ + c) + βic( 􏼁
1/ Ph| | + 􏽙

i∈Ph

βic( 􏼁
1/ Ph| |⎛⎝ ⎞⎠

1/2

+ 􏽙
i∈Ph

βic( 􏼁
1/ Ph| |⎛⎝ ⎞⎠

1/2

⎛⎝ ⎞⎠

1/x

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/q
⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

􏽙

x

h�1
1 − 1 − 􏽙

i∈Ph

1 − αi(1 − ζ + c) + βic( 􏼁
1/ Ph| | + 􏽙

i∈Ph

βic( 􏼁
1/ Ph| |⎛⎝ ⎞⎠

1/2

+ 􏽙
i∈Ph

βic( 􏼁
1/ Ph| |⎛⎝ ⎞⎠

1/2

⎛⎝ ⎞⎠

1/x

− 􏽙
x

h�1
􏽙
i∈Ph

βic( 􏼁
1/ Ph| |⎛⎝ ⎞⎠

1/2

⎛⎝ ⎞⎠

1/x

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/q
⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(28)

If all the DHq-ROFNS are partitioned into one sort, the
DHq-ROFIPBM operator reduces to the dual hesitant q-
rung orthopair fuzzy interaction Bonferroni mean (DHq-
ROFIBM) operator as follows:

DHq − ROFIBMs,t
d1, d2, . . . , dn( 􏼁 �

1
n(n− 1)

⊕
n

i,j�1,i≠j
d

s
i ⊗ d

t
j􏼐 􏼑􏼠 􏼡

1/s+t

� ∪φi∈hi,δi∈gi,φj∈hj,δj∈gj

1 − 􏽙
n

i,j�1,i≠j
1 − αs

iα
t
j + βs

iβ
t
j􏼐 􏼑

1/n(n− 1)⎛⎝ ⎞⎠ + 􏽙
n

i,j�1,i≠j
βs

iβ
t
j

⎛⎝ ⎞⎠

1/n(n− 1)

⎛⎜⎝ ⎞⎟⎠

1/s+t

− 􏽙
n

i,j�1,i≠j
βs

iβ
t
j

⎛⎝ ⎞⎠

1/n(n− 1)

⎛⎜⎝ ⎞⎟⎠

1/s+t

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/q
⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

1 − 1 − 􏽙
n

i,j�1,i≠j
1 − αs

iα
t
j + βs

iβ
t
j􏼐 􏼑⎛⎝ ⎞⎠

1/n(n− 1)

+ 􏽙
n

i,j�1,i≠j
βs

iβ
t
j

⎛⎝ ⎞⎠

1/n(n− 1)

⎛⎜⎝ ⎞⎟⎠

1/s+t

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/q
⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(29)

□
3.2. Te DHq-ROFWIPBM Operator

Defnition 15. Let T � (d1, d2, . . . , dn) be a collection of
DHq-ROFNs, which is partitioned into x distinct sorts
P1, P2, . . . , Px, where di � (φi, δi)(i � 1, 2, . . . , n) and
⋃x

h�1Ph � T. Te DHq-ROFWIPBM operator is defned as

DHq − ROFWIPBMs,t
d1, d2, . . . , dn( 􏼁 �

1
x
⊕
x

h�1
􏼒

1
Ph

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 Ph

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌− 1􏼐 􏼑

⊕
i,j∈Ph,j≠i

ωidi( 􏼁
s ⊗ ωjdj􏼐 􏼑

t
􏼒 􏼓⎛⎝ ⎞⎠

1/s+t

⎞⎠, (30)

where s, t≥ 0, |Ph| denotes the cardinality of Ph, x is the
number of the partitioned sorts, and 􏽐

x
h�1|Ph| � n,

ω � (ω1,ω2, . . . ,ωn) is the weight vector of (d1, d2, . . . , dn),
ωj ∈ [0, 1], j � 1, 2, . . . , n, and 􏽐

n
j�1ωj � 1.

Theorem 16. Let di � (hi, gi)(i � 1, 2, . . . , n) be a collection
of DHq-ROFNs and s, t≥ 0. Ten, the aggregated value of di

obtained by DHq-ROFWIPBM operator is a DHq-ROFNs,
shown as follows:
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DHq − ROFWIPBMs,t
d1, d2, . . . , dn( 􏼁 � ∪φi∈hi,δi∈gi,φj∈hj,δj∈gj

1 − 􏽙

x

h�1
1 − 1 − 􏽙

i,j∈Ph,j≠i
(1 − ζ + c)

1/ Ph| | Ph| |− 1( ) + 􏽙
i,j∈Ph,j≠i

(c)
1/ Ph| | Ph| |− 1( )⎛⎝ ⎞⎠

1/s+t

+ 􏽙
i,j∈Ph,j≠i

(c)
1/ Ph| | Ph| |− 1( )(s+t)⎛⎝ ⎞⎠

1/x

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/q
⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

􏽙
x

h�1
1 − 1 − 􏽙

i,j∈Ph,j≠i
(1 − ζ + c)

1/ Ph| | Ph| |− 1( ) + 􏽙
i,j∈Ph,j≠i

(c)
1/ Ph| | Ph| |− 1( )⎛⎝ ⎞⎠

1/s+t

+ 􏽙
i,j∈Ph,j≠i

(c)
1/ Ph| | Ph| |− 1( )(s+t)⎛⎝ ⎞⎠

1/x

− 􏽙
x

h�1
􏽙

i,j∈Ph,j≠i
(c)

1/ Ph| | Ph| |− 1( )(s+t)x⎛⎝ ⎞⎠⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/q
⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,
(31)

where ζ � (1 − αi + βi)
s(1 − αj + βj)

t, c � βs
iβ

t
j and

αi � (1 − φq
i )ωi , αj � (1 − φq

j)ωj , βi � (1 − φq
i − δq

i )ωi ,
βj � (1 − φq

j − δq
j)ωj .

Proof. By equation (12), we have

ωidi � ∪φi∈hi,δi∈gi
1 − 1 − φq

i( 􏼁
ωi􏼐 􏼑

1/q
􏼚 􏼛, 1 − φq

i( 􏼁
ωi − 1 − φq

i − δq
i( 􏼁

ωi􏼐 􏼑
1/q

􏼚 􏼛􏼚 􏼛,

ωjdj � ∪φj∈hj,δj∈gj
1 − 1 − φq

j􏼐 􏼑
ωj

􏼐 􏼑
1/q

􏼚 􏼛, 1 − φq
j􏼐 􏼑

ωj
− 1 − φq

j − δq
j􏼐 􏼑

ωj
􏼐 􏼑

1/q
􏼚 􏼛􏼚 􏼛.

(32)

Let αi � (1 − φq
i )ωi , αj � (1 − φq

j)ωj , βi � (1 − φq
i − δq

i )ωi ,
βj � (1 − φq

j − δq
j)ωj . Ten, we can get

ωidi( 􏼁
s ⊗ ωjdj􏼐 􏼑

t
� ∪φi∈hi,δi∈gi,φj∈hj,δj∈gj

1 − αi + βi( 􏼁
s 1 − αj + βj􏼐 􏼑

t
− βs

iβ
t
j􏼒 􏼓

1/q
􏼨 􏼩,􏼨 1 − 1 − αi + βi( 􏼁

s 1 − αj + βj􏼐 􏼑
t

􏼒 􏼓
1/q

􏼨 􏼩􏼩.
(33)

Let ζ � (1 − αi + βi)
s(1 − αj + βj)

t, c � βs
iβ

t
j. Ten, we

can get

⊕
i,j∈Ph,j≠i

ωidi( 􏼁
s ⊗ ωjdj􏼐 􏼑

t
� ∪φi∈hi,δi∈gi,φj∈hj,δj∈gj

1 − 􏽙
i,j∈Ph,j≠i

(1 − ζ + c)⎛⎝ ⎞⎠

1/q⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

⎧⎪⎨

⎪⎩
􏽙

i,j∈Ph,j≠i
(1 − ζ + c) − 􏽙

i,j∈Ph,j≠i
(c)⎛⎝ ⎞⎠

1/q⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

⎫⎪⎬

⎪⎭
,

1
Ph

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 Ph

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌− 1􏼐 􏼑

⊕
i,j∈Ph,j≠i

ωidi( 􏼁
s ⊗ ωjdj􏼐 􏼑

t⎛⎝ ⎞⎠

1/s+t

� ∪φi∈hi,δi∈gi,φj∈hj,δj∈gj

1 − 􏽙
i,j∈Ph,j≠i

(1 − ζ + c)
1/ Ph| | Ph| |− 1( ) + 􏽙

i,j∈Ph,j≠i
(c)

1/ Ph| | Ph| |− 1( )⎛⎝ ⎞⎠

1/s+t

− 􏽙
i,j∈Ph,j≠i

(c)
1/ Ph| | Ph| |− 1( )(s+t)⎛⎝ ⎞⎠

1/q
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

1 − 1 − 􏽙
i,j∈Ph,j≠i

(1 − ζ + c)
1/ Ph| | Ph| |− 1( ) + 􏽙

i,j∈Ph,j≠i
(c)

1/ Ph| | Ph| |− 1( )⎛⎝ ⎞⎠

1/s+t

⎛⎝ ⎞⎠

1/q
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

1
x
⊕
x

h�1

1
Ph

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 Ph

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌− 1􏼐 􏼑

⊕
i,j∈Ph,j≠i

⎛⎝⎛⎝ ωidi( 􏼁
s ⊗ ωjdj􏼐 􏼑

t
􏼒 􏼓􏼓

1/s+t

􏼡 � ∪φi∈hi,δi∈gi,φj∈hj,δj∈gj

1 − 􏽙
x

h�1
1 − 1 − 􏽙

i,j∈Ph,j≠i
(1 − ζ + c)

1/ Ph| | Ph| |− 1( ) + 􏽙
i,j∈Ph,j≠i

(c)
1/ Ph| | Ph| |− 1( )⎛⎝ ⎞⎠

1/s+t

+ 􏽙
i,j∈Ph,j≠i

(c)
1/ Ph| | Ph| |− 1( )(s+t)⎛⎝ ⎞⎠

1/x

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/q
⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

􏽙

x

h�1
1 − 1 − 􏽙

i,j∈Ph,j≠i
(1 − ζ + c)

1/ Ph| | Ph| |− 1( ) + 􏽙
i,j∈Ph,j≠i

(c)
1/ Ph| | Ph| |− 1( )⎛⎝ ⎞⎠

1/s+t

+ 􏽙
i,j∈Ph,j≠i

(c)
1/ Ph| | Ph| |− 1( )(s+t)⎛⎝ ⎞⎠

1/x

− 􏽙
x

h�1
􏽙

i,j∈Ph,j≠i
(c)

1/ Ph| | Ph| |− 1( )(s+t)x⎛⎝ ⎞⎠⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/q
⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(34)
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If all the DHq-ROFNs are partitioned into one sort, the
DHq-ROFWIPBM operator reduces to the dual hesitant q-
rung orthopair fuzzy weighted interaction Bonferroni mean
(DHq-ROFWIBM) operator as follows:

DHq − ROFWIBMs,t
d1, d2, . . . , dn( 􏼁 �

1
n(n− 1)

⊕
n

i,j�1,j≠i
ωidi( 􏼁

s ⊗ ωjdj􏼐 􏼑
t

􏼒 􏼓􏼠 􏼡

1/s+t

� ∪φi∈hi,δi∈gi,φj∈hj,δj∈gj

1 − 􏽙
i,j�1,j≠i

(1 − ζ + c)
1/n(n− 1)

+ 􏽙
i,j�1,j≠i

(c)
1/n(n− 1)⎛⎝ ⎞⎠

1/s+t

− 􏽙
i,j�1,j≠i

(c)
1/n(n− 1)(s+t)⎛⎝ ⎞⎠

1/q
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

1 − 1 − 􏽙
i,j�1,j≠i

(1 − ζ + c)
1/n(n− 1)

+ 􏽙
i,j�1,j≠i

(c)
1/n(n− 1)⎛⎝ ⎞⎠

1/s+t

⎛⎝ ⎞⎠

1/q
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(35)

□

3.3. Te DHq-ROFIPGBM Operator

Defnition 17. Let T � (d1, d2, . . . , dn) be a collection of
DHq-ROFNs, which is partitioned into x distinct sorts
P1, P2, . . . , Px, where di � (hi, gi)(i � 1, 2, . . . , n) and
⋃x

h�1Ph � T. Te DHq-ROFIPGBM operator is defned as

DHq − ROFIPGBMs,t
d1, d2, . . . , dn( 􏼁 � ⊗

x

h�1

1
s + t

⊗
i,j∈Ph,j≠i

sdi( 􏼁⊕ tdj􏼐 􏼑􏼐 􏼑􏼠 􏼡

1/ Ph| | Ph| |− 1( )
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/x

, (36)

where s, t≥ 0, |Ph| denotes the cardinality of Ph, x is the
number of the partitioned sorts, and 􏽐

x
h�1|Ph| � n.

Theorem 18. Let di � (hi, gi)(i � 1, 2, . . . , n) be a collection
of DHq-ROFNs and s, t≥ 0. Ten, the aggregated value of di

obtained by DHq-ROFIPGBM operator is DHq-ROFN,
shown as follows:

DHq − ROFIPGBMs,t
d1, d2, . . . , dn( 􏼁 � ∪φi∈hi,δi∈gi,φj∈hj,δj∈gj

􏽙

x

h�1
1 − 1 − 􏽙

i∈Ph

1 − αs
i (1 − ζ + c) + βs

i c( 􏼁
1/ Ph| | + 􏽙

i∈Ph

βs
i c( 􏼁

1/ Ph| |⎛⎝ ⎞⎠

1/s+t

+ 􏽙
i∈Ph

βs
i c( 􏼁

1/ Ph| |⎛⎝ ⎞⎠

1/s+t

⎛⎝ ⎞⎠

1/x

− 􏽙
x

h�1
􏽙
i∈Ph

βs
i c( 􏼁

1/ Ph| |⎛⎝ ⎞⎠

1/s+t

⎛⎝ ⎞⎠

1/x

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/q
⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

⎫⎪⎪⎬

⎪⎪⎭
,

1 − 􏽙

x

h�1
1 − 1 − 􏽙

i∈Ph

1 − 1 − αs
i (1 − ζ + c) + βs

i c( 􏼁
1/ Ph| | + 􏽙

i∈Ph

βs
i c( 􏼁

1/ Ph| |⎛⎝ ⎞⎠

1/s+t

+ 􏽙
i∈Ph

βs
i c( 􏼁

1/ Ph| |⎛⎝ ⎞⎠

1/s+t

⎛⎝ ⎞⎠

1/x

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/q
⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(37)

where ζ � 􏽑j∈Ph,j≠i(1 − αt
j + βt

j)
1/|Ph|− 1, c � (􏽑j∈Ph,j≠i

βt
j)
1/|Ph|− 1 and αi � 1 − φq

i , αj � 1 − φq
j , βi � 1 − φq

i − δq
i , βj �

1 − φq
j − δq

j .

Te proof is similar to Teorem 12, so we omit it.
Next, we can derive some basic properties for the DHq-

ROFIPGBM operator.
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Theorem 19 (idempotency). Let 􏽥di � (hi, gi)(i � 1, 2, . . . ,

n) be a collection of DHq-ROFNs and s, t> 0. If
(􏽥d1,

􏽥d2, . . . , 􏽥dn) are equal, which is 􏽥d � 􏽥di � (h, g),
i � 1, 2, . . . , n, then

DHq − ROFIPGBMs,t 􏽥d1,
􏽥d2, . . . , 􏽥dn􏼐 􏼑 � 􏽥d. (38)

Theorem 20 (commutativity). Let 􏽥di � (hi, gi) and
􏽥di
′ � (hi
′, gi
′)(i � 1, 2, . . . , n) be two collections of DHq-ROFNs.

If 􏽥di
′ � (hi
′, gi
′) is any permutation of 􏽥di � (hi, gi), then

DHq − ROFIPGBMs,t 􏽥d1,
􏽥d2, . . . , 􏽥dn􏼐 􏼑 � DHq − ROFIPGBMs,t 􏽥d1′, 􏽥d2′, . . . , 􏽥dn

′􏼐 􏼑. (39)

Te proofs of Teorems 19 and 20 are similar to Te-
orems 13 and 14, so we omit them.

Moreover, we give some certain situations of the DHq −

ROFIPGBMs,t operator by adjusting the parameters s and t.

(1) When t⟶ 0, we can get ζ � 1, c � 1. Tus, we have

DHq − ROFIPGBMs,0
d1, d2, . . . , dn( 􏼁 � ∪φi∈hi,δi∈gi

􏽙

x

h�1
1 − 1 − 􏽙

i∈Ph

1 − αs
i + βs

i( 􏼁
1/ Ph| | + 􏽙

i∈Ph

βs
i( 􏼁

1/ Ph| |⎛⎝ ⎞⎠

1/s

+ 􏽙
i∈Ph

βs
i( 􏼁
1/ Ph| |⎛⎝ ⎞⎠

1/s

⎛⎝ ⎞⎠

1/x

− 􏽙

x

h�1
􏽙
i∈Ph

βs
i( 􏼁
1/ Ph| |⎛⎝ ⎞⎠

1/s

⎛⎝ ⎞⎠

1/x

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/q
⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

1 − 􏽙
x

h�1
1 − 1 − 􏽙

i∈Ph

1 − αs
i + βs

i( 􏼁⎛⎝ ⎞⎠

1/ Ph| |

+ 􏽙
i∈Ph

βs
i( 􏼁

1/ Ph| |⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

1/s

+ 􏽙
i∈Ph

βs
i( 􏼁

1/ Ph| |⎛⎝ ⎞⎠

1/s
⎛⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎠

1/x

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/q
⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

.

(40)

(2) When s � 1, t⟶ 0, we can get ζ � 1, c � 1.Tus, we
have

DHq − ROFIPGBM1,0
d1, d2, . . . , dn( 􏼁 � ∪φi∈hi,δi∈gi

􏽙

x

h�1
􏽙
i∈Ph

1 − δq

i( 􏼁
1/ Ph| |⎛⎝ ⎞⎠

1/x

− 􏽙
x

h�1
􏽙
i∈Ph

1 − φq

i + δq

i( 􏼁
1/ Ph| |⎛⎝ ⎞⎠

1/x

⎛⎝ ⎞⎠

1/q
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, 1 − 􏽙

x

h�1
􏽙
i∈Ph

1 − δq

i( 􏼁
1/ Ph| |⎛⎝ ⎞⎠

1/x

⎛⎝ ⎞⎠

1/q
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(41)

(3) When s⟶ 0, we can get

DHq − ROFIPGBM0,t
d1, d2, . . . , dn( 􏼁 � ∪φj∈hj,δj∈gj

􏽙

x

h�1
1 − (1 − ζ + c)

1/t
+ c

1/t
􏼐 􏼑

1/x
, − 􏽙

x

h�1
c
1/t

􏼐 􏼑
1/x⎞⎠

1/q⎫⎪⎬

⎪⎭
, 1 − 􏽙

x

h�1
1 − (1 − ζ + c)

1/t
+ c

1/t
􏼐 􏼑

1/x⎛⎝ ⎞⎠

1/q⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
⎛⎜⎝

⎫⎪⎬

⎪⎭
.

⎧⎪⎨

⎪⎩

⎧⎪⎨

⎪⎩

(42)

(4) When s � 1, t � 1, we can get ζ � 􏽑j∈Ph,j≠i

(1 − αj + βj)
1/|Ph|− 1, c � (􏽑j∈Ph;j≠iβj)

1/|Ph|− 1.Tus, we

have
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DHq − ROFIPGBMs,t
d1, d2, . . . , dn( 􏼁 � ∪ φi∈hi,δi∈gi,φj∈hj,δj∈gj

􏽙
x

h�1
1 − 1 − 􏽙

i∈Ph

1 − αi(1 − ζ + c) + βic( 􏼁
1/ Ph| | + 􏽙

i∈Ph

βic( 􏼁
1/ Ph| |⎛⎝ ⎞⎠

1/2

+ 􏽙
i∈Ph

βic( 􏼁
1/ Ph| |⎛⎝ ⎞⎠

1/2

⎛⎝ ⎞⎠

1/x

− 􏽙
x

h�1
􏽙
i∈Ph

βic( 􏼁
1/ Ph| |⎛⎝ ⎞⎠

1/2

⎛⎝ ⎞⎠

1/x

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/q
⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

1 − 􏽙

x

h�1
1 − 1 − 􏽙

i∈Ph

1 − αi(1 − ζ + c) + βic( 􏼁
1/ Ph| | + 􏽙

i∈Ph

βic( 􏼁
1/ Ph| |⎛⎝ ⎞⎠

1/2

+ 􏽙
i∈Ph

βic( 􏼁
1/ Ph| |⎛⎝ ⎞⎠

1/2

⎛⎝ ⎞⎠

1/x

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/q
⎫⎪⎪⎬

⎪⎪⎭

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
.

(43)

If all the DHq-ROFNs are partitioned into one sort, the
DHq-ROFIPGB-M operator reduces to the dual hesitant q-
rung orthopair fuzzy interaction geometric Bonferroni mean
(DHq-ROFIGBM) operator as follows:

DHq − ROFIGBMs,t
d1, d2, . . . , dn( 􏼁 �

1
s + t

⊗
n

i,j�1,i≠j
sdi( 􏼁⊕ tdj􏼐 􏼑􏼐 􏼑􏼠 􏼡

1/n(n− 1)

� ∪φi∈hi,δi∈gi,φj∈hj,δj∈gj

1 − 1 − 􏽙
n

i,j�1,i≠j
1 − αs

iα
t
j + βs

iβ
t
j􏼐 􏼑⎛⎝ ⎞⎠

1/n(n− 1)

+ 􏽙
n

i,j�1,i≠j
βs

iβ
t
j

⎛⎝ ⎞⎠

1/n(n− 1)

⎛⎜⎝ ⎞⎟⎠

1/s+t

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/q
⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

1 − 􏽙
n

i,j�1,i≠j
1 − αs

iα
t
j + βs

iβ
t
j􏼐 􏼑⎛⎝ ⎞⎠

1/n(n− 1)

+ 􏽙
n

i,j�1,i≠j
βs

iβ
t
j

⎛⎝ ⎞⎠

1/n(n− 1)

⎛⎜⎝ ⎞⎟⎠

1/s+t

− 􏽙
n

i,j�1,i≠j
βs

iβ
t
j

⎛⎝ ⎞⎠

1/n(n− 1)

⎛⎜⎝ ⎞⎟⎠

1/s+t

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/q
⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(44)

3.4. Te DHq-ROFWIPGBM Operator

Defnition 21. Let T � (d1, d2, . . . , dn) be a collection of
DHq-ROFNs, which is partitioned into x distinct sorts
P1, P2, . . . , Px, where di � (φi, δi)(i � 1, 2, . . . , n) and
∪xh�1Ph � T. Te DHq-ROFWIPGBM operator is defned as

DHq − ROFWIPGBMs,t
d1, d2, . . . , dn( 􏼁 � ⊗

x

h�1

1
s + t

⊗
i,j∈Ph,j≠i

s di( 􏼁
ωi ⊕ t dj􏼐 􏼑

ωj
􏼐 􏼑􏼠 􏼡

1/ Ph| | Ph| |− 1( )
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/x

, (45)

where s, t≥ 0, |Ph| denotes the cardinality of Ph, d is the
number of the partitioned sorts, and 􏽐

x
h�1|Ph| � n,

(ω1,ω2, . . . ,ωn) is the weight vector of (d1, d2, . . . , dn),
ωj ∈ [0, 1], j � 1, 2, . . . , n, and 􏽐

n
j�1ωj � 1.

Theorem 22. Let di � (φi, δi)􏼈 􏼉 be a collection of DHq-
ROFNs with s, t≥ 0 where i � 1, 2, . . . , n. By DHq-
ROFWIPGBM operator, the aggregated value of di is DHq-
ROFN with
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DHq − ROFWIPGBMs,t
d1, d2, . . . , dn( 􏼁 � ∪φi∈hi,δi∈gi,φj∈hj,δj∈gj

􏽙

x

h�1
1 − 1 − 􏽙

i,j∈Ph,j≠ i

(1 − ζ + c)
1/ Ph| | Ph| |− 1( ) + 􏽙

i,j∈Ph,j≠i
(c)

1/ Ph| | Ph| |− 1( )⎛⎝ ⎞⎠

1/s+t

+ 􏽙
i,j∈Ph,j≠i

(c)
1/ Ph| | Ph| |− 1( )(s+t)⎛⎝ ⎞⎠

1/x

− 􏽙
x

h�1
􏽙

i,j∈Ph,j≠i
(c)

1/ Ph| | Ph| |− 1( )(s+t)⎛⎝ ⎞⎠

1/x
⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/q
⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

1 − 􏽙
x

h�1
1 − 1 − 􏽙

i,j∈Ph,j≠i
(1 − ζ + c)

1/ Ph| | Ph| |− 1( ) + 􏽙
i,j∈Ph,j≠i

(c)
1/ Ph| | Ph| |− 1( )⎛⎝ ⎞⎠

1/s+t

+ 􏽙
i,j∈Ph,j≠i

(c)
1/ Ph| | Ph| |− 1( )(s+t)⎛⎝ ⎞⎠

1/x

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/q
⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(46)

where ζ � (1 − αi + βi)
s(1 − αj + βj)

t, c � βs
iβ

t
j and

αi � (1 − δq
i )ωi , αj � (1 − δq

j)ωj , βi � (1 − φq
i − δq

i )ωi ,
βj � (1 − φq

j − δq
j)ωj .

Te proof is similar to Teorem 16, so we omit it.

4. MCGDM Approach Based on the Novel
Proposed BM and PBM Operators

If all the DHq-ROFNs are partitioned into one sort, the
DHq-ROFWIP-GBM operator reduces to the dual hesitant
q-rung orthopair fuzzy weighted interaction Bonferroni
mean (DHq-ROFWIGBM) operator as follows:

DHq− ROFWIGBMs,t
d1, d2, . . . , dn( 􏼁 �

1
s + t

⊗
i,j�1,j≠i

s di( 􏼁
ωi ⊕ t dj􏼐 􏼑

ωj
􏼐 􏼑􏼠 􏼡

1/n(n− 1)

� ∪φi∈hi,δi∈gi,φj∈hj,δj∈gj

1 − 1 − 􏽙
i,j�1,j≠i

(1 − ζ + c)
1/n(n− 1)

+ 􏽙
i,j�1,j≠i

(c)
1/n(n− 1)⎛⎝ ⎞⎠

1/s+t

⎛⎝ ⎞⎠

1/q
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

1 − 􏽙
i,j�1,j≠i

(1 − ζ + c)
1/n(n− 1)

+ 􏽙
i,j�1,j≠i

(c)
1/n(n− 1)⎛⎝ ⎞⎠

1/s+t

− 􏽙
i,j�1,j≠i

(c)
1/n(n− 1)(s+t)⎛⎝ ⎞⎠

1/q
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(47)

In the approach, the complexity of MCGDM problem is
frst considered, so the BM operator is used to aggregate
several decision matrices to obtain a group matrix, and the
correlation of some attributes is considered, so we obtain the
decision result by PBM operator.

For a MCGDM problem with DHq-ROFNs, let
E � E1, E2, . . . , Ec􏼈 􏼉 be a set of DMs, Ai(i � 1, 2, . . . , m) be
a set of alternatives, and Gj(j � 1, 2, . . . , n) be a set of at-
tributes. Let ωc(c � 1, 2, . . . , t) is weight vector of DMs, n

attributes whose weight vector is wj(j � 1, 2, . . . , n), and
wj > 0, 􏽐

n
j�1wj � 1. Te DMs give the decision matrix

Dp � h
p
ij, g

p
ij􏽮 􏽯

m×n
, which contains h

p
ij that indicates the MD

set and g
p
ij that indicates the NMD set. In the following, the

proposed MCGDM algorithm based on the novel BM and
PBM operators is given.

Step 1. Standardizing all the decision matrices: In
general, we construct the standard decision matrix by
converting the cost criteria values to the beneft stan-
dard values. If there are no cost criteria values, this step
can be ignored.

􏽥ξ
t

ij �
h

t
ij, g

t
ij􏽮 􏽯, for benefit  criteriaGj,

h
t
ij, g

t
ij􏽮 􏽯

c
, for  cost  criteriaGj.

⎧⎪⎨

⎪⎩
(48)

Step 2. To collect decision matrix D, using
DHq − ROFWIBM operator or DHq − ROFWIGBM
operator, we compose all the individual DHq-ROFNs
decision matrices Dp(p � 1, 2, · · · , c) as follows:

DHq − ROFWIBMs,t
d1, d2, · · · , dn( 􏼁 �

1
n(n− 1)

⊕
n

i,j�1;i≠j
ωidi( 􏼁

s ⊗ ωjdj􏼐 􏼑
t

􏼒 􏼓􏼠 􏼡

1/s+t

,

DHq − ROFWIGBMs,t
d1, d2, · · · , dn( 􏼁 �

1
s + t

⊕
n

i,j�1;i≠j
s di( 􏼁

ωi ⊕ t dj􏼐 􏼑
ωj

􏼐 􏼑􏼠 􏼡

1/n(n− 1)

.

(49)
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Step 3. By using DHq − ROFWIPBM operator or
DHq − ROFWIPGBM operator, di(i � 1, . . . , m) of
each alternative are calculated:

DHq − ROFWIPBMs,t
d1, d2, · · · , dn( 􏼁 �

1
d
⊕
d

h�1

1
Ph

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 Ph

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌− 1􏼐 􏼑

⊕
i,j∈Ph,j≠i

ωidi( 􏼁
s ⊗ ωjdj􏼐 􏼑

t
􏼒 􏼓⎛⎝ ⎞⎠

1/s+t

⎛⎝ ⎞⎠,

DHq − ROFWIPGBMs,t
d1, d2, · · · , dn( 􏼁 � ⊗

d

h�1

1
s + t

⊗
i,j∈Ph,j≠i

s di( 􏼁
ωi ⊕ t dj􏼐 􏼑

ωj
􏼐 􏼑􏼠 􏼡

1/ Ph| | Ph| |− 1( )
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/d

.

(50)

Step 4. According to equations (5) and (6) of DHq-
ROFNs, calculate and compare them to obtain best
solution.

5. Numerical Example

In this part, we ofer a concrete example to purchase strategic
missiles with DHq-ROFNs.

Pakistan plans to purchase strategic missiles from China.
After primary evaluation, it has decided to choose one of the
four types of missiles X � x1, x2, x3, x4􏼈 􏼉 for purchase.
Currently, three military weapon experts (E � e1, e2, e3􏼈 􏼉)

with weight vector ω � (0.3, 0.4, 0.3) conduct comprehen-
sive evaluation on the missile from four attributes (the at-
tribute weight vector is w � (0.3, 0.3, 0.2, 0.2)), including
price (A1), accuracy (A2), range (A3), and speed (A4).
Further, all the attributes are partitioned into two sets P1 �

A1, A2􏼈 􏼉 and P2 � A3, A4􏼈 􏼉 based on the interrelationship.
Assume that three DMs give the decision matrices
D1, D2, D3 which are shown in Tables 1–3. Ten, based on
the DHq-ROFWIBM and DHq-ROFWIPBM operators, we
make use of the proposed MCGDM method to solve the
“Purchase Strategic Missiles” problem, shown as follows:

Step 1. It does not need to be normalized with regard to
the decision matrices since all attributes are the
beneft type.
Step 2. By using the DHq-ROFWIBM operator, com-
pose D1, D2, D3 to the integrated D, shown as Tables 4
and 5 (where q � 3, s � t � 2).
Step 3. According to D, by using DHq-ROFWIPBM,
di(i � 1, . . . , m) of each alternative are calculated, and
then we obtain by equation (5) S(d1) � 0.5072,
S(d2) � 0.5115, S(d3) � 0.5155, S(d4) � 0.5086.
Step 4. Compare and rank the results by using equation
(3), and we can derive that the best strategic missile is
A3 since

A3 >A2 >A4 >A1. (51)

5.1. Infuence of Diferent Parameters q on the Results. In the
following, we discuss the infuence of the parameter q on the
ranking result of MCGDM problem based on the DHq-

ROFWIBM and DHq-ROFWIPBM operators. For this, we
calculate the ranking results of diferent q values in Table 6
(when s � 2, t � 2).

From Table 6, we have observed that the score functions
S(di) decrease with the increase of parameter value q. Si-
multaneously, the ranking result has not changed, and the
best alternative is A3. Te DMs can choose the proper
parameter q according to their personal preference.

For the selection of s, t parameters, we can choose the
corresponding value according to the attitude of decision
makers’ preference for risk. Te smaller the value of the
parameter, the greater the decision makers’ preference for
risk avoidance.

5.2. Comparison with the Existing Approach. In the follow-
ing, we aim to show the superiority and rationality of our
method. To accomplish this, we compare our approach to
three existing methods which include situation when q �

1, 2, 3 found in [26, 27], and the result is shown in Table 7.
From [26], we can fnd that this approach cannot cal-

culate the example data. From [27], the result is
A3 >A2 >A4 >A1, which is the same as the proposed ap-
proach. So, this shows the rationality of the proposed ap-
proach. In addition, we can observe that the ranking result is
A3 >A2 >A1 >A4 based on the DHq − ROFWIGBM and
DHq − ROFWIPGBM operators. By comparison, the
ranking results of the two approaches are slightly diferent.
However, the best alternative is A3. In the following, we
analyze the merits of our method over the twomethods from
three diferent aspects.

(i) From the perspective of information data, the
method in [26] is based on IFSs, and we can fnd that
it cannot process such data; the method in [27] is
based on Pythagorean fuzzy numbers, so it has few
specifc applications. Te proposed method is based
on DHq-ROFNs, and it can adjust q values
according to the actual data, so it is more fexible
when solving MCGDM problems.

(ii) From the perspective of operational laws, the
method in [27] does not consider interaction op-
erational, so it cannot solve the case where the MD
or NMD is zero, whereas the common advantage of
the method in [26] and our method is that they
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consider the interaction operational rules, and the
diference is that the operators in reference [26] are
special cases of our new operators. So, it is more
comprehensive and practical in solving MCGDM
problems.

(iii) From the perspective of the AOs functions, the
method in [27] uses weighted averaging operator to
aggregate data without considering the complexity
of MCGDM problem, whereas the method in [26]

and the proposed method take account of the in-
terrelationships between attributes or partitioned
attributes, so it is more reasonable and efective to
solve concrete problem.

5.3. Discussion about the Superiority of the Proposed In-
teraction Operational. To verify the superiority of the in-
teraction operational of our method, in the example, we
change one of the data to obtain ranking results and

Table 1: Te DHq-ROFNs decision matrix D1.

G1 G2 G3 G4

A1 0.5{ }, 0.3, 0.2{ }{ } 0.4{ }, 0.3{ { }} 0.4{ }, 0.3, 0.2{ }{ } 0.6{ }, 0.2{ { }}

A2 0.6, 0.5{ }, 0.2, 0.1{ }{ } 0.7{ }, 0.3, 0.2{ }{ } 0.6{ }, 0.3{ { }} 0.5, 0.4{ }, 0.2{ }{ }

A3 0.7{ }, 0.4{ { }} 0.5{ }, 0.3{ { }} 0.6{ }, 0.3, 0.2{ }{ } 0.7, 0.6{ }, 0.3{ }{ }

A4 0.4, 0.3{ }, 0.1{ }{ } 0.4{ }, 0.2, 0.1{ }{ } 0.5{ }, 0.2, 0.1{ }{ } 0.4{ }, 0.2{ { }}

Table 2: Te DHq-ROFNs decision matrix D2.

G1 G2 G3 G4

A1 0.6{ }, 0.2{ { }} 0.5{ }, 0.3, 0.2{ }{ } 0.7, 0.5{ }, 0.3{ }{ } 0.8{ }, 0.3, 0.2{ }{ }

A2 0.7{ }, 0.2{ { }} 0.6, 0.5{ }, 0.2{ }{ } 0.8{ }, 0.1{ { }} 0.7{ }, 0.2{ { }}

A3 0.8, 0.6{ }, 0.3{ }{ } 0.8{ }, 0.3, 0.2{ }{ } 0.8{ }, 0.3, 0.1{ }{ } 0.8{ }, 0.2{ { }}

A4 0.6, 0.5{ }, 0.1{ }{ } 0.7{ }, 0.1{ { }} 0.7{ }, 0.2{ { }} 0.8{ }, 0.2, 0.1{ }{ }

Table 3: Te DHq-ROFNs decision matrix D3.

G1 G2 G3 G4

A1 0.5{ }, 0.3{ { }} 0.5, 0.4{ }, 0.2{ }{ } 0.5{ }, 0.2{ { }} 0.5, 0.3{ }, 0.3{ }{ }

A2 0.4{ }, 0.1{ { }} 0.6{ }, 0.2{ { }} 0.6, 0.5{ }, 0.2{ }{ } 0.5{ }, 0.3{ { }}

A3 0.7, 0.6{ }, 0.3{ }{ } 0.7{ }, 0.3{ { }} 0.5{ }, 0.4{ { }} 0.6{ }, 0.3, 0.1{ }{ }

A4 0.4{ }, 0.2{ { }} 0.3{ }, 0.2, 0.1{ }{ } 0.4, 0.3{ }, 0.2{ }{ } 0.5{ }, 0.2, 0.1{ }{ }

Table 4: Te DHq-ROFNs decision matrix D.

G1 G2

A1 0.386{ }, 0.193, 0.172{ }{ } 0.333, 0.313{ }, 0.197, 0.169{ }{ }

A2 0.437, 0.418{ }, 0.137, 0.120{ }{ } 0.455, 0.432{ }, 0.181, 0.148{ }{ }

A3 0.548, 0.531, 0.479, 0455{ }, 0.264, 0.256{ }{ } 0.519{ }, 0.234, 0.203{ }{ }

A4 0.355, 0.313, 0.345, 0.299{ }, 0.103{ }{ } 0.398{ }, 0.121, 0.102, 0.073{ }{ }

Table 5: Te decision value of DHq-RONFS.

G3 G4

A1 0.418, 0.333{ }, 0.206, 0.197, 0.179{ }{ } 0.5, 0.487{ }, 0.216, 0.178{ }{ }

A2 0.512, 0.5{ }, 0.162{ }{ } 0.43, 0.418{ }, 0.174{ }{ }

A3 0.499{ }, 0.254, 0.242, 0.216, 0.199{ }{ } 0.531, 0.512{ }, 0.204, 0.178, 0.172{ }{ }

A4 0.418, 0.411{ }, 0.147, 0.134{ }{ } 0.478{ }, 0.153, 0.142, 0.123, 0.104{ }{ }

Table 6: Ranking results for diferent q based on DHq-ROFWIBM and DHq-ROFWIPBM.

Methods Score values Ranking
q � 2 S(d1) � 0.5110, S(d2) � 0.5182, S(d3) � 0.5204, S(d4) � 0.5134 A3 >A2 >A4 >A1
q � 3 S(d1) � 0.5072, S(d2) � 0.5115, S(d3) � 0.5155, S(d4) � 0.5086 A3 >A2 >A4 >A1
q � 4 S(d1) � 0.5047, S(d2) � 0.5074, S(d3) � 0.5116, S(d4) � 0.5049 A3 >A2 >A4 >A1
q � 5 S(d1) � 0.5037, S(d2) � 0.5053, S(d3) � 0.5082, S(d4) � 0.5040 A3 >A2 >A4 >A1
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compare it with the original results. In general, if the ranking
results are consistent, it indicates that the advantage of
interaction operational can be refected, so that the approach
we proposed is less infuenced by the extreme evaluation
value of certain decision makers. Terefore, we reduce the
MD of the evaluation value in A3 of one of the DMs to 0, so
as to verify the ability of our method to handle extreme data.
We change the evaluation value 􏽥ξ

1
32 from 0.5{ }, 0.3{ { }} to

0{ }, 0.3{ { }} by decreasing MD, shown as Table 8, and fgure
out that A3� 0.515, and the ranking result is
A3 >A2 >A4 >A1; it is obvious that the ranking results have
not changed, which shows that the given interaction op-
erational rules and the proposed methods are reasonable and
efective.

5.4. Comparison of the Characteristics of Diferent MCGDM
Methods. Next, we compare our method with the methods
given in [24–26] from four characteristics. As shown in
Table 9, the evaluation indicators are categorized into two
groups: Yes, No, Weak, Strong, Stronger, and Strongest. By
comparison, we can see that

(i) Tese methods consider the correlations among
attributes, and they use PBM operators that consider
the correlation between partial attributes, whereas

the proposedmethod adopts BM and PBM operators
to handle MCGDM problem more reasonably.

(ii) Te methods in [24–26] use the interaction opera-
tions of IFNs and PFNs, whereas the proposed
method adopts the interaction operations DHq-
ROFNs, respectively. Terefore, the method pro-
posed in this paper can describe the uncertainty
information more efectively.

In a word, the method proposed in this paper based on
DHq-ROFWIBM and DHq-ROFWIPBM operator is more
general and reasonable than the methods in [24, 25, 26].

6. Conclusions and Future Research

Te present paper introduced novel interaction operational
on DHq-ROFNs and denoted a series of AOs, which provide
a suitable method for DMs to deal with a certain type of
MCGDM problem.

Firstly, we have developed four diferent operators:
DHq-ROFIPBM, DHq-ROFWIPBM, DHq-ROFIPGBM,
and DHq-ROFWIPGBM, for DHq-ROFNs. In addition, we
also have introduced their corresponding properties and
certain situations associated with the proposed AOs. Af-
terward, by using the proposed AOs, we provided a novel

Table 7: Ranking results for diferent q based on DHq-ROFWIBM and DHq-ROFWIPBM.

Methods Score values Ranking
Verma and Merigó’s MCGDM method [26] (based on the
GIFWIPBM operator) Cannot be calculated No

Wei’s MCGDM method [27] (based on the DHPFWA operator) S(d1) � 0.6246, S(d2) � 0.6686, S(d3) � 0.6981,
S(d4) � 0.6442 A3 >A2 >A4 >A1

Te novel MCGDM method
Based on the DHq − ROFWIBM and DHq − ROFWIPBM
operators

S(d1) � 0.5110, S(d2) � 0.5182, S(d3) � 0.5204,
S(d4) � 0.5134 A3 >A2 >A4 >A1

Based on the DHq − ROFWIGBM and DHq − ROFWIPGBM
operators

S(d1) � 0.5154, S(d2) � 0.5195, S(d3) � 0.5265,
S(d4) � 0.5146 A3 >A2 >A1 >A4

Table 8: Ranking results for diferent q based on DHq-ROFWIBM and DHq-ROFWIPBM.

G1 G2 G3 G4

A1 0.5{ }, 0.3, 0.2{ }{ } 0.4{ }, 0.3{ { }} 0.4{ }, 0.3, 0.2{ }{ } 0.6{ }, 0.2{ { }}

A2 0.6, 0.5{ }, 0.2, 0.1{ }{ } 0.7{ }, 0.3, 0.2{ }{ } 0.6{ }, 0.3{ { }} 0.5, 0.4{ }, 0.2{ }{ }

A3 0.7{ }, 0.4{ { }} 0{ }, 0.3{ { }} 0.6{ }, 0.3, 0.2{ }{ } 0.7, 0.6{ }, 0.3{ }{ }

A4 0.4, 0.3{ }, 0.1{ }{ } 0.4{ }, 0.2, 0.1{ }{ } 0.5{ }, 0.2, 0.1{ }{ } 0.4{ }, 0.2{ { }}

Table 9: Comparison of the characteristics of diferent MCGDM methods.

Methods
Te correlation between
aggregating parameters is

considered

Te ability to handle
complex MCGDM data

Te ability to handle
zero data of MD or

NMD

Consider categorization
among attributes

Verma and Merigó’s
MCGDM method [26] Yes Strong Yes Yes

Liu et al.’s method [25] Yes Weak Strong Strong
Yang et al.’s method [24] Yes Strong Stronger Strong
Te proposed method Yes Strongest Strongest Strongest
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approach to solveMCGDMproblems. Finally, by comparing
diferent characteristics with existing methods in purchasing
strategic missiles problems, we demonstrated the rationality
and proved the superiority of the proposed method.

Te next research is as follows:

(1) To fnd the specifc application of the method pro-
posed in this paper.

(2) To fnd the improvement and extension of the
method proposed in this paper, such as using the
novel AOs to solve the practical MCGDM problems,
and investigate more AOs to fuse dual hesitant q-
rung orthopair fuzzy interaction operational, such as
Heronian mean operators [14] and TOPSIS
method [9].
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