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We introduce the class of unbounded M-weakly compact operators and the class of unbounded L-weakly compact operators. We
investigate some properties for this new classifcation of operators, and we study the relation between them and M-weakly
compact and L-weakly compact operators. We also present an operator characterization of Banach lattices with an ordered
continuous norm.

1. Introduction

Unbounded norm convergence was introduced by Troitsky
in [1] and further considered in [2, 3]. Let E be a vector
lattice and x ∈ E. A net (xα)α∈A⊆E is said to be unbounded
norm convergent (un-convergent, for short) to x if more-
over E is a Banach lattice and ‖|xα − x|∧ u‖⟶ 0 for all
u ∈ E+. We denote this convergence by xα

un⟶x and write
that (xα)α is un-convergent to x. A continuous operator
T: E⟶ X from a Banach lattice E to a Banach space X is
said to be M-weakly compact if ‖Txn‖⟶ 0 holds for every
norm bounded disjoint sequence xn  of E. A continuous
operator T: X⟶ E from a Banach space X to a Banach
lattice E is said to be L-weakly compact if ‖yn‖⟶ 0 holds
for every sequence yn  of solid hull of T(U), where U is the
closed unit ball of the Banach space X. Te classes of
L-weakly and M-weakly compact operators were introduced
by Meyer-Nieberg in [4]. He proved some interesting
properties for these classifcations of operators. For example,
he proved that L-weakly and M-weakly compact operators
are weakly compact (Teorem 5.61 in [3]). Te properties of
these classifcations of operators have been investigated and
extended to some general cases by some authors; see [5–8].
In this paper, we introduce an unbounded version for these
classifcations of operators as unbounded L-weakly and
M-weakly (in short u-L- and u-M-weakly) compact

operators. We show that these new versions are diferent
from L-weakly and M-weakly compact operators and we
prove some of their properties. We show that u-L- and
u-M-weakly compact operators satisfy the domination
problem, and we study their modulus properties, that is, T is
u-M-weakly compact if and only if |T| is u-M-weakly
compact and if T or |T| is u-L-weakly compact, then both of
them are u-L- and u-M-weakly compact operators.

In this paper, by E∼ and E∼∼ we will denote the order
dual and order bidual of the vector lattice E, respectively.
And by E′ and E″ we will denote the topological dual and
topological bidual of normed space E, respectively. Te solid
hull of a subset A of vector lattice E is the smallest solid set,
including A. It is easy to see that

Sol(A) � x ∈ E: ∃y ∈ A with  |x|≤ |y| . (1)

A net (xα) in E is said to be unbounded order convergent
(uo-convergent, for short) to x if for every u ∈ E+ the net
(|xα − x|∧ u)α converges to zero in order. An operator
T: E⟶ F between two vector lattices is said to be a lattice (or
Riesz) homomorphism whenever T(x∨y) � T(x)∨T(y)

holds for all x, y ∈ E. An operator T: E⟶ F between two
vector lattices is called disjointness-preserving if Tx⊥Ty for
all x, y ∈ E satisfying x⊥y. By Meyer’s theorem [see [11],
Teorem 3.1.4], we know that, if an order bounded operator
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T: E⟶ F between two Archimedean vector lattices pre-
serves disjointness, then its modulus exists, and

|T|(|x|) � |T(|x|)| � |Tx|, (2)

holds for all x ∈ E. Moreover, |T| is a lattice homomor-
phism. We refer the reader to [9, 10] for any unexplained
terms from Banach lattice theory and to read more about
uo-convergence and un-convergence refer to [3, 11],
respectively.

2. Main Results

In this section, we introduce two new concepts as un-
bounded M-weakly compact and unbounded L-weakly
compact operators and we investigate some of their prop-
erties. We establish their relationships with M-weakly
compact and L-weakly compact operators and we study
lattice properties of these new concepts.

Defnition 1. A continuous operator T: E⟶ F between
two Banach lattices E and F is said to be unbounded
M-weakly compact (or u-M-weakly compact for short) if
Txn

un⟶ 0 holds for every norm bounded disjoint sequence
xn  of E.

Defnition 2. A continuous operator T: X⟶ E from
a Banach space X to a Banach lattice E is said to be un-
bounded L-weakly compact (or u-L-weakly compact for
short) if yn

un⟶ 0 holds for every disjoint sequence yn  of
solid hull of T(U), where U is the closed unit ball of the
Banach space X.

We know that every disjoint sequence in a Banach space
with order continuous norm is un-null(Proposition 3.5
in [9]).

Example 1

(1) Since c0 and l1 have order continuous norm, so
every disjoint sequence in c0 and l1 is un-null.
Terefore, identity operators of l1 and c0 are obvious
examples of u-L-weakly and u-M-weakly compact
operators.

(2) Let T: l1⟶ c0 be the inclusion operator. Let an 

be a norm bounded disjoint sequence in l1. Clearly,
for each u ∈ c+

0 , an ∧ u  is a disjoint sequence in c0,
so it follows from order continuity of c0 that
an ∧ u ||·||⟶ 0. Terefore, T is u-M-weakly compact.
On the other hand, every norm bounded disjoint
sequence in solid hull of T(U) is un-convergent to
zero. Hence, T is u-L-weakly compact.

We do not use net in abovementioned defnitions since
we have the following propositions.

Proposition 1. A continuous operator T: E⟶ F between
two Banach lattices E and F is u-M-weakly compact if
Txα

un⟶ 0 holds for every norm bounded disjoint net xα 

of E.

Proposition 2. A continuous operator T: X⟶ E from
a Banach spaceX to a Banach lattice E is u-L-weakly compact
if yα

un⟶ 0 holds for every disjoint net yα  of solid hull of
T(U), where U is the closed unit ball of the Banach space X.

In the rest of this paper, we denote by

L(X, Y): the class of all continuous operators between
two normed vector spaces X and Y.
MW(E, X): the class of all M-weakly compact oper-
ators from a Banach lattice E to a Banach space X.
LW(X, E): the class of all L-weakly compact operators
from a Banach space X to a Banach lattice E.
MWu(E, F): the class of all u-M-weakly compact
operators between two Banach lattices E and F.
LWu(X, E): the class of all u-L-weakly compact op-
erators from a Banach space X to a Banach lattice E.

For Banach lattices E and F and a Banach space X, we
have the following inclusions:

LW(X, E) ⊂ LWu(X, E),MW(E, F) ⊂ MWu(E, F). (3)

In the next remark, we give a condition that the reverse
inclusions hold. But, in general the abovementioned in-
clusions are proper, as shown in the following example.

Example 2. Let T: l1⟶ c0 be the inclusion operator. In
Example 1, we show that T is a u-M- and u-L-weakly
compact operator. Te sequence en  of the standard unit
vectors is a norm bounded disjoint sequence of l1. We have
‖T(en)‖ � 1 for each n, therefore T is not M-weakly com-
pact. On the other hand, we have en  ⊂ T(U), where U is
the closed unit ball of l1, since ‖en‖ � 1 for each n, therefore
T is not L-weakly compact.

Remark 1. If F is a Banach lattice with strong unit, then it
follows from Teorem 2.3 of [3] that un-topology agrees
with norm topology on F. Tat is, for a sequence xn  ⊂ F,
we have xn

un⟶ 0 if xnan ∧ u ||·||⟶ 0. So

(1) For each Banach lattice E, we have
MWu(E, F) � MW(E, F)

(2) For each Banach space X, we have
LWu(X, F) � LW(X, F)

Te following example shows that compact operator
need not to be u-L- or u-M-weakly compact.

Example 3. Let T: l1⟶ l∞ be an operator defned as
follows:

T an(  � 
∞

n�1
an, 
∞

n�1
an, 
∞

n�1
an, · · ·⎛⎝ ⎞⎠. (4)

Clearly, T is of fnite rank and so is a compact operator.
Now, let en  be the standard basis of l1. We see that
‖Ten ∧ (1, 1, 1, . . .)‖ � 1 for all n, so T is not u-M-weakly
compact.

On the other hand, we can easily see
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Sol(T(U)) � x ∈ l∞: |x|≤ (1, 1, 1, . . .) , (5)

where U is the closed unit ball of l1. Terefore,
en  ⊂ Sol(T(U)). For each n ∈ N we have

‖en ∧ (1, 1, 1, . . .)‖ � 1, hence T is not u-L-weakly compact.
Te notions of M- and L-weakly compact operators are

in duality to each other (Teorem 5.64 in [3]). By the fol-
lowing example, we show that u-M- and u-L-weakly
compact operators do not have the same duality properties.

Example 4. By Il1 , Il∞ , and I
(l∞)′

we denote the identity
operators of l1,l∞, and (l∞)′, respectively. We know that
Il1′ � Il∞ and Il∞′ � I

(l∞)′
. Since l1 and (l∞)′ are

AL-spaces, so they have order continuous norm. Terefore,
it follows fromTeorem 6 that Il1 and I

(l∞)′
are both u-M-

and u-L-weakly compact operators. On the other hand, Il∞

is neither u-M- nor u-L-weakly compact.
Te u-L- and u-M-weakly compact operators have

a lattice approximation properties like L- and M-weakly
compact operators. To prove it, we need a slightly modifed
version of Teorem 4.36 of [9] that can be proved using the
argument of the same theorem. Recall that a map
f: V⟶W from a vector space V to an ordered vector
space W is called subadditive if for each x, y ∈ V we have
f(x + y)≤f(x) + f(y) and f(0) � 0.

Lemma 1. Let T: E⟶ X be a continuous operator from
a Banach lattice E to a Banach space X, let A be a norm
bounded solid subset of E, and let f: X⟶ R be a norm
continuous subadditive function. If f(Txn)⟶ 0 holds for
each disjoint sequence xn  in A, then for each ϵ> 0 there
exists some u ∈ E+ lying in the ideal generated by A such that

f T(|x| − u)
+

( < ϵ, (6)

holds for all x ∈ A.

Theorem 1. Let T: E⟶ F be a continuous operator be-
tween two Banach lattices E and F, let A be a norm bounded
solid subset of E. If Txn

un⟶ 0 holds for each disjoint sequence
xn  in A, then for each w ∈ F+ and each ϵ> 0 there exists
some u ∈ E+ lying in the ideal generated by A such that

T(|x| − u)
+


∧w

����
����< ϵ, (7)

holds for all x ∈ A.

Proof. Let w ∈ F+ and ϵ> 0 be arbitrary but fxed. Defne
map fw: F⟶ R as

fw(x) � ‖|x|∧w‖, (8)

for each x ∈ F. It is obvious that fw is subadditive and norm
continuous.

Let xn  be a disjoint sequence in A. It follows from
assumption and fw(Txn) � ‖|Txn|∧w‖ that
fw(Txn)⟶ 0. Terefore, by Lemma 1, there exists some
u ∈ E+ lying in the ideal generated by A such that

fw T(|x| − u)
+

( < ϵ, (9)

for all x ∈ A. Tat is,

T(|x| − u)
+


∧w

����
����< ϵ, (10)

for all x ∈ A. Tus, the proof is complete. □

Corollary 1. For two Banach lattices E and F, and a Banach
space X the following statements hold:

(1) If T: E⟶ F is a u-M-weakly compact operator,
then for each w ∈ F+ and for each ϵ> 0 there exists
some u ∈ E+ such that

T(|x| − u)
+


∧w

����
����< ϵ. (11)

holds for all x ∈ E with ‖x‖≤ 1.
(2) If T: X⟶ E is a u-L-weakly compact operator, then

for each w ∈ E+ and for each ϵ> 0 there exists some
u ∈ E+ lying in the ideal generated by T(X) satisfying

(|Tx| − u)
+
∧w

����
����< ϵ, (12)

for all x ∈ X with ‖x‖≤ 1.

In the following theorem, we show that the class of u-M-
and u-L-weakly compact operators are closed subspaces of
the vector space of continuous operators.

Theorem 2. For Banach lattice E and F, and a Banach space
X the following hold. LWu(X, E) and MWu(E, F) are closed
vector subspaces of L(X, E) and L(E, F), respectively.

Proof. To see that the sum of two u-L-weakly compact
operators is u-L-weakly compact, let S, T: X⟶ E be two
u-L-weakly compact operators. Let yn  ⊂ Sol((T + S)(U))

be a disjoint sequence, where U is the closed unit ball of X.
For each n choose some un ∈ U with
|yn|≤ |Tun + Sun|≤ |Tun| + |Sun|. It follows from (Teorem
1.13 in [3]) that for each n there exist an, bn ∈ E+ with
an ≤ |Tun| and bn ≤ |Sun| such that |yn| � an + bn. Clearly,
an  and bn  are disjoint sequences in Sol(T(U)) and
Sol(S(U)), respectively. So by assumption we have an

un⟶ 0
and bn

un⟶ 0. Tus, |yn| � an + bn
un⟶ 0 (Lemma 2.1 in [5]).

Terefore, T + S ∈ LWu(X, E).
To see that LWu(X, E) is a closed vector subspace of

L(X, E), let T ∈ L(X, E) be in the closure of the set of all
u-L-weakly compact operators of L(X, E). Assume that
yn  ⊂ Sol(T(U)) be a disjoint sequence. To this end, let
ϵ> 0 and w ∈ E+ be fxed. Pick an u-L-weakly compact
operator S: X⟶ E with ‖T − S‖< ϵ. For each n choose
some un ∈ U such that |yn|≤ |Tun|≤ |(T − S)un| + |Sun|. It
follows from [see [3], Teorem 1.13] that for each n there
exist an, bn ∈ E+ with an ≤ |(T − S)un| and bn ≤ |Sun| such
that |yn| � an + bn. Clearly, bn  is a disjoint sequence in
Sol(S(U)). So, by assumption, we have ‖bn ∧w‖⟶ 0. Now,
it follows from the inequalities
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yn


∧w

����
����≤ an ∧w

����
���� + bn ∧w

����
����

≤ ‖T − S‖ + bn ∧w
����

����

≤ ϵ + bn ∧w
����

����,

(13)

that limsup‖|yn|∧w‖≤ ϵ. Since ϵ> 0 is arbitrary, we see that
‖|yn|∧w‖⟶ 0. Terefore, T ∈ LWu(X, E).

Now, we prove that MWu(E, F)fa is a norm closed
vector subspace of L(E, F). It is obvious that the set of all
u-M-weakly compact operators between E and F is a vector
subspace of L(E, F). Let T be in the closure of the set of all
u-M-weakly compact operators, and let xn  be a disjoint
sequence of E satisfying ‖xn‖≤ 1 for all n. We have to show
that Txn

un⟶ 0. Let w ∈ F+ and ϵ> 0 be arbitrary but fxed
from now on. Tere exists some u-M-weakly compact
operator S: E⟶ F such that ‖T − S‖< ϵ. We have
|Txn|≤ |(T − S)xn| + |Sxn|. Terefore,

Txn


∧w≤ (T − S)xn


 + Sxn


 ∧w

≤ (T − S)xn


 + Sxn


∧w.

(14)

So, it follows that ‖|Txn|∧w‖≤ ‖(T −S)xn‖ + ‖ |Sxn|

∧w‖< ϵ + ‖|Sxn|∧w‖. Since ϵ> 0 is arbitrary and S is
u-M-weakly compact we see that ‖|Txn|∧w‖⟶ 0 holds.
Now, the proof follows from the fact that w ∈ F+ is
arbitrary. □

Theorem  . Let T: E⟶ F be a positive operator between
two Banach lattices. Assume that E has order continuous
norm and let G be a superorder dense sublattice of E. If
Txn

un⟶ 0 holds for every norm bounded disjoint sequence
xn  of G, then T ∈MWu(E, F).

Proof. Let xn  be a norm bounded disjoint sequence in E. It
follows that x−

n  and x+
n  are norm bounded disjoint se-

quences in E. Terefore, we may assume without loss of
generality that xn > 0 for all n ∈ N. Since G is superorder
dense in E, for each n ∈ N, there is a sequence xn,k  such
that 0<xn,k↑xn. It follows that xn − xn,k↓0, and so by as-
sumption we have ‖xn − xn,k‖⟶ 0. By continuity of T, we
have ‖T(xn − xn,k)‖⟶ 0, and so ‖T(xn − xn,k)∧w‖⟶ 0
whenever w ∈ F+. Let w ∈ F+, ϵ> 0 are fxed. For each n ∈ N,
there is some kn such that ‖T(xn − xn,kn

)∧w‖< ϵ/2. On the
other hand, the sequence xn,kn

 
+∞
n�1 is a norm bounded

disjoint sequence in G, by assumption we have
‖T(xn,kn

)∧w‖⟶ 0, and so there is some N ∈ N such that
‖T(xn,kn

)∧w‖< ϵ/2 for all n≥N. Tus, we have

Txn ∧w
����

����≤ T xn − xn,kn
 ∧w

�����

����� + T xn,kn
 ∧w

�����

�����<
ϵ
2

+
ϵ
2

� ϵ,

(15)

for all n≥N, and so the proof follows.
Te following theorem shows that u-L- and u-M-weakly

compact operators satisfy the domination problem. □

Theorem 4. u - L- and u-M-weakly compact operators
satisfy the domination problem. Tat is, for Banach lattice E

and F, and a Banach space X, if T ∈MWu(E, F) (resp.

T ∈ LWu(X, E)) and S ∈ L(E, F) (resp. S ∈ L(X, E)) such
that 0≤ S≤T, then S ∈MWu(E, F) (resp. S ∈ LWu(X, E)).

Proof. At frst, we prove that u-M-weakly compact opera-
tors satisfy the domination problem. Let xn  be a norm
bounded disjoint sequence in E. Since T is u-M-weakly
compact we have T(xn)  is un-convergent to zero. For each
u ∈ F+, we have

Sxn


∧ u≤ S xn


∧ u≤T xn


∧ u. (16)

Since |xn|  is a norm bounded disjoint sequence, we
have T|xn|∧ u ||·||⟶ 0. Terefore, Sxn

un⟶ 0 and so S is
u-M-weakly compact.

Now, we show that u-L-weakly compact operators satisfy
the domination problem. We claim that
Sol(S(U)) ⊂ Sol(T(U)) where U is the closed unit ball of X.
Let y ∈ Sol(S(U)). Tus, for some u ∈ U we have |y|≤ |Su|.
On the other hand, |Su|≤ S|u|≤T|u|. Since ‖|u|‖ � ‖u‖≤ 1,
we have |u| ∈ U. Hence, it follows from |y|≤T|u| that
y ∈ Sol(T(U)). Now, let yn  be a disjoint sequence in
Sol(S(U)) by the above argument we conclude that
yn  ⊂ Sol(T(U)). As T is u-L-weakly compact, therefore

yn
un⟶ 0 and the proof is complete. □

Proposition  . Te following assertions hold:

(1) Let T be a lattice homomorphism from Banach lattice
E with order continuous norm into Banach lattice F,
and let Y denotes the range of T. Each of the following
conditions implies that T is u-M-weakly compact.

(a) Y is majorizing in F

(b) Y is norm dense in F

(c) Y is a projection band in F

(2) If T: X⟶ E from a Banach space X to a Banach
lattice E is continuous and E has order continuous
norm then T is u-L-weakly compact.

Proof

(1) Let xn  be a norm bounded disjoint sequence in E.
Since E has order continuous norm, xn

un⟶ 0. As T is
lattice homomorphism, then it is easy to check that
Txn

un⟶ 0 in Y, and hence Txn
un⟶ 0 in F by Te-

orem 4.3 in [9]
(2) Te proof is clear by Proposition 3.5 of [3]

Recall that if T: E⟶ F is an order bounded
disjointness-preserving operator between two Banach lat-
tices then |T| exists and is a lattice homomorphism.
Terefore, by using Teorem 2.14 in [3] and Teorem 3.1.4
in [11], we have ||T|x| � |Tx| for all x ∈ E. In particular, for
each u ∈ F+ we have ‖T|x|∧ u � |Tx|∧ u. □

Theorem 5. Let T: E⟶ F be an order bounded
disjointness-preserving operator between two Banach lattices.
Ten, the following assertions are hold:

(1) T is u-M-weakly compact if and only if |T| is
u-M-weakly compact
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(2) If T or |T| is u-L-weakly compact then both of them
are u-L- and u-M-weakly compact

Proof

(1) Let xn  be a norm bounded disjoint sequence in E.
For each u ∈ F+ and for each n ∈ N, we have

T xn


∧ u

����
����

���� � Txn


∧ u

����
����. (17)

In other words, Txn
un⟶ 0 if and only if

|T|(xn) un⟶ 0. Tus, the proof is complete.
(2) By using Proposition 2.7 of [12]

Sol(T(U)) � Sol(|T|(U)), where U is the closed unit
ball of E. Terefore, T is u-L-weakly compact if and
only if |T| is u-L-weakly compact. Now, without loss
of generality we assume that |T| is u-L-weakly
compact. Let xn  be a disjoint sequence in U. Since
|T| is a lattice homomorphism, for n≠m we have

T xn


∧

����
����T xm


 � |T| xn


∧ |T| xm


 � |T| xn


∧ xm


  � 0.

(18)

Terefore, |T|xn  is a disjoint sequence in
Sol(T(U)). Since |T| is u-L-weakly compact, |T|xn 

is un-convergent to zero. Tus, |T| is a u-M-weakly
compact operator. It follows from previous part that
T is also u-M-weakly compact.

In the following theorem, we present a characterization
of Banach lattices with order continuous norm. □

Theorem 6. Let E be a Banach lattice. Te following
statements are equivalent.

(1) E has order continuous norm
(2) I: E⟶ E is u-L-weakly compact
(3) I: E⟶ E is u-M-weakly compact

As a result of Teorem 1 and Corollary 1, we have the
following lattice approximation property.

Corollary 2. Let E be a Banach lattice with order continuous
norm. Ten, for each w ∈ E+ and for each ϵ> 0, there exists
some u ∈ E+ such that

(|x| − u)
+ ∧w

����
����< ϵ (19)

holds for all x ∈ E with ‖x‖≤ 1.

3. Conclusion

Te classifcation of M-weakly compact and L-weakly
compact operators have been extended to unbounded case as
u-M-weakly and u-L-weakly compact operators, re-
spectively. Te classifcation of u-M-weakly and u-L-weakly
compact operators are similar to M-weakly compact and
L-weakly compact operators, respectively, in some prop-
erties, but in the some others they can be diferent. Tat is,
a compact operator need not to be u-L- or u-M-weakly

compact, and on the other hand, u-M- and u-L-weakly
compact operators does not have the duality properties. Te
u-L- and u-M-weakly compact operators have a lattice
approximation properties such as L- and M-weakly compact
operators, and they satisfy the domination problem. An
operator T is u-M-weakly compact if and only if its modulus
is u-M-weakly compact and if T or its modulus is
u-L-weakly compact then both of them are u-L- and
u-M-weakly compact operators.
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