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In this article, we study the existence of the solution for the fractional differential equations of sequential type with nonlocal
integral boundary conditions. The main results are established with the aid of Darbo’s fixed point theorem and Hausdorft’s
measure of noncompactness method. The stability of the proposed fractional differential equation is also investigated via the
Ulam-Hyer technique. In addition, an applied example that supports the theoretical results reached through this study is

included.

1. Introduction

In light of the numerous applications that it has in the fields
of engineering, the social sciences, and the technical sci-
ences, the study of fractional calculus has arisen as an im-
portant subject in which to do research. Due to their capacity
to reveal the history of ongoing phenomena and processes,
fractional order differential and integral operators-based
mathematical models are considered more realistic and
relevant than their integer-order equivalents. This area of
mathematics analysis has advanced significantly in recent
years and currently includes a wide range of intriguing
finding, such as the studies of [1-7].

Nowadays, academic researchers deal with many physical
phenomena in plasma physics, physical chemistry, geo-
physics, fluid mechanics, nonlinear optics, electromagnetic
theory, and fluid motion, and their mathematical models are
expressed by nonlinear fractional differential equations
(NFDEs). These equations are commonly used in various
scientific disciplines and have been investigated from different
viewpoints. The exact solutions of these equations have gained

more and more interest. For this reason, a lot of different
techniques have been dealt with by researchers.

Several studies have been conducted over the years to
investigate how stability concepts such as the Mittag-Leffler
function and exponential and Lyapunov stability apply to
various types of dynamical systems. Ulam and Hyers
identified previously unknown types of stability known as
Ulam-stability [8-10].

The study of boundary value problems for equations with
nonlinear fractional differentials has a prominent and im-
portant role in the theory of fractional calculus and in the study
of physical phenomena through the physical interpretation of
boundary conditions. To pass quickly to the practical appli-
cations of fractional derivatives in various applied sciences,
some valuable works in this field can be found in [11-19].

Through the in-depth and comprehensive study of
fractional differential equations, the existence and unique-
ness of solutions to fractional differential equations are
proven using a set of fixed point theories, such as Banach’s,
the Leray-Schauder alternative, Darbo’s theorem, and
Monch’s fixed point theorem.
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In [20], the authors used Darbo’s fixed point theorem to
study the existence and the stability of the solution of the
following fractional differential equation (FDE) which in-
volves the Hadamard fractional derivative (H-FD) of vari-
able order:

(£0,®).¢e1,T],

0 7 _
A91+@1f)—‘/'1 (1)
@1(1)=@1(9)=0,

(‘2" D)0, (§) = G, (£, (§), ¥, (D)),
(E) = g2 (E? q)l (E)?‘Ijl (E));

(‘2 )Y,

subject to the coupled boundary conditions:

®©,(0)=0, ®/(0)=0, ®(0)=0, @ (1)=

¥, (0)=0, ¥;(0)=0, ¥[(0)=0, ¥, (1)=h

where ‘@" denotes the Caputo fractional derivative of order
Pen,6,0<p<o;<v<1,&,,9,: [0,1] X B X K x
R —> R are given continuous functions, k, ki, h, h;,0;

("2 + "2 )G, (§) =

@, (1) =0,

where 3 is the Hadamard fractional derivative of order
F 1 [LI]IxR— e% is a continuous function,
@R E j=12,- are given points  with
1<& <<, <7, and 9, j are appropriate real numbers.

1 u(c) =

1(c) =0,

in which "@*F and "9 are the Hilfer fractional de-
rivatives of orders 1<a,,a, <2 and parameters f3;,f3,,0<

gl(& /@T (E)))

. (ngxl,ﬁl + 019“1_1;ﬁ1)u(£) =1 (& u(8),n (&),
("2 + 0, 2% ) (®) = 1, (£, u(9). v (D),
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where 1<0<2, % [,T] xR — X is a continuous
function and #9},,%.7}, are the Hadamard fractional
derivative and integral of var1able order @ (&).

Recently, in 2022, the authors developed the existence
theory for a new class of nonlinear coupled systems of se-
quential fractional differential equations supplemented with
coupled, nonconjugate, Riemann-Stieltjes, and integro-
multipoint boundary conditions [21]:

2<n <3, &e]0,1],
(2)
2<¢, <3, ¢&el0,1],
p n-2 1
k j "W (0das Y o () j ¥, ()dA(Q),
P v
(3)

[Coi@aas+ Y po,@)+m [ o @aa.

i=1

pie R,i=1,2,---n—-2, and A is a function of bounded
variation.
In [22], the authors studied the existence and uniqueness

of a multipoint BVP with H-FD (sequential type):

Ee[1,T

m
G(7) =08,

j=1

l,1<p<2,

7(8),

In [23], the authors considered the existence and
uniqueness of solutions for the following coupled system of
Hilfer-type fractional differential equations with Rie-
mann-Stieltjes integral multistrip boundary conditions of
the form:

(4)

§ € cd]
§ € lcd]

=A1J b (dH, (9)+ Y g r'

i=1 i

u(d) b (s)ds, (5)
d n 0.

Y J w(dH, () + Y, J " (s)ds,
¢ r=1

Xi

u(d)

BBy < 1. fifa: le,d] x R X R — R are continuous func-
tions, j ()dH, (s), f (.)JdH, (s) are the Riemann-Stieltjes
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integrals  with  respect to the functions, and
H;: [¢,d] — R,i=1,2,c20,4;,v; € B, x;» 0 i
(e (6d),i=12---nr=12,...,p,A,A),0,,0, € A.

Due to the importance of the subject and the possibility of
employing it in various scientific fields, many researchers in the
field of fractional differential have studied the systems of frac-
tional differentials equations with a variety of serious conditions
accompanying them. For more information about, these sci-
entific papers, the reader can see [24-31], and the stability of
solutions was studied after the existence of them. To enrich the
reader, it is possible to see [32-34].

We study the following nonlinear sequential fractional
differential equation to nonseparated nonlocal integral
fractional boundary conditions:

(‘2°+@2°)@, (§) = P(£,G,(5),120<2,0<¢< T,

0,6, (0) +p, 6, (T) = v, j" @ (0L,

— — 9/\
0D G, (0) + py DG, (T) = v, j @, (0)de,
S
(6)

where 0<0<T,0<<¢<T,® € R, 0wy, Wy, P15 P2 V15
v, € R. The originality and distinction of this work are sum-
marized in employing Darbo’s fixed point theorem with the aid
of the Hausdorff's measure of noncompactness technique, to
verify the necessary condition for the existence of the solution of
the fractional and nonlinear equation of sequential type. This
work also examines the stability of the solution for the proposed
fractional differential equation.

The rest of the article is as follows. Section 2 presents
the basic definitions, lemmas, and theorems that un-
derpin our main conclusions. In Section 3, we provide
the solutions to the given fractional differential equations
(6) using the Darbo’s fixed point theorem. Section 4 looks
at the Ulam-Hyers stability of the provided fractional
differential equations (6). In Section 5, example is pro-
vided to further clarify of the study’s finding. In Section
6, a conclusion and a future work are introduced.

2. Preliminaries

In this section, we state the most important definitions, lemmas,
and theorems which are necessary in obtaining our main results.
In addition, we introduce some useful notations that make our
result less complicated; also, we finish this section by an auxiliary
lemma which gives the solution of our proposed fractional
differential equation.

Denote the Banach space of all continuous function by
€ ([0,T], &) with the norm:

[ sup 17 (©) 7
=3

_ Let& 110, 7] represent the space of integrable functions
@Q,: [0,9] — &, with the norm:

@, - [ |a®]ee ®

Definition 1 (see [35]). Let & be a Banach space and 7,
a bounded subsets of &. Then, Hausdorff measurable of
noncompactness of 77, is defined by y(77,) =
inf {7>0: 7',has a finite cover by balls of radius 7}.

To discuss the problem in this paper, we need the fol-
lowing lemmas.

Lemma 1 (see [35]). Let 7,7, C & be bounded. Then,
HMNC has the following properties:

D)V, cVy=x(7 ) <x(75)

(2) x(7')) =0 7, is a relatively compact

(3) x (7 V75) = max {y (7)., x(7,)}

4) x(7)) = X(%) = x(conv(7,)), where V) and V',
represent the closure and the convex hull of 7',
respectively

(5) x(d + B)<x (V') + x (V)

(Z)+ (V) ={u+viue?,ve?,}

(6) x(@7)) <@y (7)Vd € R

where

Lemma 2 (see [35]). If &€, <€ ([0,T], &) is bounded and
equicontinuous, then (%, (§)) is continuous on [0, T] and

x(%,) = sup x(%,(9). 9)

¢ef0,7]

The set 7, ¢ £([0,T],&) is called bounded (uni-
formly) if 30 € Z* ([0, T],R*) such that

lu (O <o(0),¥ @ € 7,. (10)

Lemma 3 (see [36]). If {/@\ln}:i c 210,91, 8) is in-
tegrable (uniformly), then X({/@\ln}nzl) is measurable, and

X({JO é\ln(()d(}’n_l)ﬁ JOX({@”(O}:;)(’{(' (11)

Ler/n\mz}mél (see [37]). If a set &, is bounded, then Ve,
3{@1,,}”:1 C &,, such that

1% <2({@n (7)) +6. (12)

Definition 2 (see [38]). A function f: [, d]x & — &
satisfies the carathéodory conditions, if the following points
are satisfied:

i) 7 G,) is continuous w. r. t
Gie EVEe [cd]
(i) # (¢, é\l) is measurable with respect to & for @\16 &

& for

Definition 3 (see [39]). The function 7: QCc & — & is
a xy— contraction, if 3k, 0 <k <1 such that,

X(F (7)) <7, (13)
for all bounded 77, c Q.



Next, we state the most important theory on which the
results of this work are based. It is called the fixed point
theory of “Darbo and Sadovskii” [35, 40].

Theorem 1. Let Q) be a nonempty, bounded, closed, and
convex subset of a Banach space & and let f: QO — Q be
a continuous operator. If  is a y— contraction, then ¥ has at
least one fixed point.

Definition 4 (see [41]). The RL fractional integral of order
0> 0 for a function &P: [0, +0c0] — X is defined as

14
TP = %@Jo E-0ClPOd. (14)

Definition 5 (see [41]). The Caputo derivative of order ¢ >0
for a function &: [0, +oo] — X is written as

-@ -0 U -®
a; =we 7 +pe ——1(1—6 '7),
]
ap =wy+p—uin,

a) = w2F(2

ay =0,(7 —9),

A =ayay, — a,a,,A%0,

e
6, (8) = a1 ‘Zzze ’
6, (8) = an - alz‘f@f
2 A >
¢
0,50 = r(gl— 5 j e (- dr,
¢
0:(60) = 13— ) (-0 0@ G

It is clear that

L_Q)jo (0- 0% ™dC +p,
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1
I'(n-p)

where n = [p] + 1, [p] is integral part of .

S ¢ n—o—1 g5 (n)
D8P (E) = jo E—Or TP (Od, (1)

Lemma 5. Let 9>0. Then,
D3, P (&) = 0 has the solution:

PE) =cy+cf+c it te, 87

IGLDLPE) =P (&) +cy+ci &+ 5152 teeet Cn—lfnil’

the differential equation

(16)
where c; e Randi=1,2---,n=[p] + 1.
In what follows we use the following notations:
@ 7 o - 7
e T - ge(‘jsd+vje®£d,
F(Z—Q)Jo (7=0 o ¢ ‘
(17)

o, (&) SmaX< Al

‘ _ -7 |
|a21 - a22| aj — axe o
A v

|§02(f)lgmax< IA]

‘ -
lay, —ay,| |4n —ane _y
N o
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£ 14
J €N 71 (rydr = j ®, (5, Dh(D)d,
0 0

1
r'(2-p)

Lemma 6. Let he €([0,9],R).
boundary value problem:

(‘D +@2°)@, (&) = h(§),1<0<2,0<E< T,

Then, the following
—_ —_— m_—
0@+ &) =v [ &GO,

— — g —
0 DT (0) + pr DT BT = v, L &, (0)d¢,
(19)

is equivalent to the fractional integral equations:
_ ¢
3= e.Eono«
NG WCNCRTIG

41y (©) jo ®, (7, Oh (DAl

(=]

0

N

NG j" j 0, (r, Oh()dC dr
J

- 0,6, (8)

G

&
jo ©, (£, Oh(0)d( dé
0w, &) [ 0,0 Ond

(=]

0

— @py, () j 0, (T, Oh(0dL

+w2¢2<s>j h(Q)dC

0

T

+p2,(8) | h(DdC.

’ (20)

& & 13
J (f—()l‘QJ e‘o“"’ﬂ‘lh(r)drzj ®, (£, r)h(r)dr.
0 0 0

(18)

Proof. Taking the operator 79! to both sides of (19) we

obtain
TN (D + @)@, (§) = 7 h(§), on
(D + @)@, (&) — ¢y = IV h(d).

We solve the above-given linear differential equations:

— — 3
Q, (&)= (@1 0) - co)efmf +cp+ ,[o e ®E0 7 ()de,

_ 13
G, (8) = e ™ 1 ¢y + j ¢ 20 7 e,
0
(22)

The condition (w,@, (o) +p1@(9‘) =, fg @, (Od),
leads to



6 Journal of Mathematics

w0,0,(0) +p,6,(T) = wce” ™ +wcy + w, Jo e @00 g (de
T
+pce® +picotp J e ®70 gy (0de
0

n r
=0, J'()(cle*m eyt Jo eim(rfofgflh(()dodr

V16

n r
(1 —6‘“”7)+v1con+vlj J e 0 7 ()dC dr,
® o0Jo

: (wlefmg +pe® - % (1 - eiﬁ)ﬂ))c1 +(wy + p1 — v11)co

n(r o
=, J Ioe*w‘“ojg*lh(c)d(dr - w, IO e O (OdC

0

g
‘p, jo e OT0 g1 ()dy

While, condition (w,"@%"'@, (0) + "2 '@, (7) =
v, [ @, (DY), implies

S

()] g 1-0 —®@s @ 7 s 1-p —@s 7
(“’Zr(z—g)Jo(a_O e d(+p2r(2_9)Jo (T -0t d(+vzj

= L ’ _ni- -1 _ ¢ -@({-1) go-1
= wlF(Z—g) J-o (-0 9<J9 h(0) CDJOe 7 h(r)dr)d(
T S

@ o nl- 1 3 (1) go-1
g )y 70 @(f@ WO -0 [ o h(r)dr)dz

0

Tt
- UZI J e =0 g1 (0)dr de.
G 0
Thus,

ay) + o = vy j" j@ (n OOl dr - w, j@ (0, DR (AL — py j ®, (7, Oh (DL,
03161 + By = g jo R(OAL +p, jo RO - Qw, JO ®, (0, Oh(O)d( - p, jo 0, (7, Oh(0)d

T &
o | [ e on@aa

I3

A simultaneous solution for the above-given system
gives

emsdf)c1 +0, (T = ¢)cy

(23)

(24)

(25)
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& ="t j h(()d(+—p2j h(Q)d¢

—@cowzj 0, (o, C)h(()d{——wpzj/ 0,(7,Oh({)d¢

A, [ ey onuc,
o=, [ [ oyt ar

-2, L@ (0. Oh (O

-2, jo 0, (7, Oh(()d
ag ‘
-, [ hOw

ap (7
—szj hOK

“2 0w, [ 0,(0, 00T + L ap, j 0, (7, Oh(()d{

0

T ¢
+szj | e om@aces

0

' (26)
Substituting the obtained values of ¢;,i=1,2 in (22) Lemma 7. Given f,,f, € €([0,7],R) we have
leads to (20). O
[ 016,00, 0 - [ 01608 0] - (1=l - e
(27)

<SS -nl

3
|j0®z(s, Of, (Odi - j 0, (&0, (¢

Proof. Indeed,
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13 14
|j0®1(£, on - [ e & ()fz(()d(l
&
< [ 0 @Ol ©- RO

¢
< L)@l“’ Odf - o)l

1 Ef (¢ (28)
SmL(L e (r - OQ_Zdr)d(”fl “hlls
1 o -0(5—r _
Sr(@-l)JoJoe ¢ )(r_()@ Zd(dr"h_fz"“é
go! e gt .
m(l—e )"fl_fZ“g Sm(l—e )"fl_fZ"g
On the other hand,
¢ £
H 0, 0H O - [ 0, c)fz(ocic‘
! 1- -o({-7r) go-
’r(z o J -0 QJ I ) - fz(r))drd(‘
—; _ 1-o ~@((-r) 0-2
“T2-ol(e-1) .[o (-0 J J (r =022 (f, () - £, (D)l dr &
! ¢ _le ¢ -@({-r) 0-2 B
S(Q_I)F(Z‘Q)F(Q—I)Jo -0 Joe r2dr dfffy - ol
! ¢ 1-gro-1 ¢ -0 ({-r)
S(Q—l)r(Z—Q)F(Q—l J O Joe dr 2, - o)
(29)
1- 1
®(9—1)r2 g)r(g J @ - oo dff -,
I-pre-1 _
‘D(Q—l)r(z Q)T(Q J -0 d("fl fz"‘g
(1-e )¢
S‘D(Q_I)F(Z—Q)T(Q—1)$(9’2_9)|lf1_f2"$g
(= rere- -1
T@(e-Dr2-oI(e-1)  T(2) 1~ Rl
§ 0
= o (1= - bl
O
3. Existence Results via DFPT (1) (ef,) The function : [0,T]x & — & satisfies
; . ) carth e odory conditions.
To set our main results we introduce the following (2) (g/,) There exists a function ¥ € £ ([0,7],R,)

assumptions: show that
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|2(&.@ ©)| =¥ @ +|@]). vae g (10,1, &) X(PEWN <Y Ox (W), (31)

(30) .
For easy computations we let

(3) (o5) Assume W C& is

V& € [0, T], then

any bounded set

n rg_l

99_ -0 -@r
+|p1|®1m(1—e )+|Ul|®l Jom(l—e )d?"

(32)

7 5971 -0 o -@0
+|v,|®, L —Q(l—e )d§+®|w2|®za(l—e )

T er .
+Co|p2|CD25(1 —e )+|a)2|®20 +|p2|CD2J,

Theorem 2. Assume that the assumptions (9f,) — (/) hold
true and let Ry = V|| R. If

4Ry < 1, (33)

then the BVP (6) has at least one solution defined on [0, T ].

Proof. Consider H:€6(0,T],8 — €

(10,71, 8)

the operator

#8)® = [ 0,005 © &+ ® [ 000208 )
0 0
001 © | 0,7.02(0.8 O
00| [ 0,0 0(0E ©)acer
T & -
06| [ 0E02(0@ 0 (34)

-0, | 0, 02(0. 8 O)

Y e

0,(7,02(4 @, ()d¢
0

+aa(® | PG Q)+, [ P0G 0)

~ @p,6, (&) j

0

The operator  is well defined as a result of &/, and <.
Therefore, () is equivalent to the following operator
equation:

G, =G, (35)
Subsequently, showing the existence of fixed point for

(35) is equivalent to existence of a solution for (20).
Let

B ={Qe((0.71.8): |G ] <c}.  ©6)

be a closed convex set with € >0, such that

€> Ay )

(37)

The applicability of the DFPT will be shown in
four steps. O
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Step 1. We show that HB Z 3, c AB,, by (,), we have

|@, (5)| < 561 QX1 +]@ O])d¢
0

Hoillp O [ 0, @0r @1 +@ ©])

Holle @04 0¥ @1 4@ @l
nrr o

“ulle @[ | e ov@(1+]@ ©l)acar
gt .

—|vz||¢z(f>lj I()@l(&()‘P(C)(l+||@1(()||)d(d£

- alaylé: @] | ©(0:0% 01+ @&t

~alllo: @1 025 0% (1 +[@ @)

Haollga ) [ w1 +[E Ol

Hoallsa @1 [ O +@ @)

AR Y Ll a0 ge! o7, |
@F(Q)(l—e )+|w1|¢17®r(9)(1—e )+|p1|¢lrr(9)(l—e )+
— n 7’971 @ 2 5971 @f
MOAED] o, [ (- darelules [ g (1=

— eC] -9
+@lwlpy= (1= ) + @lpafg = (1= ) +wslgso +|pal 27

|172@,)| <1%1(1 +] @)% < (1 + €)%y <e.

(38)

Thus, II%/@—III <e. That is B, ¢ B..

Step 2. The operator # is continuous. Let {@T”} be a se-
quence in 3B, such that @, — @, as n — oo. Then,
P, G,,(0)) — P((,6,() asn —> 0o, as a sequel of
the Carathéodory continuity of 2. (&,) implies
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|7@,, &) -6, (9] < g®1 QYO 2(8@1,(0) - 2(¢, @, ()| d¢
0
orllon @1 [ 040, 0¥ @] #(2. 8,10) - (6.8 @) g
ol ©) j 0,(7. 0¥ (O 2(4. @ (D) - 2(0. G ()¢
e @1 [ 0 0¥ (0. ,0) - 2(0. @ @) |acar
~[vall¢, (®) jg f 0, (& O¥ (O] 2(8. @1, (D) - 2(4. G () |dc dé
@0 (39)
- afep2(®] || 0(0.0% O2(0. 8, 0) - 2(0. & ©)]
~alpall6.@1 [ €27, 0¥ O] (0 8, ©) - #(L E )t
Hoollg, O [ ¥ @248 0) - 2(0. 8 )|
+lpa | (D) J: ¥ (O 2(8 @) - 2(4. @ ()|

<#|2(-8,0) - 2(. & O)|

Now, from Lebesgue dominated convergence theorem, it ~ Step 3. The operator # is equicontinuous. For any
is obvious that |#Z 2, (&) - %"@ &) — 0 as n—> oo, 0<&, <& <T and @ € AB,, we obtain
V& € [0, T], consequently, we have

||%/@\1n - Z”/@\l” —> 0asn — oo. (40)

& -
[ o020 <c))dc‘

2

& ——
NE j ®, (£.0) - 0, (£, )P(L. G, ()

|7 (@) &) -

Hollor ) -4, )| [ 04 0] & 0)ac
+lpallgs (81) — 61 (8)] j: 0, (7, 0|2(¢ @ (©)]d¢
Holle @) -0 @) [ [ 002 & @)]acar
T é -
+[oallgs (61) - ¢, (fz)ij j ®, (£.0]2(¢. @ ()] d¢ dé (41)
+alanl42(6) - 6 )] [ €. 0]2(. @ ©)]
+ @lps[[9 (1) — s ( mjg 0, (7.0 2(¢. @, ()¢
Hallpa(6) - 628 [ |2(0.8 0)ac

7\]@ 0@ )|

0

+|P2”¢2 (1) - ¢, (&) lj
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as &, — &, the RHS of the above approaches to zero and it~ Step 4. We show that # is y— contraction on .. For all
is free of @,¢ 9B,. Hence, operator % is bounded and  bounded subset %" c 9B, and 8 > 0. By the aid of Lemma 4
equicontinuous. and the properties of y, 3{@1 ihoy €W such that
X TW () < ZXHZ 0, (& 02(¢ (@ (D) )d¢
o ® [ 0 002(0 O], )4
NG j 0,(7,02(0{G O}, )d¢
0| [ 0. 028 B ), )acar
00 [ [ eue 02 @R, ) ag (42
- 00,6, | 0,0, 02( @O )¢
~apa® [ 0.7, 02 (@O, )t
randa® | 2@ )
4026 (§ j? PG O, )L, } +0
The properties of y, (#/5), and Lemma 3 we obtain
W () S‘*“z 0, (& 02(4 [@ (D), )
Houlg, @] [ 01 (0. 0028 B},
+lpullgy (©)] j 0, (7, Ox( (@ (O)))de
ity @[ [ 01 . 0x( (@@ O, )t ar
NIRG] jT jz 0, & O 2(L @ (©))))d dt
- alaslg: @] | €, OK( (L {0},
~ alp,lig, (&)] j 0,7, Ox( (¢ @ (O1)de

v |w2||¢2<f>|j B (0]%))dC

lp2||¢>z(£)|J (2(L{E@ ), 1))d¢}+5
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4 ——
34“0@1 OV (OP(C{@u (D}, )dC

13

(6]

o O 0, @ 0¥ Er(2( @ O),))a

1ol @] | 0170 KA @ O]

ol [ [ 01 0¥@r(2(0 @ O}, ))at ar

n
0

2
I3

¢ — 00
- ool ] 01 0¥ O (@], ) )t dg

- @l @] [ 0. 0¥ QK¢ @)t

~ ol @) [ 027 0¥ H(P(C @ OF,))et

+ Joaly O | W OK(( BN,

+|palig, (O] j Psi (Ox(2(¢, {’@Tkm}ifl))dc} +9.

<4Ryx (R.) +6,¥6> 0.

Then,
X(H (W)= sup y(HW (D) 4Ry (Re)- (44

£e[0,7]

By Theorem 2, we conclude the existence of a fixed point
for the operator equation given by (35). This completes
the proof.

4. Stability Results

Let 9>0 and ©: [0,9] — [0, 0c0] be a continuous func-
tion. We consider the following inequalities:

(‘2°+02°)@, (§) - 2 (£, (9)| <9 E € [0,T],

(45)

(‘2°+02°)@, (&) - 2 (£, (9)| <90 (), E € [0,T].
(46)

Definition 6 (see [42]). Problem (6) is U-H stable if 3. >0
such that, V9> 0, V@, € € of the inequality (45), 3 solution
@, € ¥ of problem (6) with

(43)

@& -8 ©)| <8¢ 10,71 (47)

Definition 7 (see [42]). Problem (6) is generalized U-H
stable if 3@pz € €(R",R") and ©4(0) =0 such that,
V@,€ € of the inequality (46), 3 a solution Q, €% of
problem (6) with

8,6 -4, (9)|<0,(9),E € [0,T]. (48)

Remark 1 (see [42]). A function @e € is a solution of the
equality (47) &3 a function Z € €, such that
M) 1Z®)1<9,§ € [0,T],

2) (2 + 0D, (§) = P (&G, (D)|+
F(8),E€[0,T].

Lemma 8. Let 1<0<2, if a function @, € % is a solution of
the inequality, then @, is a solution of the following integral
inequality:

@ ® -] <as, (49)

where
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5~
C@l

Proof. Using Remark 1 that
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& . Y _
- j ©, (£ 02(8. @ (0)dS + w, ¢, (9) j 0, (0, 02(3, G, ()

0 © ] 07,0908 )
0 ® [ [ 0,020 E ©)acer
T & .
0 ® | [ 000G @) (50)
- 00,6, | 0, 02(0. & )
-0, [ 0,7 02(0.8 )¢

s [ PG O+ 0.2 j (.G ().

_ ; _ o -
@ ®- | 0,EOPEEO) + w0 | 0,e.07(LE O)E

implies

iy (f)j 0,(7.02(8. G (1)
0 ® [ [ 0001 E ©)acer
—v2¢2<f>j j 0, (& 02(4. G, ()AL dt

—mw2¢2<f>j (0,028 (0)dl
—wpzsbz(f)j 0,(7,02(L, G (0))d

0

rad(® [ (:@(())dupm(f)j 2(0.G (D)L
&
N jo 0, (£.0Z (DAL + w ¢, (&) j 0, (0,07 ({)dl

+p16; (§) ®1 (7,0Z (Od¢

0,6, () jrca (nOZ (Od( dr

0Jo
T

&
j 0, (5,07 ({)d( dé

0
4

- 0,6, (8)

m'—_)b_“—i

—Qw,$,(§) | 0,(0,)Z (]

0
T

— @py, () j 0,(7,0Z (()d]

0

ENG] eGSR jo Z(Ode,

’ (51)
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_ & o
@ @-s;]-|[ o0z atrws [0 07 wat
NG jo 0,(7.0Z (&
norr
0 ® | [ o0z arar
T &
0,8, (&) j jo ®, (£, 0F (0d{ dE
— 0wy, (8) j 0, (0, ) Z (DAl
~ap0,9 [ 0,(7.07 O -

+ry(® [ Z @+ pgs © jo zmdc]

r 99—1 o-1 9—1

or Q) (1 - eimg) +lw1|¢1®0I‘7(g)(1 ) |p1|¢1®1"(9)( e,@g)

-1

Y 59-1 7@
<9 ﬂ|¢1j®r()< )dr+|v2|¢zjc argg (17 ")

o -0 g -0
i +®|w2|¢25(1 —e ) + ®|p2|¢>25(1 —e ) +|w2|¢20 +|p2|¢2,°7

<RI

We now state the main theorem as follows. O Proof. Suppose that @,€ % is a solution of inequality (47)
and @, € @ is a unique solution of problem (6). Then, it
Theorem 3. Assume that (of,) and (,) are satisfied with follows from Lemma 8 that
Ry < 1. Then problem (6) is U-H and according is generalized
U-H stable.

'@Al(f) -aq, (E)' = Ijz 9, (& ()@((,@j(())d(
Hoilé, O 0,0.0((0.8 @)t
+Ip1||¢1(£)|j 0, (7. 0(2(¢. €, (0))d¢
oty [ [ 0, 0(2(0.8 )t ar

14
—|v2||¢2(f>|j [ e o((c.@@))acas

0

K}o

)
- ®|w,llg, (£)] r@m O(2(5.61(D))d
~alpalg O] 0,(7.0((0.8 )¢
+laglg, ©) jZ(@(c,Z@?«’)))dc

+p2lig: (9] jj(@((, @(()))d(‘
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- 3 _ .
@ ®-¢;] 4| o 02(q )-8 )«

Jorlg @[ 0, @0((0.E @) - 208" @)t
s @] [ 0 0(#C &) - 2(6 8 )

- ol @1 [ 0,020 E ©) - 2(6. & (©0))acar
(@] [ [ 0u60(#(08 ) - 20T @))ace

- o, )] 0,(0.0((0.E ) - 2(0.E ©))dk
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— @lp,lig, (8)] j: 0,(7,0(2(4,@, () - 25, @, ()¢

+loalls @) [ (2(0.3(0) - 2(0.E (@)

o
0

T
0

Healo: @) [ (208 0) - (0.6 (C)))d(|

<RI+ VA|G (5 -, (V)]

which implies

(53)

5. Example

“@(E) - @*|| <Y, (54) Example 1. Denote the Banach space of real sequences by
G, =1{@ = (@,,,Q,»): @, — 0(n — oo)(}l, with the
where norm
__Z @Q,||.. = sup |@,,]
M =50 (55) @] = sup [@1,) (56)
Hence, we conclude that problem (6) is U-H stable. In Consider the following BVP
addition, denoting ® 4, (9) = 9, such that @4 (0) = 0, then
problem (6) is generalized U-H stable. O
([ (con(312)  con (112)\ 2~ 1 1 —
(‘2P )E (&) = <E+c0s|@1n|>,f€ [0, 4],
&+ 49
o o P 57
2@+ 3G @--[ GO, (57)
0
2
‘@G, (1) + 529G, (1) = -J G, (),
( 0
where P (£,@,) = (1/\& +49)((£sin @,/49) + €' cos&), v, =-1, v, =5w, =2,0,=1a;; =0.76, a, = 27.967,

T=40=1,®=2,0=(3/2),p;,=3, p,=5n=2, ¢=3,

ay, = 5,a;, = 6,A =-145(3/2),
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27.967 — 5 27.967 — 5¢~ 8 where &: [0,4] x €, — €, given by
¢, = max , =0.17,
145 145
0.76 — 6 0.76 — 6¢~° (58)
¢, = max > =(0.036,
145 145
R <1.083.
— 1 sin @, —_ =
gﬁ(g,@l) = : (E m L +efcosf> for & € [0,4], @, ={@1n}n21€ Bo- (59)
\E +49 -

It is clear that condition (&/,) holds, and as

! ('Esmz@\l+e"tcos€>

Ve +a9 \ B
1 —
<———(1+]@)

£ +49

||@<s@:>n=ﬂ
(60)

=¥ @(1+]@])-
Therefore, (</,) satisfied, with

1
—,&€[0,4].
VEZ +49 (61)

And the bounded set &, ¢ €,,, we have

(&) =

1
\/&’2 +49

So, (¢/3) holds true. Indeed, 4%y =0.618857 and
(1+ €)%y = €. Thus,

x(P(E€))< x(€)),VE € [0,4]. 62)

S Ry 0.15471 0.15471
€ - -

T1-%Ry 1-0.15471 0.84529°

(63)

Then, € can be chosen as € = 0.2 > 0.183. Consequently,
all conditions of Theorem 2 hold true, yields the existence of
a solution @, € € ([0,4],%,) for the problem (57).

6. Conclusions

We discussed the existence results for a fractional differential
equation of sequential type with nonlocal integral boundary
conditions. The main results are established with the aid of
Darbo’s fixed point theorem and HausdorfP's measure of
noncompactness method. Using standard functional anal-
ysis, we showed Ulam-Hyers stability. Our results in this
configuration are novel and add to the body of knowledge on
the theory of fractional differential equations. For future

work, we suggest using other types of fractional derivative
operators such as the generalized Hilfer fractional derivative,
the one who is interested in the subject can also investigate
the existence and uniqueness of the solutions for the coupled
or tripled systems via several fixed points theorems such as
Banach contraction, mapping principle, Leray-Schuader’s
alternative, and Monch’s fixed point theorem.
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