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In this paper, an improved tan (¢/2) expansion method is used to solve the exact solution of the nonlinear forced (2+1)-
dimensional Zakharov-Kuznetsov equation. Firstly, we analyse the research status of the improved tan (¢/2) expansion method.
Then, exact solutions of the nonlinear forced (2 + 1)-dimensional Zakharov-Kuznetsov equation are obtained by the perturbation
expansion method and the multi-spatiotemporal scale method. It is shown that the improved tan (¢/2) expansion method can
obtain more exact solutions, including exact periodic travelling wave solutions, exact solitary wave solutions, and singular kink
travelling wave solutions. Finally, the three-dimensional figure and the corresponding plane figure of the corresponding solution
are given by using MATLAB to illustrate the influence of external source, dimension variable y, and dispersion coefficient on the

propagation of the Rossby wave.

1. Introduction

In ocean and atmospheric motion, researchers have found
that Rossby wave propagation is affected by nonlinear ac-
tion, and sometimes linear theory cannot explain well the
role of Rossby waves at energy conversion and climate
change. They constructed mathematical models to reveal the
dynamic characteristics of the Rossby wave [1-7]. Also, the
exact solutions of these equations are crucial to studying the
propagation of Rossby waves [8-11]. So, many methods have
been proposed on how to solve the exact solutions to
nonlinear equations, for instance, the Hirota method
[12-14], the Jacobi elliptic function expansion method
[15-18], the G'/G-expansion method [19-23], the Exp
(-D(&))-expansion method [24, 25], the generalised expo-
nential rational function method [26-28], the negative
power expansion method [29], the hyperbolic function
expansion method [30-33], the extended sub-equation
method [34], (w/g)-expansion method [35], the improved
sub-ODE method [36], the Riccati-Bernoulli sub-ODE
method [37-40], the Lie symmetry technique [41-47], the

fractional sub-equation [48] etc. These are valid methods
and tools for computing nonlinear equations.

Manafian et al. proposed a new method to solve non-
linear partial differential equations, namely, the improved
tan (@/2) expansion method [49]. With the help of this
method, many classical nonlinear partial differential equa-
tions have been investigated and abundant exact solutions
have been obtained [50-69]. Mohyud-Din and Irshad used
this method to construct an exact solution for the gener-
alised KP equation and explained that it can provide better
help for the study of generalised KP equations [60]. Foroutan
et al. utilised the improved tan (¢/2) expansion method to
study the soliton perturbation in inverse-cubic nonlinear
optical metamaterials and confirmed that the soliton is in
a superconducting presence in the material by obtaining
bright soliton, dark soliton, and strange soliton solutions
[64]. Sendi et al. solved nonlinear partial differential
equations with the help of an improved tan (¢/2) expansion
method. Exact periodic travelling wave solution, exact
singular kink travelling wave solution, soliton and so on are
obtained, and three-dimensional graphs corresponding to
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some exact solutions are depicted [66]. Zkan et al. used the
improved tan (¢/2) expansion method to obtain the exact
solution to the (2+1)-dimensional KdV equation and
explained the influence of different parameters on wave
propagation through three-dimensional graphs and tables
[69]. Compared to the negative power expansion method
[29], the extended subequation method [34], and the im-
proved sub-ODE method [36], we can obtain more formal
solutions using the improved tan (¢/2) expansion method,
which is one of the efficient mathematical methods and tools
that are widely used and easy to implement.

In reference [11], Yin et al. deduced that the amplitude of
the large-amplitude Rossby long waves satisfies the forced
Zakharov-Kuznetsov (ZK) equation based on the potential
vorticity equation by utilising the perturbation expansion
method and the coordinate change method. In this study, we
count the case that the external source of ZK equation is
constant as follows:

Uy + ouy + P + Yy, =q. (1)

Here, the third derivative term represents the dispersion
effect, y denotes the longitude variable, and g represents the
influence of the external source. The research shows that
these three factors have a certain weight on wave propa-
gation. Equation (1) reflects the characteristics of the large-
amplitude Rossby long waves and describes two-
dimensional Rossby waves, which can show the propaga-
tion of Rossby waves more comprehensively. At y =0,
equation (1) can be simplified to the forced KdV equation,
described by one-dimensional Rossby solitary waves.

The 1-soliton and 2-soliton solution of the equation is
derived using the coupled Burgers equation without con-
sidering the solution of external source, and the solitary
waves are obtained to explain the influence of external
source on the propagation of Rossby waves with the help of
the extended Jacobi expansion method of elliptic functions
in [11]. Other solutions of equation (1) have not been
reported.

To better study the characteristics of the Rossby long
wave reflected by equation (1), we use the improved tan (¢/2)
expansion method with the help of mathematics to obtain

¢(&)

u(®)=A,+ A, tan(z) + Aztan2<
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exact solutions. More forms of exact solutions, including
exact periodic solutions, exact solitary wave solutions, and
singular kink travelling wave solutions, are derived. Then,
with the help of MATLAB image processing software, we
draw the three-dimensional figure and plane figures cor-
responding to the partial solution to equation (1). What is
more, we analyse the effects of external sources, longitude
variables, and dispersion coeflicients on Rossby wave
propagation in more detail with graphs, and give the cor-
responding conclusions.

2. Use of an Improved tan (¢/2)
Expansion Method

Using the transform u (§) = u(Ax + wy + ot), we substitute
into equation (1), which can be simplified to the following
ordinary differential equation:

ou +dauu + XU’ + APy’ = q. (2)
We integrate once on both sides of the equation (2) with
respect to &, getting

A/ n
ou+ 7“”2 +()L3ﬁ + )szy)u =Q. (3)

We assume u (&) that can be expanded into the form of
a power series with respect to p + tan (¢ (§)/2), namely,

u(® =Y Aclp+tan(p©)2)1, (4)

k=—m

where A_, = B, (1<k<m), ¢ (&) satisfies the following or-
dinary differential equation:

¢ (&) = a sin(¢ (&) + b cos(p (&) +c. (5)

For details of ¢ (&), we refer to [49].

Using the homogeneous equilibrium method for
equation (3), considering u" and u?, we obtain n + 2 = 2n,
thus n = 2.

For formula (4), we consider p =0, then it can be
transformed into

2

(P(E)) + B, cot<¢;€)> + B,cot’ <(P(£)> (6)
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Substituting equations (5) and (6) into (3), and using the ~ Case 1. a=a,b=b,c=c,A=a? +b* -t u=1f+w?y,
numerical calculation software Mathematics, we can get the E=¢+C,
following conclusions.

Aap(a® - 2b* +2¢%) + \/)uxz(—ZtXQ + A0 6au (b —c)
AO = > 5 Al = >
Ao o
3u(b - c)? Ao* (—2aQ + AN Y
A2=_¥,31=0,32=0,0’= i\/ ( o )’ @

Referring to the 19 kinds of results in [66], we obtain the solutions, exponential functional solutions, and rational
trigonometric functional solutions, hyperbolic functional  functional solutions of equation (3).

/\oc‘u(a2 - 20 + 2c2) + \/Aocz(—ZOcQ + /\Azyz)

Ml (f) = Aaz (8)
2
+%u {Za[a - V-A tan<\/;_A f)] - [a -V=A tan(\/;_A E)] },
)Loc/,t(az -2b + 262) + \/)Locz(—Z(xQ + AAzyz)
U, &=

Ao , (9)
+ %‘u {Za[a + \/Ztanh(\/zzf)] - [a + \/Ztanh(\/zzf)] },

/\(x‘u(az - 2b2) + \//loc2<—2(xQ + /\‘uz(b2 + az)z)

Us (E) = A(Xz (10)
N s 2
+ %u {Za[a + b +a tanh(%f)] - [a + Vb2 + a? tanh(#@)] },
1 2 2 2 202 2)\2
ocy(a +2c ) + \/Aoc (—20cQ+A;,t (c -a ) )
Uy (f) = /1“2 (11)
2 2 v 2
_%{2a|:—a+ \/cz—a2 tan< cz—a €>:|+[—a+ Ve2 - g2 tan( c22—a2$>] },
2 2 2 2012 2\2
i 2A(x‘u(b -c ) + \j/\(x (—2(xQ+A,u (b -c ) >_3/4(b2 —c2)+ . \/bz——c-zf (12)
us (&) o " tan 55 )
ug (§) = byt \/)L(xz(_z“Q . M)4;42) - 3bz‘u'{anz Larctan ez% — 1, z,ebz (13)
6 Ao « 2 Pl R |
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2 3 z r
() = DT ATER Iy 20y 2 0kp, (14

Ao’ § 3
Aaa’ K’y + \//\ocz(—Z(xQ +Aa'k'y?) 12a%K3u et kot T
ug (&) = 1 + > —[ k_] , (15)
o @ ~1+] [Fl+ek

© - )Locy(?aaz - 2b2) + \/)L(xz(—Z(xQ +)Lb4/,{2) +3_# ra(a—b) (a+ b)ehg 1] ey’ [ (a+b)et® —1 g 16)

Ugy = sz o ala 7(0 - b)ebE - a _7(61 - b)ebg T
@ - )t(xy(ScZ - 2b2) + \/)uxz(—Z(xQ +)Lb4y2) +3_# 260 b+ c)ebE 1] by [ (b +c)e +1 2 (17)

U (§) = JPE o ce - C)ebg _1 ¢ | (b— c)et - 1

_ )tcxy(?mz - 2b2) + \/Acxz(—ZOcQ + /\b4y2) 3u Hib_a N P 2
U (5) = Aaz - ; 2a (a + b) [m} + (a + b) [m} s (18)

(19)

23V (z) =

)L(XZ o E 1- Ceﬂg

Aocy(?;az —2b2) * \/)tocz(—Zch+)Lb4‘u2) 12#1 [ ge® ‘| 2|: ae® :|2}
-—qac +c ,

|1 —ce”

s (B) = 3lac’y + \-21’Q +ﬂ {z[cftz' B |:Cf+ 2] }’ (20)

Ao’ o & | c&
_ F\-20°Q 128 1
iy (® = S 12 H (21
Ao a ct
@ 2Mac’y + \/)Locz(—Z(xQ + /\c4;42) 3, [Cg + C]
Us = > - tan >
At « 2 (22)
_ Lo (—2Qa + AAZ/JZ
£=)Lx+wyi\/ ( . )t+C.
Case 2. a=ab=bc=cA=a®+b*-ctu=1p+w,
§=8+C,
)Locy(az -2+ 2c2) + \//locz(—20cQ + AAzyz)
Ay = 3 LA =0,A,=0,
Ao
6au (b +c) =3u(b+ o)? \/A“Z(_Z“Q + AAZ/"Z) (23)
B, = B = o= 2 - :
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With 19 kinds of results of reference [49], we obtain
solutions of equation (3)

)Locy a’-2b" + 2c \/)t(x -2aQ + AAzyz)

”16(5) =
—%t {Za[a— vV=A tan(\/;_Az)]_ +[a— V=A tan(\/;_AE)]_ },
i () = )ux‘u a> - 2b +2c \/)ux 20(Q+)LA2/42)

_;‘“ {2a[a+ \/Ztanh(%f)]l +[a+ \/Ktanh(%z)] },

/\ocy(az - 2b2) + \/)Loc2<—20cQ + Ayz(bz + az)z)

Ao

Ug (E) =

N~ ) -1 VB2 + g2 -2
3H{Za[a+\/b2+a2tanh< b +a 5)] [a+ \/b2+a2tanh( bita f)] },

/locy(az + 262) + \//\oc2<—2aQ + /\‘u2(c2 - az)z)
U9 (f) = >

Aa?
72— 2. \1! 22 \12
—3—#{2a[—a+ Ve? - a? tan( 62 a 5)] +[—a+ Ve? - a? tan( CZ f)] },
o
2 2 2 2012 2)\2
ZAoc‘u(c -b ) + \j/\oc (—20cQ+/\y (b -c ) > 3/4(192 _62) ) 2 _sz
Uy (§) = o - . coth 55 )
b’y + Ao’ (-20Q+ 20") 32y, 1
Uy, (&) = 5 - cot —arctan
Ao a 2b€+1 ezbf
B SAaazy +\-210a’Q 3y(b2 - CZ) 2+af 2+ af
Uy (§) = 2 - 2a|—=—1] (
Ao o &
A(xazkzy + \/)t(xz(—Z(xQ + Aa4k4y2) 12a2k2,u ke -1 kel -2
Uy (&) = v - [e —1] —[e —1] ,

Aa(3a” = 267 ) £ Ao (-2aQ + A"
Ao

vE_ 1! vE_ 72
+ 3_‘“ 2a(a+b) [%] —(a+ b)Z [M] ,
o (a— b)ebt - 1 (a— b)et - 1

Uyy (5) =

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)
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)Locy(3cz - 2b2) * \/)Locz(—ZocQ + Ab4‘u2)

Uys (E) =

Ao
) b -1 ) b -2 (33)
_3u 2(b+c)c|:Le_+1:| —(b+c) [M] ,
o (b= c)et - 1 (b= c)ett - 1

Ao’ e —b-a

— dau(3a® - 26%) £ (A& (—2aQ + Ab* P N N N N
Uy (&) = au( ¢ ) 4¢ : ( e )—-if-IZa(b-—a)[e+iztl] +(b-—a)2[e+ljtl} }, (34)

_ 3A(XC2‘M + —2A(X3Q 3c2‘u (;E +2 ! CZ +2 -2
u27 (E) = 2 i — 2 — + | —— N (35)
Ao o c ct
_ 2Mac’y + \/)uxz(—Z(xQ + )Lc4y2) 3u L[cE+C (36)
ups (§) = 3 - cot >
Ao 2
_ lad’u+ \/Aocz(—ZocQ + Aa4/42) 124 RN L[ - ¢ -’
Uy (&) = 5 -—1qac +c |—— ,
Ao o a a
(37)
_ \/)tocz(—Zro + )LAZ[AZ)
E=Ix+wy+ " t+C.
Case 3. a=0,b=b,c=c,u=\p+ wﬁz,fz £+ C,
2 2 2 2012 2)\2
2Aa/4(b -c ) + \/Z)ux (—(xQ+8Ay (b -c ) ) 3u(b—c)
Ay = = A =04, =279
o o

Su(b+ o \/mof(—aQ + 81 (b - c2)2> (38)

B,=0,B, = o=7 ,

o o
u(§) =A,+ Aztanz(%fv + Bzcotz(%f)).

From the 19 results of reference [66], we can obtain
solutions of equation (3) of the form

Uz & = Py - o )

2hap b2 - ) £ +20a? —ocQ+8A/,t2 192—c22 2 2 2 2 7 2
( ) \j ( ( )> 3#(b C){tanh2< bz_cz>+coth2< b _CE>}) (39)

2hab’p + \[200 (~aQ + 80"

Ao

v | L[ o1 2% ,[1 o1 2%
——— 4 tan” |-arctan = ,—— + cot” |-arctan = ,—— s
o 2 ezb(s +1 ebe +1 2 eZbE +1 eth +1

Uz (5) =
(40)
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FIGURE I: The three-dimensional figure and the plane figure of solution (8) with
a=2b=3c=2l=0w=a=F=y=1,Q=0,y=0,C=0,t =0.25.
+1-20°Q 3 2 717 2 172
U (H=— 55—+ (b—c)z[ _] +(b+c)2[ _] , (41)
Ao o (b-¢c) (b-c)
_ + \l—2/10c3Q 12¢ _
uz; (&) = 3 - M»otz [c€], (42)
A o
_ o +\2°Q 126 1
Uz, (&) = 3 - #tan2|: — (43)
Ao o c

_ Here
E=Ax+wyF \/2110@ (—aQ + 8Au? (b? - cA)H/at + C.

3. Analysis and Discussion

In this section, we perform numerical simulations for the
exact solution to the forced ZK equation. We use MATLAB
drawing software to draw the three-dimensional and plane
figures of the partial solutions. From the graph, the following
conclusions can be drawn:

By depicting the exact periodic travelling wave solution
u, (x, y,t) to equation (1), we can clearly see the effect of
external sources Q and terms yu,, with coefficients on wave
propagation. When the parameter is taken as
a=2b=3,c=2,A=w=a=B=y=1, y=0,C=0, and
t = 0.25, the external source is not considered, the corre-
sponding wave amplitude height to Figure 1 is 54. When the
external source is considered, that is, Q = 0.1 and Q = 0.5, it
can be seen from the corresponding three-dimensional
figure and plane figure in Figures 2 and 3, the amplitude
heights are 53.9942 and 53.9663, respectively, so it can be
concluded that with the increase in the external source Q, the
wave amplitude height of the same time wave is decreasing.
In Figure 4, we observe the influence of the longitude
variable y on the wave propagation without considering the
external source. Compared to the height of the moment ¢ =
0.25 in Figure 1, the height changes from 54 to 52.803, which

indicates that the wave amplitude increases with the increase
in the longitude variable y and the height being reduced,
which is consistent with the propagation effect of the ex-
ternal source on the wave amplitude. Through Figure 5, we
also observed the case of considering the change of external
source and longitude variable y at the same time. Compared
to the height of the moment ¢ = 0.25 in Figure 1, the height
changed from 54 to 52.7645, which indicates that when the
external source and longitude variables change at the same
time, the drop in the height of the wave amplitude is obvious;
compared with only changing the external source, the height
change is more obvious. Combining the above analysis, we
can conclude that both the external source and longitude
variables play a very important role in the propagation of
Rossby waves. Figures 1-5 and 6 correspond to u, (x, y,t)
and u,4 (x, y,t) the three-dimensional and planar graphs of
the solutions, which are the exact periodic solutions to the
forced ZK equation (1).

We consider an external source Q = 0.1 and variable
y = 0.1, Figures 7 and 8, respectively, represent, when =
0.5 and 8 = 1 the corresponding three-dimensional graphs
and with ¢ =0.1,0.25,0.5 the plane graphs of the exact
solitary solution us (x, y,t) of the forced ZK equation (1). It
can be seen from the graphs that with the increase in the
dispersion coefficient §, the wave amplitude height changed
from 8.54017 to —9.2352, and the height obviously de-
creased, which was consistent with the previous results.
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Figures 7, 8, 9 and 10 show the corresponding three-
dimensional graphs and plane graphs of the exact
solitary-like solutions Us (X, ¥, 1), Uy (x, ¥, 1), and
Uso (X, ¥, t), respectively, for forcing the ZK equation (1).
We also use Figures 11 and 12 to plot the three-
dimensional graphs and the corresponding planar graphs
at different times for ¢ = 0.1,0.25,0.5 and ¢ = 0.05,0.15,0.25
of the exact singular kink-type travelling wave solutions
ug (x, y,t) and uy; (x, ¥, 1) of the forced ZK. From Figure 11,
it can be seen from the graph that with the change of time,
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the propagation height of the wave is changing, especially
from t = 0.05 to t = 0.15 the propagation height of the ar-
riving wave has dropped significantly, indicating that the
propagation of the wave is significantly affected by the time
variable during this period, while the propagation of the
arriving wave is significantly affected by the time variable.
But from t = 0.15 to t = 0.25, the height drop is not very
obvious, indicating that the wave propagation is not sig-
nificantly affected by time variables during this period and
basically tends to be stable.
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FIGURE 10: The three-dimensional figure and plane figure of solution (39)

b=3c=2A=w=a=F=y=1,Q=y=0.1,C=0,t=0.05,0.1,0.15.

10

with

with



12 Journal of Mathematics
Q=0.1,y=0.1 ' Q=0.1,y=0.1 !
0 0 D
-500 [\
-500 ‘ |
2 L \/ |
-1000 -1000 000 |
:; -1500 | ‘ 1500 -4000 1
= -2000 ’ ‘ = |
-2000 - L 1
22500 6000 “
- -2500
3000 8000 | "
-3000 '
-10000 + g
s -3500 ‘ s ‘
10 .10 ¢ -10 -5 0 5 10
X
— t=0.5
— t=0.15
t=0.25
FIGURE 11: The three-dimensional figure and the plane figure of solution (15) with
a=2A=k=w=a=f=y=1,Q=y=01,C=0,t =0.05,0.15,0.25.
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FIGURE 12: The three-dimensional figure and plane figure of solution (31) with

a=2A=k=w=a==y=1,Q=y=01,C=0,t =0.05,0.15,0.25.

4. Conclusions

In this paper, the method of the auxiliary equation is used to
solve nonlinear equations, and the improved tan (¢/2) ex-
pansion method is used to obtain various exact solutions of
the forced ZK equation. More new forms of exact solutions,
including exact periodic solutions, exact solitary waves so-
lutions, rational function solutions, and singular kink-type
travelling wave solutions have been obtained. This shows
that the improved tan (¢/2) expansion method is an effective
mathematical method and tool for solving nonlinear partial
differential equations. Then, with the help of MATLAB
image processing software, we depict the three-dimensional
graphics and plane graphics corresponding to these exact
solutions, analyse the influence of external sources,

longitude variables, and dispersion coefficient on Rossby
wave propagation, and illustrate the influence of y and
dispersion coefficient on Rossby wave amplitude. Compared
to reference [11], we only use one solution method to take
into account the influence of external sources on wave
propagation and describe the influence of external sources
on wave propagation more vividly through graphics, and we
obtained many forms of solutions. These results have
a certain practical significance for researchers exploring
Rossby propagation of oceanography and atmospheric
motions.
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