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In this article, our goal is to study the system of extended nonlinear mixed variational-like inequalities (in short, SENMVLI) with
a nonconvex functional in the setting of real Hilbert spaces and discuss the existence of solution of our considered problem. We
propose a three-step iterative algorithm to calculate the approximate solutions of SENMVLI and investigate the convergence
analysis as well as stability analysis of the proposed algorithm. Furthermore, we also study the proximal dynamical system for
SENMVLI and prove that the trajectory of the solution of the extended proximal dynamical system converges globally expo-
nentially to a unique solution of SENMVLI. Our suggested iterative algorithm and results have become the significant im-
provement, enhancement, and generalization of many previously known results in the literature.

1. Introduction

In prior 1960s, the concept of variational inequality origi-
nated by Hartmann and Stampacchia [1] has appeared as
a fruitful and methodical mechanism to study a wide range
of applications in economics, finance, pure and applied
sciences, and optimization, see, e.g. [2-5]. Using novel and
regenerated techniques, several extensions and generaliza-
tions of variational inequalities have been explored and
developed in recent years. The functional, pivotal, and ap-
plicable generalizations of variational inequalities are
variational-like inequalities and mixed variational-like in-
equalities which have significant applications in nonconvex
optimizations and mathematical programming problems.
For details, we refer to [6-8] and references therein.

In classical variational inequality theory, ones have been
failing to exploit the projection method and its modified
forms to analyze the existence of solutions of mixed
variational-like inequalities involving the nonlinear term. To
vanquish this flaw, it is assumed that the nonlinear term
involving the mixed variational-like inequalities is a proper,

convex, and lower-semicontinuous functional. It is well-
known that the subdifferential of a proper, convex, and
lower-semicontinuous functional is a maximal monotone
operator. This characterization enables to define the re-
solvent operator associated with the maximal monotone
operator. The resolvent operator technique is used to es-
tablish the equivalence between the mixed variational-like
inequalities and fixed point problems. Such type of methods
is called the operators splitting methods. For recent devel-
opment of the subject, we refer to [9-12]. Noor [13, 14] has
used the resolvent operator technique to propose and study
some two-step forward-backward splitting methods. It has
been noticed that the convergence of such type of splitting
algorithms needs relatively relaxed strong monotonicity,
which is a weaker constraint than cocoercivity. Glowinski
and Tallec [15] and many authors have suggested and an-
alyzed some three-step forward-backward splitting methods
for solving various classes of variational inequalities by using
the Lagrangian multipliers and auxiliary principle tech-
niques. They have shown that three-step splitting methods
are numerically more efficient and handy as compared with
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one-step and two-step splitting methods. They have studied
the convergence of these splitting methods under the as-
sumption that the underlying operators are monotone and
Lipschitz continuous. For the convergence analysis of
iterative-type splitting methods and their applications, we
refer to [16-19] and references therein.

The dynamical system has appeared as a feasible substitute
for solving variational inequalities with a specific interest on
optimization problems. Dupuis and Nagurney [20], Friesz et al.
[21], Noor [22], and many authors introduced and studied
many projected dynamical systems associated with variational
inequalities. In these dynamical systems, discontinuity appears
due to the discontinuity of the projection operator which
occurs on the right side of the ordinary differential equation.
The novel importance of projected dynamical systems is that
the set of stationary points of the projected dynamical systems
is the set of solutions of the associated variational inequalities
and all those problems which can be studied in the structure of
variational inequalities. Since proximal dynamical systems are
generalization of projected dynamical systems, therefore clearly
the results enhance to global stability of modified projected
dynamical systems. Moreover, a vast category of optimization
problems can be considered as special cases of mixed varia-
tional inequalities (variational-like inequalities) and, therefore,
can be solved by using the proximal dynamical systems.

Inspired and motivated by the research works mentioned
above, in this article, we introduce and study a system of
extended nonlinear mixed variational-like inequalities in real
Hilbert space and discuss the existence of solution of our
problem. Next, we propose and analyze a new three-step it-
erative scheme for solving the system of extended nonlinear
mixed variational-like inequalities. The convergence and sta-
bility analysis for the system of extended nonlinear mixed
variational-like inequalities are established. We also study
proximal dynamical system associated with the system of
extended nonlinear mixed variational-like inequalities. Finally,
we show that the trajectory of the solution of extended non-
linear mixed variational-like proximal dynamical system
converges globally exponentially to a unique solution of system
of extended nonlinear mixed variational-like inequalities.

2. Preliminaries

Throughout this article, we assume that 7 is a real Hilbert
space whose norm and inner product are denoted by | - ||
and {,-), respectively.

"Ai (P1>Pas -+ Picts Pis Pisto - -

(ii) o-strongly monotone in the i"-argument if, there
exists a constant g >0 such that

CAi(P1>Pas- > Picts Pis Pisis - - -5 Pm) = Ai (P1> Do - - -

s Pm) = Ai (PP - -

> Pi1> Pis Piv1s> - - -
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Let us recall the following well-known concepts and
results.

Definition 1 (see [9, 23]). Let g, T: # — X and (: H %
H — F be the single-valued mappings. Then,

(i) ( is said to be 7-Lipschitz continuous if, there exists
a constant 7> 0 such that

IC(pli<tlp—4gl, Vp.qe. (1)

(ii) ¢ is said to be J-strongly monotone if, there exists
a constant § >0 such that

&(parp-qy20lp-ql’, Vp.qe . (2)

(iii) g is said to be p -strongly monotone if, there exists
a constant y, >0 such that

GP)-9@.p-D=zpllp-ql’, Vpqex. ()

(iv) g is said to be Ag-Lipschitz continuous if, there
exists a constant A s>0 such that

lg(p)—g@I<Ap—ql., Vp.qeZ. (4)

(v) T is said to be (-relaxed Lipschitz continuous if,
there exists a constant « >0 such that

(T(P)-T(@{(p.g) < -alp-ql’, Vpqgex. (5)

(vi) T is said to be pp-strongly monotone with respect to
g if, there exists a constant y; >0 such that

(T(g(p)-T(g()g(p)-g(q)

) (6)
>urlp-ql°, Vp.qe .

Definition 2 (see [9]). For each i=1,2,...,m, let
hi: #; — X;and A;: 12, % ; — % ; be the single-valued
mappings. Then, A; is said to be
(i) y-Lipschitz continuous in the i"-argument if, there
exist a constant y >0 such that

s Dict> Dis Pisto - - - >Pm)niS Y"Pi - ﬁi"p VpiDi € X (7)

s Pm) Pi = P 2 QHPi - IA’IH,Z) Vp,pi € ¥
(8)
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(iii) p, -strongly monotone with respect to g; in the
i-argument if, there exists a constant y g,> 0 such
that
CAi(P1> P25 Picts Pir Pist - - Pm) = Ai (P> Pas - > Pict> P Pisto - -» P )> 9i () = 9 (Pi)) ©)
~ 2 —~
Zﬂgi”gi (p:) = 9:(P)|;> Vpibi€ X,

Definition 3 (see [24]). A functional f: ' xZ — R is
said to be 0-diagonally quasi-concave (inshort,0 — DQCV)
in p if, for any finite set {p,, p,,..., p,} € # and for any

q=Yit;p; witht;>0and Y t; =1,
min f (p;,q) <0. (10)
5w (o) :{f* e {f.{@p)=<vy(g-
¢ @,

Definition 5 (see [12]). Let y: # — R U {+00} be a proper,
(-subdifferential (may not be convex) functional,
HXH — H, T: H — H be the mappings, and
I: # — J be an identity mapping. If for any given z € #
and p >0, there exists a unique point p € # satisfying

(I-T)p-24(qp)zpy(p)-py(q), VqeZ,
(13)

then the mapping z—— p, denoted by j Y (2), is said to be

relaxed  {-proximal operator of y. We have
z— (I -T)p € poy(p), and it follows that
T4 @) =[A=T)+pay] ' ( (14)

Definition 6 (see [25]). Let S,T: # — H be the single-
valued mappings, p, € # and

Prrr = S(T, pp)s (15)

defines an iterative sequence which yields a sequence of
points {p,} in #. Suppose that Fix(T) ={pe #: Tp=
pt# D and {p,} converges to a fixed point p* of T. Let
{u,} ¢ # and

9, =t = S(To,)]- (16)

If lim, 9, = 0, which implies that u, — p*, then
the iterative sequence {p,} is said to be T-stable or stable
with respect to T.

Theorem 1 (see [12]). Let {: # x H —> F be a §-strongly
monotone and t-Lipschitz continuous mapping such that
C(p.q) =—-((q,p), for all p,qe H. Let T: H —> H be
(-relaxed Lipschitz continuous mapping with constant o and
I: H— H be an identity mapping. Let y: # — RU

Definition 4 (see [24]). Let {: # x H —> H be a mapping
and y: # — RU{co} be a proper functional. A vector
f* € H is called an (-subgradient of y at p € domy if

S58gpy<v(@ —v(p), VYqeX. (11)

Each y can be associated with the following map d,v,
called (-subdifferential of y at p, defined by

v(p),VqeH, pedomy,

12
p ¢ domy. (12

{+oo} be a proper, lower-semicontinuous, (-subdifferential
functional which may not be convex, and for any z, p € X,
the mapping f (q, p) = {z — (I - R)p, (g, p)) is 0-DQCV in
q. Then, for any p >0, and any z € X, there exists a unique
p € such that p= j ol V(2), and hence, the relaxed
(-proximal operator J,; ‘ of v is well-defined and
(T/(a + 8))-Lipschitz contznuous ie.,

|75 (p) - 735 (@] <

lp—aql, Vp.qe . (17)

" (a +5)

Lemma 1 (see [26]). Let {g,},{v,}, and {g,} be nonnegative
real sequences satisfying the following condition: there exists
a natural number ny such that

@)@, + V@, + 0, Yn=ny, (18)

Enr1 = (1 -
where @ € [0,1],Y02®@, = 00,lim,_, v, =0,Y.20, < 0o.
Then, lim =0.

n*?OOKJn

3. Formulation of the Problem and
Existence Result

For each i € A ={1,2,3,...,m}, let #,; be a real Hilbert
space equipped with the norm |.[;, and let
hy, g, Ty H; — F ), (G H,xH;, — I, and
A H # ; —> ; be the nonlinear single- valued map-
pings, respect1vely Let y;: #; x #; —> R U {+0o} be such
that for each fixed p; € 7, y; ( p;) is lower semicontinuous,
(;-subdifferential, proper functional on %; x #; (may not
be convex) satisfying h; (;) N dom(al//(i (-, p;)) # D, where
oy, (-, p;) is a {;-subdifferential of y; (-, p;). We consider the
following system of extended nonlinear mixed variational-
like inequalities (in short, SENMVLI).



For each p; >0, find (py, s, - - - ) € [1 2 %; such that
h;(p;) € dom (9, y; (-, p;)) and for all g; € Z;

[ By (pr) = (91 (p1) = P1 AL (P1 Pos - -
(hy (p2) = (92(P2) = P2 A (P1s P - -

Equivalently, for each i € A, above system can be written
as

Chi(pi) = (9:(pi) = piAi (P1> P2 - - -
>p.y; (i (p)> pi) = pivi (@i Pi)-

s P))> Ci (@i 1y (P2)))

(20)
Some special cases of problem (19) are as follows:

(i) If p; =1,y; =0, h;, g; = I; (identity mappings) and
v, (g pi) = v;(g;), for each i € A, then problem (20)
reduces to the problem of finding (py, py>- - -> P) €
[T%,%; such that

(Ai(p1> P+ P> Ci (@i 1)) 2 ¥ (i) — i (4))-

(21)
Problem (21) was considered and studied by
Balooee [27].

(ii) If p; = 1,9, = 0, h;, g; = I; (identity mappings), and
(; (g5 hi (p) = q; — p;» for each i € A, then problem

(19) reduces to the problem of finding
(P1> P2 - Pm) € [112,%; such that

A (P1>Pr -5 Pm)s @1 — P1) 20,

Ay (P1>Pas- -+ Pm)> G2 — P20 20,

1 A3 (P1s o> > P ) G5 — P30 20, (22)

[ CA (1> Pos -+ > Pon)> G = P 20

Problem (22) was considered and studied by Tang
et al. [28].

By taking suitable choices of the mappings g;, ;, T}, ¥, (;
and the space 7, for each i € A, in above problem (19), one
can easily obtain the problems considered and studied in
[9, 13, 14, 22, 29, 30] and references therein.

Example 1. Let R = (-00,00), #; = [a, b]. Let
G(py> P2 - - -» P) be a continuous real m-variable function
with G e CW(%,). Then, there exists an element

Po = (Po1s Po2s- -+ Pom) € [112,%; such that
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s Pm)) C1 (@0, By (P1))) 2 o1 vy (e (1) P1) = Pavs (40 1)
s Pm))> 2 (@2, 1y (P2))) 2 pa¥2 (B2 (P2) 2) = P2V (95 P2)s
1 <3 (p3) = (g5 (P3) = P3 A3 (P1 P2 -+ > Pm)) $5 (95, B3 (P3))) 2 p3 w5 (B3 (p3), p3) — p3¥s (a5, 3)s (19)

L <hm (pm) - (gm (pm) _pmAm (pl>p2> cee >Pm))’(m (qm’hm (Pm))> ZPmV¥m (hm (pm)>pm) ~PmVm (qm’pm)'

min € [[#:G(p),pr---sPm).

"pO,m =
) (pvprobm) il

G(Po,1> Pogs--
(23)

This element p, must be a solution of the following
system of variational inequalities:

(,0G
<_ > sec s P ) - >20)
op, (PrPo 2 Pn) @i =P

oG
<7 > secs P ) - >20,
op, (P1 P2 [N

1 ,9G (24)
- s Prse e ,q3 — >0,
<ap3 (P12 Pm) s — P3> 2
oG
_ <67m (P1>P2-- > Pi)sGm — Pm? 20.
If fact, we have
= O’ pO,i € (a) b))
oG
o, (1> P2+ Pm) Y 20, p0; = @ (25)
<0, pg; = b,
for all i = 1,2,...,m. Hence, p, must satisfy (24). In ad-

dition, the system of variational inequalities (24) is equiv-
alent to

(gradG(p),q - py =0, (26)

where grad G(x) = ((0G/op,), (0G/dp,), ..., (dG/9p,,)).
This example is special case of a practical background of
problem (19), where A; = (0G/0p;),h;,g; =1;,p; =1 and
y;=0,foralli=1,2,...,m and grad G(x) = A*.

The following lemma ensures the equivalence between
the system of extended nonlinear mixed variational-like
inequalities (19) and fixed point problem.
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Lemma 2. For eachi € A, let (py, pys---»Pp) € [110y%; is  variational-like  inequalities (19) if and only if
a solution of the system of extended nonlinear mixed — (py, P, ..., P,,) satisfies the following equation:
_ i (p) (27)
hi(pi) = I o, [9:(Pi) = (T (hi (1) + piAi (P1> s - -5 Pn)) )

where %, Sudilp) = [(I; )+p18(1//l( P Y T, is (-re-
laxed szschztz contznuous mapping with constant o, and I is
the identity mapping onJ ;.

h(p) = 728 O (g, (p) = (T, (1 (£)) + iy (P o

since 750" = [(1; = T) + pid, (- p)] ', the above
equality holds if and only if
i(pi) = (T;(hi (p;) + PiAi (P> P>+ > P
gz(p1) ( ( (p1)) Pi z(pl b p )) (29)

€h; ( ) T; (h (pz))+pla(ll/1(h (Pt) pl)

By using the definition of {;-subdifferential of vy, (., p;),
the above relation holds if and only if

(i (pi) = PiAi (1> Pas -+ -5 Pm)) = i (P2) Ci (g i (1))

<pvi (@ pi) = pivi (hi (P:)> Pi)-
(30)
Hence, we have
Chi(pi) = (9:(p:) = piAi (P1s P> - - -5 P))> G (@i 1y ()
>pw; (b (p;), pi) = Pivi (s> Pi)s
(31)
e, (p1> P2 --->Pm) is a solution of system of extended
nonlinear mixed variational-like inequalities (19). O

In the next theorem, we discuss the existence and
uniqueness of the solution of the SENMVLI (19).

Theorem 2. For each ic A, let g,h,T; X, — X},
(o Hx H; —> Ky, and A [, H; — F; be the non-
linear single-valued mappings such that g; is A, -Lipschitz
continuous and p,-strongly monotone, h; is Ay -Lipschitz
continuous and  p, -strongly  monotone  such  that
hi(#) =%, T; is Ap-Lipschitz continuous, relaxed
a;-Lipschitz continuous and pr -strongly monotone with
respect to h, {; is 1,-Lipschitz continuous, and {; is 8;-strongly
monotone such that (;(p,q;) =-C (g, pi)s for each
Pi»qi € Zi» A is A -Lipschitz continuous in the i*"-argument

¢i(P1>P2>--~er)=Pi— 1( )+fpfxw:(pr)[

forall (py, pss-- . P) € [12; % ;. Define ||.|l, on [1%,%; by

gi(pi) -

Proof. Assume that (p, p,,. .-
lation (27), i.e.,

s ) € [T, % satisfies re-

(28)

D))

and v, ;-Lipschitz continuous in the j' argument for each
j € Ai#j, and p, -strongly monotone in the i it"-argument
with respect to i respectively. Let
v H;x H; — RU{+oo} be such that for each fixed
pi € ' v, (-, p;) is lower-semicontinuous, {;-subdifferential,
proper functional on I; x F; (may not be convex) satisfying
h (%) ndom (y, (-, p))) # D, where oy, (-, p;) is a (-
subdifferential of y; (-, p;). Suppose that there exist constants
p; >0, & >0 such that for each z; € Z;

72 -2 e <tlp-al o

and the following conditions are satisfied:

Tk Pk
0. =&, k
! El+ (xk+8k

(1 _Zl“hi+)‘ii) + Vi <1,

keAk#i

T; \/ (/\;i

2, <1+ A,

= 2pipha, + Pl‘z)‘iﬁ) < [ (1-6;) (o +6;) - Ti)LT,/\h,]’

| 200, <Ay, +PING,
(33)

Then, the SENMVLI (19) admits a unique solution
(1> P25 Pr)-

Proof. By Lemma 2, it is sufficient to prove that there exist
(P> P35> -+ p,) which satisfying (27). For each i € A, we
define ¢;: [, #; — #; by

(T; (hi () + piAi (1> Pos - -> )]s (34)
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m m It is easy to see that ([, % |.l.) is a Hilbert space.
= Z lpills ¥ (PrPas- -2 P) € H%i' Also, define G: [}, #; — ], #; as follows:
i=1 i=1

(P12 P35> - )

(35)

G(pPo-- > Pm) = (81 (P1> P25 P )s 2 (P Poo - 5 Pin)s -+ > b (P1> P2+ P))s (36)
for all (py, pys---» Pp) € [1i, ;. First of all, we prove that Let  (p1>Par--> Pm)s (P1s>Pos-- o> D) € [0/ #;  be
G is a contraction mapping. given. By using (32) and (34) and Theorem 1, for each i € A,

we have
”¢i(PpPz>->-’Pm)‘¢i(i71»ﬁz ----- ﬁm)";
1l med ¢ 22800 - T (0 9 (0] [p () + 725 0, (B) - (.0 (B)) + A (BB B ))]H\
<065~ (.~ @I 7550 02D = (T, )0 (Bro s 2] = 7558 7 L) = (o) 00 (v D],
+ ]i(;(P) [9:(p;) = (T: (i ()42 A ((P1> P2 - - - )] - ]aw (#) [9:(P;) = (T: (h; (B:)+piAi (P> Pos - - > )] iS " (pi=hi(p;) - (pi - hi(ﬁi))"i + ‘fi"Pi - ﬁi",
| P 0, 0) - 1,00, 00) 0 o2 - 70 P a5) - (T 0 ) +p,-A,-(ﬁl,ﬁz,u.,ﬁm))1H,
+ ‘TX ” [9:(p;) = (T: (b (P:) + PiA; (P1> s - 5 P))] = [9: (Bi) = (T (i (B) + piAi (P> Pos - - - ]" ” = hi(p:)) - (B — b (P2) " +§ "Pr Px”
a; + 0,
+ x :_x 5 ”[(.‘7: (1) = 9: () = (T; (b (£:)) = Ti (B (P = PilAi (1> Pos - -+ Pics P> Pivis -+ > Pm) = Ai(P1> Do+ > Picts P Pivi -+ > Pm)]"i
PiT; |: 1||Ai(P1>Pz>< -5 Pict> Pi> Pist> - - > Pim) = Ai(P1>P2s -+ > Pict> Pis Pivt> -+ > ﬁm)"m ‘*’"Ai (P1>P2s - > Pict> Pis Pisto -+ > D) = Ai(P1sP2s - > Picts Pis Pisto -+ > pm)"m,l
o+ +||Ai (P1>P2s -+ > Picts Pis Pisto -+ - D) = Ai(P1s Do -+ Picts Pis Pists -+ > Pm)||m—2”'+"Ai (P1>P2s - > Pict> Pis Pisto -+ - Pm) = Ai(Prs Do+ > Dicts Pis Pist> -+ » i’m)"l
<l (ei = bi(p) = (B = b (B + &l i - Bl
+ opjd" [(9:(p) = 9:(B:) = (T; (hi (p.)) = Ti (b (B)))] = il Ai(Pr> Pos -+ Piots Pis Pisrs -+ Pm) = Ai(Pr Pos- -5 Pits Pis Pisis -+ > Pl
% Z <||Ai(P1’P2) < Pjv Pp Pjrs- o> Pm) *Ai(Pvav ~)Pj—1)13j)Pj+1 ----- " ) " pi= D)~ (hi(pi) = Hy (f’f))",v*ff"]’i *i’i",
i i jeNitj
a " 5 [" (p) - (i)z))", +" (9:(Pi) = 9:(P) = PilAi (P1> P2o - > Pict> Pi> Pivt> -+ > Pm) = Ai(P1> P2+ -5 Picts Pis Pisto -+ > Pm)]",]
. f’& ,EA,¢J(||A’(p1’pz"”’p"’l’pj’Pj” <<<<< Pu) = Apu PPy By Py B ) <= B = (i (p) = BB, + &l ~ Bl
+0¢. +ié‘. [/\T,Ah,"Pi - }3;‘",-*'" (9:(p:) = 9:(P:)) = pilAi (P1> Pas - - +> Pict> P Pisis- - - Pm) = A (P> P2r- -5 Picts P Pivts -+ > Pm)]”,-]
a ey > (JApre P os P Py Prors o P) = APrs s s By Py ) ):
i jeNitj

(37)

It follows from p, -strongly monotonicity and Ay, -Lip-
schitz continuity of h; that

|p: = i = (hi (i) = by (f’z))“;z =|pi - f’z“zz =2 (p) = b (1), p; = Do + |1 (pi) — P @1)"12
<llpi = B} - 221 B} + 4 o B, 9
= (1= 2, + 2 )lpi - Bl
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ie., By using the A, -Lipschitz continuity of A; and
{4 -strongly monotonicity of A; with respect to g; and
HP:’ = b — (i (pi) = b (P1))

< \/(1 - 2w, + Aii) H Di— f)lH A, -Lipschitz continuity of g;, respectively, we evaluate
1 1

(39)

1(9:(22) = 95 (B2)) = i LA (P1> Das - > Picss Pio Prets -+ Pon) = A4 (P P2 P> B Pivto > P

<|(9: (2:) = 9 BN = 20iCA (P> Pas- > Pits Pis P> > Pn) = Ai(P1s Pas- 5 Picts Pis Pists 5 P (95 (p3) = 9 (P)))
+ A (Prs Pas 5 Picts Po Pists > Pn) = Ai(P1s Pos- > Pits Pos Pisrs -+ P

<A [pi = Bill = 20iCA (1> as > Picts P Privts - Pon) = A4 (P> P 5 Pyt B Pivrs - > P 9 (P1) = 9 (Bi))
+ Pf)‘iﬁ lp: - f’i"iz

s Az,. lp: - f’z"zz —2pu || pi - 131"12 + Piz/\zzﬁ,-,» |pi - 131"12

=(N5, = 20, + P12, )i - Bl

(40)
which implies that
” (9:(p:) = 9:(P:)) = il Ai (1> P> - - -5 Picys Pis Pivt> -+ +» Pm) _Ai(p1>p2>'"’pifl’i)i’piﬂ"'"Pm)]"i (1)
< \/(A; = 2piip, + Pfli,.,.)llpi - il
Since for i € A, A, is v; ;-Lipschitz continuous in the i
argument (j € A, j#i), we have
"Ai(Pl’Pz) <+ P Pp Pjsrs - - - ’Pm) - Ai(PpPz’ s Pj1s P Pt - - ’Pm),-S Vi,j"Pj - IA’]‘]-- (42)
Substituting (39)-(42) in (37), for i € A, we deduce that
Ti<ATiAhi + \/(/12,, = 2pifa, t Pl'z)‘,zqii) )
||‘/5z‘(171>172’-~~’Pm)_‘/51‘(131)132>--->ZA7m)",-S |:€i+ \/(I—thi+)tfli) + fx-+5- "Pi_f’i"i
i i (43)
TiPi -~
+ viilpi = Pill »
‘xi+6i je/g#j ]" J J"]
ie.,
|6 (P> P25 - > Do) = 0 (Prs Pos - - -5 Pon)||: < O i = Pis + Tl—pla Z viilp; =Pl > (44)
G+ 0i N ;

J
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F 36) and (42), t
where 0, =& +/(1-2u, +)th) + 7, Op Ay + rom (36) and (42), we ge
O = 20,400, + p103) Ve + 8,

||G(P1>P2> . ~-’Pm) _G(‘f’ppzv“’ﬁm) T Z|l¢z (Plezv ‘-»Pm) - ¢ (Z’pf’z’ e ’pm)"i
i=1

<®i pi- f’j"j)

= (61 + Z ﬁ%c,l)"pl _P1"1

k=2

<

™Mz

I
—_

= Ti Pi
pi_pi”i+‘x +P8 Z Vi,j

i i jeMi#j

R ) L R e e T
2 ‘xk+8k k,2 j 23 P22 m & ‘xk+6k k,m Pm Pmm

keAk#+2

m
Smax{®i+ Z kP, iiieA}Z”Pi_f’ini’
i=1

k,
kenk#i %k T Ok
(45)

ie.,

"G(Pl’Pzw "’pm) _G(f)l’f)z" ’f)m)"* SQ” (pl’p2>""pm) - (f)l’ﬁz" "’f)m)"*’ (46)

where Q= max {©; + Yien s (Tpi)! (0 + S v i € AL T2, such that G(p},p5,..., p5) = (Pi>P3s- - D)
The condition (33) guarantees that 0<Q < 1. By the in- From (34) and (36), it follows that (p], p5, ..., p;,) satisfies

equality (44), we note that G is a contraction mapping. in equation (27), i.e., for each i € A,

Therefore, there exists a unique point (p}, p5,...,p;) €
]’l * _ 3(,-% ()P,*) * T h * A * * * (47)
i(pi) = S o, [9:(p;) = (Ti(h; (p;)) + PiAi (P15 Po> - - Po))]-

By Lemma 2, we conclude that (p},p5,...,p}) € Definition 7 (see [9]). A nonlinear mapping Q: # —  is
[TZ,%; is a unique solution of SENMVLI (19). This com-  said to be

letes the proof. O . . . o .
P b (i) generalized Lipschitzian if, there exists a constant

4. Proximal Iterative Schemes and k >0 such that

Stability Analysis IQ(p) - QI <k (Ip—gll +1), ¥p,qe, (48)

In this section, we first recall some definitions related to (ii) uniformly k-Lipschitzian if, there exists a constant

nearly uniformly Lipschitzian mapping. Furthermore, we k>0 such that for each 7 € N,

use a nearly uniformly Lipschitzian mapping Q;,i € A, to

define a self-mapping S = (Q;,Q,,...,Q,,) on [[1,%;, by IQ"(p)-Q" (@) <klp-ql, Vp.qe, (49)
using the equivalent alternative formulation (27) to suggest

and analyze some proximal iterative algorithms for finding (iii) nearly Lipschitzian with respect to the sequence
an element of the set of the fixed points of S which is the {a,} if, for each n € N, there exists a constant x,, >0

unique solution of the problem SENMVLI (19). such that
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[Q"(x)-Q" W <x,(lp-4ql +a,), Vp.qgeZ,
(50)
where {a,} is a fixed sequence in [0,00] with
o, — 0 as n — oo.

For an arbitrary, but fixed n € N, the infimum of
constants k, in (50) is called nearly Lipschitz
constant and it is denoted by S(Q"). Notice that

. |IQ"(p)-Q"(9)] }
= — P, I, .
B(Q") sup{ p-dlra,  PAcTPHd
(51)
S(P1> P25 Pm) = (QuP1> Qupss -

Then, S=(Q;,Qy....Q,): [0, #; — 15,7, s
a nearly uniformly max {K;: i € A}-Lipschitzian mapping
with the sequence {Zzlli,n}ml with respect to the norm ||.|,

n=

[8*(P1> £2s - P) = S" (P1s Pas -+ Bin)

m

—

i=

<max{K;: i € A} Z (lp; = pill; + li,n>
i=1

:maX{Ki: i€ A}("(pl’PZ"'"pm)_(pl’f)b""f)m)"* +Zli,n>'

We denote the sets of all the fixed points of Q;,7 € A and
S by Fix(Q;) and Fix(S), respectively, and the set of all the
solutions of SENMVLI (19) by SENMVLI(Z,g;,h
T, v, A;yi € A). In view of (52), for any (p;, pa» - -
12, % (p1> Pas- - > P) € Fix(S) if and

> D) €
only if

* ] * * a»i -,,-* * * * *
P =Qps = ol = (p) + 2o P (g (1) = (T (1 (9)) + pids (9} 5

=Q[pi - m(o)) + 75 0] - (T (0)) + i (025 23]

The fixed point formulation (54) enables us to suggest
the following proximal iterative algorithm with mixed errors
for finding an element of the set of the fixed points of the
nearly uniformly Lipschitzian mapping
S=1(Q;,Q,,...,Q,,) which is also a unique solution of
SENMVLI (19).

.= (@p,Qps -
= "(QTPl -Qp1, QP —Qopys - -

Definition 8 (see [9]). A nearly Lipschitzian mapping
Q: # — Z with the sequence {(«a,, $(Q"))} is said to be
nearly uniformly K-Lipschitzian mapping if, 8(Q") < K, for
all n € N. In other words, «,, = K, for all n € N.

For eachi € A, let Q;: #; — % ; be a nearly uniformly
K;-Lipschitzian mapping with the sequence {li)n}. We define
the self-mapping S of [[, %, by

QP Y (1> Pos -5 P) € [ [ 7 (52)
i-1
in [, 7. To see this fact, let

(P1> P2 > P)s (P1s Pas - > D) € [112,Z; be given. Then

for any n € N, we have

Q) pm) — (D1, QP - - -

»QuPrm)
’Q:;pm - Qnmﬁm)”*

*

= Z IQ! pi - QP < Z,Ki(“.pi -pili+ li,n)

(53)

i=1

p; € Fix(Q)),i € A, e,
H:leiX (Qz)

If (pt,ph,...,pr) € Fix(S) NSENMVLI(%,, g;, h;, T,
V;, A;,i € A), then by using Lemma 2, one can easily to see
that for each i € A and for all n € N,

Fix(S) = Fix(Q,,Q, . ..,Q,,) =

)]

(54)

Iterative Algorithm 1. For eachi € A, let #;, 9, h;, T, v, (;
and p; >0 be the same as in SENMVLI (19). For any given
(Pr1>Pots-- > Pmy) € [12, %, compute the iterative se-
quences {pi’n}:zl = {(pl,n, DPans- - ,pm,n)}:il <i>, <[>

00 00 . . 0o
{”i,n}nﬂ = {(ul’n, Uy oo - - ,um)n)}n:1 <i>, <[i> {Vi’”}nzl =
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0 . . 0
,vm)n)}n=1 </i>, < [li> {Si,n}n=1 =

by the following iterative process:

{(Vl,n’ VZ,n’ e {(Sl,n’SZ,n’

L] Sm,n)}zzl

Pin1 = (1 — 0, = Sn)pi,n +0, [Q?(ui,n - hi(ui, ) aIW ( " )[ ( ) ( ( 1( i,n)) +PiAi(u1,n’ Upps - -

Journal of Mathematics

’um,n))]) + ’1i,nj| + £n9i,n T i

Upp = (1 - O'rll - grlt)pi,n + orlt[Q:l(vi,n 1( 1n) + ja(w ( o) [gi(vi,n) _(Ti(hi<vi,n)) + PiAi(Vl,n’ Voo« - o> Vm,n))]) + q;,n] + 84‘9211 + r;’,w

Vin = (1 - 0:1, - ergl)pi,n + Ur,l, [an(prn (P:n) + j {W ( P )[ i(pi,n) _(Ti(hi(pi,n)) +piAi(p1,n> Pows - - ’pm,n))]) + ﬂlt,n] + Sr,[gz’n

o o
>Zm>n>}n:p{5an}n-1 {510

Let {zi,n}:zl = {(zl)n,zz)n, -
= {(tl,n’tZ,n’ . mn)}n 1 be

0 o
Syps e s S hners and {ti)n}n=1

Pin = l

:(1_

where S;: #; — ;i € A is nearly uniformly Lipschitzian
mapping, and the sequences {0,},{¢,}, {o '} {e '} {0"}, and
{s"} satisfy the conditions 0<a, +¢,0, +¢,0. +¢ <1,
Y o€n <00, and Y00, = co. For eachi € {1,2,...,m} and
foralln e N, {Si,n}, {9:-,,[}, and {gi,n} are bounded sequences

Now, we establish the following strong convergence result
for the sequences generated by the proximal iterative Algo-
rithm 1 and stability analysis under some suitable conditions.

Theorem 3. Foreachie€ A, let %;,g;,h;, T;,v;,(; and p; >0
be the same as in Theorem 2, and let all the conditions of
Theorem 2 hold. For each i € A, suppose that Q;: #; — X ;
is a nearly uniformly K;-Lipschitzian mapping with the se-
quence {li)n}, and S: [ #; — [12,%; is a nearly uni-
formly max{K;: i € A}-Lipschitzian mapping with the
sequence {Zgllm’i}f::l defined by (52) such that
Fix (S)NSENMVLI(Z;, g;, h;, T, v;, Ay i € A) # D. Suppose

Zips1 ~ [ (1 —0, = 8w)zi,n + Un(Q?(Si,n - hi(si ) a(W ( ) [gr
0’;; - 8r’l)zi,n + O'rlz[Q:l(ti,n - hi(ti,n) + il;{' ) [ 1( ) (Tr
ti)n:(]—o'r’l’—g)z +0y, [Q (Zzn z( zn)+jaZW(z )[gz( zn) (

an) ( (1( i,n))+piAi(sl,n’52,n"")
1i(t1n)) * P10t

1(hz( )) +pi z(zl 2o e ’Zm,n))]) + ﬂrzr,njl + 87’1,911,n + rtn’

(55)

the sequences in [],#; and define {goi,n}:zl =
{((Pl,n’ ¢2,n’ e (Pm,n)}zzl by

Sm,n))] + Wi,n)) +&,9, + ri,n] >

i
o tm,n))]) + ”:’,n] + 8;;'9:’,71 + r;,n’

(56)

. ! ) ! n
in #, and {Wi,n}’ {ﬂi,n}’ {ﬂi,n}’ {ri,n}’ {ri,n}’ and {Ti,n
sequences in #; to take into account the possible inexact
computation satisfying the following conditions:

} are six

. = — / _ —=n
’71’,71_ni,n+;7i)n”7in_ﬂ1n+’11n’r]1n rlzn+’71n’
ol 7 = lim | (71,075 M)l = lim o I =0
Mo Moo -+ > M . ’71,n’ Mo+ s M Jlls = ’71n’ Moo+ > M -
n—> 00 %
00 00 (57)
< - = — - —1 —n —n
(ﬂl,n”’]Z,n""”’]m,n)”*<OO’Z (ﬂl,n”b,n""’”m,n)”*<OO’Z (’71n”72n"“’17m,n)”*<00’
= n=1 n=1
[ 00 00
l i ! " " "
Piw Voo Tn )l <00, Tl Top s Vi)l <00, TinsTams s Ton s <00.
L n=1 n=1 n=1

that Q < min {1, 1/K;}, for each i € A, where Q) is same as in
(44). Then,

(i) the iterative sequence {(pl’n, Daws+ s Pm n)} gen-
erated by Algorithm 1 converges strongly to a umque
element  of  Fix(S)NSENMVLI(¥;, g;» h;» T}
Y, Ayi€A)

(ii) Furthermore, if 0<k<o, then lim,

(zl,n’ZZ,n’ c ’Zm,n) = (pl*’p;’ e ’p:n) llel’ld Ol’lly lf
lim, o, (37 9;,) = 0, where g, is given in (55); i.e.,

the sequence {(plyn,pz,n,...,pm’n)}:i1 generated by
(55) is [‘W'( P stable, for each i € A
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(i) Suppose (p],p5>--.»p,,) is a unique solution of

Proof
SENMVLI (19). For each i € A, we have

h(p1) = 750 g () = (T (1) + ity 1 o 3] | (59)

1zn

Since SEMVLI(#;, g;, h;, T;, v;, Aji € A) is a sin- p; € Fix(Q;). Hence, for each n € N and for each
gleton set and Fix(S)NSEMVLI(#;, g;, h;, T, i € A, we can write
v, A;i € A) + O, we conclude that for each i € A,

pi = (1-0,-e)p; + o, Qb ~ (o)) + 70 1,0~ (. ) + 207 23 o 23| 00
v Qi =) + 25 a6 = (T (60 + 2P i P )| + e
[Q n ., *x

(b1 =)+ 20 00 (p) = (T (0)) + A (7 o] )| +
(59)

=(1-0,-¢)p;

=(1-0,-¢,)p; +o,

where the sequences {6,}, {e.}, {oz} {el}, lo1}, and {sup1 I8, — pili € A]. Using Algorithm 1 and
{e,} are same as in Algorithm 1. (44), it follows that

Now, let L =max {sup@lll&n pilli€ A} L=
/ * .
max {supn21||9i’n -pilie A} and L' =max

[(1 -0, = )pm + 0, (Q (uyn hr( 1n) + j,i(;{/ ( " )[gi(uf»") _(Ti(hi(uix")) +piAi<u"”’ uz’“ """ um’"))]) + r]i,n) * 8,[9;’,, * ri,n:|
|pines = £7 1 =
L= a—edpr +af@(pr - er) + 750 1,00 - (T (20) + 21 (01 3P| + 200 ,,
Q;l(ui,n hz( zn) + j?;{ ( o ) [gi(ufx") _(Ti(hf(ui:")) + PiAi(ulx”’uzr” """ um”))])
S(lianisﬂ)”pi,nipz'*"i+o-n (
Qi (pr = (o) + 2 0 (0) ~ (T (0) + A (o2 )]) ||
N0 = 27l + oulltinl il
(0= 1) + 700 [0, 010) = (T (1) + i (i1 0,))] )
< (1 7Gn7£n)||Pi,n7p;"i+o-nKi +l1""
{pr = m o)+ 70 10 (00 - (T (o) + 2 552 D]) |
N9 = 27l + oulltinl il
(0= o) + 7500 g1 = (T 11)) + iAo 0))] )

< (1_o-n_sn)”Pi,n_p:"i-"o-nKi ( )
{ bt - o)+ 73 a0 - (T (s (01)) + i (01 P52 23]

+0,Kl;,+¢,L+o0 (||;1,-,n||,-+||ﬁ,-,n||,-) +||r,-,n||i

iin
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< (1 — 0y = Sn)"Pi,n - P: ;T UnKi<®i"ui,n - f’i”,- + %Tfla Z Vi,j“”j,n - ﬁ]'|l>

i jeMi#j

+ UnKili,n + enL + Un("ﬁi,n”i"’”ﬁi,n”i) +“ri,n”i

(60)
<(l-o,- sn)"Pi,n - Pi*”i + UnKi<®i"ui,n - f’i”i + TI—PIS Z Vi,j“”j,n - IA’]“ >
%t 0i jeiitj !
+0,Kil;, + an("ﬁi,n"i+"ﬁi,n”i) +||”i,n||,- +¢,L.
Using the similar arguments of (60), we can establish
that for each i € A,
||”i,n+1 -p; “, <(l-0,- sr’l)npi,n = pi |+ 0uK; <®i||"i,n -pi |+ al‘rflé\ Z Vi,j| Vin~ IA)JN]>“ﬁ;n"1 +l|ﬁ;,n"i +||”;',nl|i + Sr’lL,’
i jeNitj
(61)
* * * T:P; -~
[Voros = pil (1= 02 = Dl = il + 01K <@i||p,»,n ~pilegly 2 i pj||j> -

+ 03Kl + o | 4T+l + 2L

ni|=n
n

Let K = max {K;: i € A}. Combining (60)-(62), we
obtain

“(pl,m—l’pZ,nH """ Pm,n+1)—(PT)P; """ p;;)"*S (1_0n_5n) (Pl,n’pZ,n """ Pm,n)—(PLP; """ P;)

*

uj,n_f)j"j>

= TiPi
Uy — Pilli + Y v,
in pl”l « +8 i,j

i i jeMi#]

m
+0,K Z <®i
i=1

m
+ GnK z li,n + 0o, Krlhn’ Moo - -+ nm,n) *
i=1
+|Kﬁ1,n’ﬁ2,n """ ﬁm,n) * +||r1,n r2,n ””” rm,n %
* * *
+m£nL=(1_0n_€n) (Pl,n>P2,n """ Pm,n)_(PpPz """ pm) «




Journal of Mathematics 13

+

moo p i}
<®1 + Z ockk+ I:Skka)”uL” — P “1

k=2

m m—1
ver(onr P - pilhos (00 B o Y i
k

keAk+#2 - o + O
m
+ anK Z li,n +0, Kﬁl,n’ ﬁZ,n """ ﬁm,n) « + "ﬁl,n’ ﬁz,n """ ﬁm,n"* + ”(rl,n’ Toms e es rm,n) « + H’lé‘nL
i=1
m m
= (1 _Un_sn) (pl,n’pZ,n """ pm,n)_(pf’p; """ pr*n)“* +0nKQZ||ui,n_p;||i+0nKzli,n (63)
i=1 i=1
+ Oy ‘(ﬁl,n’ ﬁz,n """ ﬁm,n) « + "ﬁl,n’ ﬁz,n """ ﬁm,n"* + “(rl,n’ r2,n """ T'm n) + mSnL
=(1_0n_8n) (pl,n’pZ,n """ Pm)n)_(pr’P; """ p:n)"*
m
+ UnKQ"(ul,n’ uZ,n """ um,n) - (PI> p; """ P;)"* + UnK Z li,n
i=1
+ Oy ‘(ﬁl,n’ ﬁz,n """ ﬁm,n) « + "ﬁl,n’ ﬁZ,n """ ﬁm,n"* + ‘Krl,n’ rZ,n """ rm,n) ¥ + msnL'
Applying equivalent logics of (63), we can compute
that
'|(u1,n+1’u2,n+1 ))))) um,n+l) - (P> P2 P:n)”* <(l-0,-¢) (pl,wPZ,n ----- Pm,n) = (P1> P2 Pm)"
+GnKQ'|(V1n Voo os Vm,n)_(PT’P; """ P:n) %
i < =1 =1 =~/ (64)
+ UnKZ li,n + On (nl,n’ ’72,71 """ nm,n) «
i=1
+ “(ﬁll,n’ ﬁZ’,n’ T ﬁrr;,n) " + ”rll,n’ r2,,n """ rn;,n"* + msr'lL,,
”(Vl,nﬂ’vz,m—l """ Vm,n+l)_(pf’p;< """ p:n)“*S (1 _Ur/zl_srll) (Pl,n’pZ,n """ pm,n) _(pT’P; """ p:ﬂ)"*
+U;1,KQ'|(p1,n’P2,n """ pm,n) _(PT)P; """ P:;/z) %
" S nll=n  =n =1 (65)
+ O'nKZ li,n + 0o, Krll,n’ Moo - oo nm,n) *
i=1
+ 'Kﬁ;,,n > ﬁg,n """ ﬁr’r’un> « + rlljn > rZ,,’n """ rr/‘;,n " + msrll,L

Since (1 - o, (1 - KQ)) <1, therefore (65) becomes
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'l(vl,n+1’v2,n+l’ s ’Vm,n+1) - (Pf) P; T ’P:n)"* S (1 - 0:[(1 - K‘Q))”(pl,w Pos - - ’pm,n) - (Pf) P;; te ’p:n)

*

=

m
n n I =1
+0"Kzli’”+0” '*+| ﬂl,n’rIZ,n""’nm,n)
i=1

~Il =N 1
’11,n’ r/2,n’ st ”m,n

*

n !

! n
d [

" n
s Tnll, +me, L

P Pas s Pon) = (B} oo )] + 0K D I,
i=1

"
+0,

—n —=n —n
% + ’11,71’112,71" . "nm,n)

" n
+me, L .
*

PN/ ~1
’11,71’ r]Z,n’ R nm,n

*

" " "
+||1’1’n,1’2’n, e Pn

(66)

Since (1 - 0, (1 — KQ)) < 1, therefore using (64) and
(66) becomes

* s *
“(”1,n+1’”2,n+1> e ’um,n+1) = (P1>P3> > P)

| <(-0,-¢)

(pl,n>p2,n" . "pm,n) - (pf’p;’ s ’p:n)

*

+ o'rllKQ[”(pl,n’pln’ e ’Pm,n) - (pik’p;’ . ’p:n)

*

—=n =

P
« +||’11,n’ ’72,71’ R ’1m,n "*

m
n n n n
+0,K z L, +||(r1’n, Pops--os rm’n)
i=1

+0

ml=n =n ~1
n r/l,n’ 712,n’ ] ﬂm,n

" n
| +me, L
.

m
+0,K Z li,+o0,
i=1

~1 =1 ~ 1 —! =1 — !
ﬂl,n’ﬂln""’ﬂm,n *+ nl,n’nZ,n""’nm,n

*
' ' ' 1!
+”r1’n, Tom-e» rm’n"* + me, L
! * * *
= (1 - Un(l - KQ))”(pl,wPZ,n’ s ’pm,n) - (pl’pZ’ ce ’pm) «
m
rn ~Il = 1 12
+ ananKQ“(rll,n’ 112,71’ ] rlm,n) '* + UnanK Q Z li,n
i=1
/ " " " ! —n —=n —n
+ anKQ”(an, Toms- - ,rm’n) |* + onKQ”ql’n, Tams > Mmn ||*
m
! i=r =1 P [y — — 1
+ GnK Z li,n + Un ’11,11’ ’72,11’ ] ﬂm,n) « +|Kr]1,n’ ’12,n’ ] r]m,n) ¥
i=1

' ' ' ' " 1!
+ ”rm, Toms e+ o> rm,n"* +mo,e, KOL +me,L

< ”(pl,n’pz,n" . "pm,n) - (P;k’p;’ . ’p:n)

*

r_n PPN 1
+ O-no'nKQ“(nl,n’ ’12,n’ ] nm,n)

n

m
12
'* +0,0,K QZZM
i=1

! n n n
+anKQ'Kr1,n,r2,n,.. r )

> imn

! —n = —n
|* + UnKQl|771,n’ ’12,n’ o r/m,n

*

~1 =1 ~ 1
’11,n> ;72,11’ R r]m,n)

*

m
+0,K Z li,+o0,
i=1

' ’ ' o " 1!
+||r1 S SO ,rmn"* +mo,e, KQOL +me,L.

(67)

(o T - Tomen)

Using (63) and (67) becomes
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NP Pansrs o o) = (P1s P35 )] < (1= 0 = &) (Prs Pas -5 P = (P15 P55 23]

+ 0,0 K*Q z i+ OaKO(r s s o)

NP1 oo+ Prs) = (@1 255 P2, + aoW KO T W 5] L+ KOs s Tl

"

, War mr o S o

+ 03K Y L it e o) Wb oo - Tim)| o Thao - ol + mOned KQL" + ey L
i=1

"
+ 0K Y b+ (T T 5T+ 10 Pa - Pl + e L
i=1

< (1= 0,01 = KO)|(Pros Do -+ Prsa) = (123 23]

0oy KO s B )

O[T T )|, + KL s s s Tl + KOl T s )|, + KU o T+ Tl

1

+0,(1-KQ) m

i g - . +(o'o”K Q%+ 0lK2Q + K) Z Ly + ma,:e,','KzﬂzL" + ms,lKQL'

i=1

ro '
+ KQ‘Kan, Tom--s rm,n) .

+|Kﬁ1,nxﬁz,n ----- ﬁm,n) . +nrl,n> Tom o> Tmn “* +me, L.
(68)
On setting,
Pne1 = ||(P1,n+1’p2)n+l’ Tt ’pm,n+1) - (PT’P; e ’P;z) |*; (Dn = an(l - KQ);
(69)
n = |Kﬁl,n’ ﬁZ,n’ te ﬁm,n) % + “rl,n’ rZ,n’ cr rm,n“* + mgnL’

O’Y/KO’V/‘,KZQZW’I’?K”,?]\Z", T /’:’Zm) . + o‘r’zKZQZH(ﬁﬁn’ﬁg,n’ te ’ﬁﬁln)”* + o‘rlxKZQZH(rll,ln’ rZ,,,n’ T rr’t;n)”*

welg lm) + KOl e+ Fimn e+ KO T T+ KOl i st G oo || (70
o0, K°Q” + 0, K*QK) Y I, + mojen K Q'L + me,KQL
i=1
Equation (68) can be written as Pmns1) oy generated by Algorithm 1 converges
strongly to the only element (p§, p3,...,p;,) of the
P S (1= @), + 9,0, + 71 singleton set Fix(S)NSEMVI(¥;, g;, h, T;, v, A

where O = max {@i + Yrenseni (T )l (@ + 8) v i € A). This completes the part (I).

ieA}. Since lim, I, =0,foreachi € A, and (ii) Next, we prove the second conclusion. Let H (p;) =
m . . : Vlt( p; * *

Yre, <00, in view of (57), it follows that the St (pt —hy (pi)+ jp:, lg;(p?)— (T, (b, (p})) +

conditions of Lemma 1 are satisfied. Therefore, using
Lemma 1 and (68), we deduce that (p;,,i,
pZ,n+1""’Pm,n+1)—> (Pik’p;”p:n)’ as n—

co, and so the sequence {(Py,i1> Ponitsr-- >

PiA; (P1s D3> s pm))]). Using (59) and Algorithm 1,

we have

||Zi,n+1 - pz* ”1 < “Zi,m—l - [ (1 —0p— sn)zi,n + an(H(si,n) + ni,n) + sn‘9i,n + ri,n]

+||[(1_ - Z ntO (H(Si,n)+’7i)n)+5n9i,n+ri,n _[(1_01'1_“"r1)p;F +anH(p:)+snp;] i
. (72)
S%’,n’*’(l_an_ "Zzn pz“+0K ®||Stn p’"+oc+8 e z]"]n P]
eNi#j

+ 0uKiliy + 0u[fiiall; + [Fill; +|7il; + €aL-



16 Journal of Mathematics

On similar manner of (73), we can deduce that

" Sinrr = P; i< (1= 0, - gr:)"zi,n - pilli +0,K; <®i"ti,n - p; |+ i

t _ *
i+ 0, [P = Pj
1 b jeAi#j

! > (73)

+0,Kl., +0,

n-rtivnLn

— ' 1!
’11,n i +||’7i,n"i+||ri,n”i + snL >

”m+1 pl||<(1—(7 _8 ||Zlﬂ_Pl aflé‘ Z v"zj,n_ i

n *
) @"p. -/l I
l " Z< e o b ojeNi#j J (74)
~1

+ oy Kby, + ol |+ il + en L

Using the similar arguments of (63) and combining
(72)-(74), we obtain that

||(Zl,n+1’2:2,n+l ~~~~~ mn+l) (P P2 P,
N T i
SZ (Pi,n+(1_ S)Hzm p; " +0nK1 ®||51n p; " +(X+8 z]' Sin P]
i=1 JEAi# ]
+ GnKili,n + an“ﬁi,n“i +||ﬁi,n"i+”ri,n”i + gnL]
m
< Z¢i,n+(l_an_ n (zl,n’ZZ,n """ Zm,n)_(PT’P; """ p:rl) « (75)
i=1
m
+ GnKQ"(Sl,n’ SZ,n """ Sm,n) - (pf’p; """ pr*n)H* + UHKZ li,n
i=1
+ an (ﬁl,n’ ﬁln """ ﬁm,n)"*"’ (ﬁl,n’ ﬁZ,n """ ﬁm,n)”*
+ "(r1 Y Y ' n) , T me,L.
Similarly, we have
|'(sl,n+1’52,n+1>" mn+1) (pl’PZ """ p:n) *S(l_o-r,l_sii) (zl,n’zl,n """ Zm,n)_(pik’p;""’p:n) %
+O‘r’1KQ“(t1,n’t2,n """ tm,n)_(pr’p;""’p:n %
! < i =r =1 =~/ - — (76)
+ anK Z li,n + an '(nl,n’ ’72,11 """ ’/Im,n) « + "nl,n’ ’72,n """ r’m,n *
i=1
+”(r1'n, Towo s Tun)| + MERL
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Since (1 -0, (1 - KQ)) <1, therefore we obtain

* n * * *®
“(tl,nﬂ’ t2,n+1 """ mn+1) (Pl Pz """ pm)“* < (1 n (Zl,n’ Zops+ s Zm,n) - (pl ’Pz """ pm *
n * * *
+ anKQ'|(Zl,n’ Zoms+ s Zm,n) - (Pl)Pz """
m
" nll(=m  =n = —n—n
F 0K Y Ly 0 s s T )|, s o> T
i=1
" " " HL”
(71 T s rmn) , T me,
n * * *
= (l_an(l_KQ))||(Zl,n>z2,n """ Zm,n)_(pl’pZ """ Pm) «
nlly=r  =n ~n - —n
+ Un ’71,11’ ’72,71 """ ﬂm,n) « +|l’71,n’ ’72,n """ nm,n ”*
m n
noon " n "
+'Kr1,n, Toms e rm)n) Lt anKZ I, +me, L
i=1
* * *
< (21 2200 > Zonn) = (P13 23|
m
" nll(=m  =n ~n —n —n
+ anK Z li,n + Un Kﬂl,n’ ’72,71 """ ﬂm,n) % +||’71,n’ ’72,71 """ ﬂmn "
i=1
noon " "
+'Kr1,n,r2)n ..... rmn) +me, L
(77)
Since (1 - 0,,(1 - KQ)) < 1, therefore using (76) and
(77) becomes
* < * * *
(Sl,n+1’ ol mn+1) (pl P2 """ Pm) P (Zl,n’ Zogps+ Zm,n) - (pl ’PZ """ Pm) %
m
r_n PPN = r_n
+0,0 KQ|K;7M, Tops -+ qm,n) +00/K*Q Zli)n
i=1
n ! —n o —n —n
+0 KQ“( Tl oy T )|, + OKQT s T - T (78)
! M= = —
+ GnKZ li,n + Jn ’11,;1’ ;72,;1 """ ﬂmn |K’71 n> rlZn """ r]m,n) %
i=1
! i / 1o " 1y’
+ ”rl)n, (P rm’n"* +mo,e, KOL +me,L.

Using (77) and (78), (75) implies that
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”(Zl,ml’zl,nﬂ ----- mn+l) (P1>ps>e o Pm)" Z‘/’m (1-0,-¢,) (Zl,n’zl’n ----- Zm,n)’(P;»P; ----- Pm) N
(o2 s 2) = (B e ea B, + 010K Tl 17| + 020 KPQ Y,
+0,KQ -
m
+ 0 KO(r 12t |, + OK U s Tl + 0K Y i+ Ot inn o Foma) |+t s s Thally + (o T, + mosel KOL + mey L’
i=1
+ 0K Y b+ 0| (i M | (s T+ T+ i, L
i=1
< (l—on(l—KQ))"(z,yn,zzyn ,,,,, Zpun) = (P15 P3- s p;)‘]'+an(1—KQ)
O KA Wi T )|, + oKL T T )|, + oK@ s s + 0Kt B Tt + KT T3l
2 Pin 1
=5 m
(1-KQ)  (1-KQ) + KQ|Kr1’M, Fhoeeos rm’,,,)"* o - Tl + (0200 Q2 + 0, K2Q + K) Y 1y, + mojes KL + meyKOL'
i=1
+‘Kﬁl,n’7l2,n >>>>> ﬁm,n) R +||rl,n‘r2,n >>>>> rm,n"* +me,L,
(79)
Since it is given that lim,_,>" ¢, , = 0, therefore, Conversely, assume that lim, . (Z) 1,251
lim, (21415 Z2ps10 - -2 Zmme) = (PT 5P5 -+ o5 s Zpe) = (P> P53 -5 Pr). From (59) and
p;,)> and the result follows. lim, I, =0, we have

Pin = ”Zi)nﬂ - [ (1 —0p— sn)zi,n + 0 ( ( ) + ”n) + ‘sn‘gi,n + rn] i
£)Zzn-f_o-< ( )+’1n)+£n9i,n+rn]_p:1
< “Zi,n+1 - pl* |i +|| [ (1 — 0y~ £n)zi,n + 0n<H(ti,n) + ’171) + £;11‘91‘,71 + rn] - [ (1 — 0y = Sn)pj + OnH (pl*) + Snpj]||i (80)

(ti,n) - H(pl*

< “Zz n+1 pl

: ||Zi,n+1 - P;"l + (1 -0, = sn)"Zi,n - Pl* i
+ Ol + il + 2all9i = 271 + il

i

i

By using (80), we have

z Din < Z ”Zi,nH - Pl* H; + (1 0= en)”Zi,n - Pz* “; + 0y H(ti,n) - H(pz*
i=1 i=1

i
—~ — ‘9 *
+(0n“’li,n"i+||’1i,n"i + sn” in— Pi ||i+||”i,n"i)
* * *

”(zl,n+1>z2,n+l’ = ’Zm,n+1) =(P1> P25 P,
+(l-0,(1- KQ))“(an,zz,n, . .,zm’n) —(p1 o>

I 22 a1 I
+ 0n<0nUnK Q ”(’71,11’ 112,11’ ] ﬂm,n) ¥
+0/K*Q ” ﬂln’ﬁgn""’ﬁm,n)" +0/K*Q “ PlpsT 2n’~--)7;;,n)||*

A -~ ~ 1

+ anKQ" ’71,n’ ’72,n’ s ﬂmn)”*
i i i

+ KQ"(rl)n, Tom e s rm,n)| .

IN

(81)

(ﬁl,n’ ﬁZ,n’ te ’ﬁrrll,n)"*

(Fivans Tz - > T

+ (0,00 K°Q% + 0,K°Q + K) i L,
a

+moe' KL + ms,',KQL,)

+ ”(ﬁl,n’ ﬁZ,n’ t ’ﬁm,n)”*'*’ |(r1,n’ Fopseees rm,n)"* + msnL’
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which implies that lim, ., (37", ¢;,) = 0.

Hence, the sequence {(pl,n,pz)n, e ,pm,n)}:zl gen-

erated by (56) is ji“TV‘ ) _ stable, for each i € A.
This completes the proof. O

5. Proximal Dynamical System

In this section, we consider the proximal dynamical system
technique to study the existence and uniqueness of the

%,(p) = () = 72 P [, (p) = (T, (1 (2)) + A (p1s P

It is evident form Lemma 2 that SENMVLI (19) has
a solution (py,py...»p,) € [14%; if and only if
(P15 P2>- - -» Pw) 1s @ zero of the equation

Z:(p;) = 0,foreachi € A. (83)

dp; _
FT w0, %, (p;)
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solution of SENMVLI (19). In Section 3, we have shown that
the SENMVLI (19) is equivalent to a fixed point problem. By
using this equivalent result, we suggest and analyze the
following proximal dynamical system associated with the
SENMVLI (19). For each i € A, we define the residue vector
as follows:

(82)

D))

Using the residue vector equations (82) and (83) and
fixed point formulation (27), we suggest the following
proximal dynamical system:

(84)

- wi{jfa)ff;‘,,i Cr) [9:(pi) = (Ti(hi (P;) + piAi (P> Pas - - P))] — i (pi)}’pi (to) =c; € X

associated with SENMVLI (19), where w; > 0 is parameter. We
call the proximal dynamical system (84) as extended nonlinear
mixed variational-like proximal dynamical system. Here, the
right hand side is related to the proximal operator and is
discontinuous on the boundary of ;. From the definition, it is
definite that the solution of the extended nonlinear mixed
variational-like proximal dynamical system (84) belongs to the
constraint set #;. This points out that the approximate results
such as the existence, uniqueness, and continuous dependence
of the solution of (84) can be investigated.

To state our results, we need the following well-known
concepts.

Definition 9 (see [23]). The dynamical system is said to be
converge to the solution set I'* of the problem (19), if,
irrespective of the initial point, the trajectory of the dy-
namical system satisfies

lim dist(p; (),T") =0, (85)

where dist (p; (£),I") = inf,_ -l p; — g;l-
If the solution set T'* has a unique solution
(p1>p5>--spi) €12, %, then (84) implies that

lim, oo (py (0, P ()5« 5 P (D) = (D5 P3P

Definition 10 (see [23]). The dynamical system is said to be
globally exponentially stable with degree 0 at p*, if, irre-
spective of the initial point, the trajectory of the dynamical

system satisfies

exp (—-0(t —t,)), Vt > t,,
(86)

lp@® -p|<colp® - p°

where ¢, and 0 are positive constants, independent of the
initial point.

Lemma 3 (see [23]). Let p and g be real-valued nonnegative
continuous functions with domain {t: t>t\} and let
a(t) = ay (|t —t,l), where ap is a monotone increasing
function. If, for all t >t,

PO <al) + Jt 5()3(s)ds, (87)

holds, then

(1) <a(t) exp {L Q(s)ds}. (88)

The existence and uniqueness of the solution of
SENMVLI (19) is shown in Theorem 2. Now, by combining
Lemma 3 and Theorem 2, we obtain the unique solution of
extended nonlinear mixed variational-like proximal dy-
namical system (84).

Theorem 4. Foreachi € A, let #;, 9,0, Ty w3, (o and p; >0
be the same as in Theorem 2 and let all the conditions of
Theorem 2 hold. For each i€ A, suppose that
Q;: #; — H;K;-Lipschitzian mapping with the sequence
{li’n}, and S: 12, % ;isanearly uniformly — [], %, is
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a nearly uniformly max{K;: i € A}-Lipschitzian mapping
with the sequence {Zﬁllm}ml defined by (52) such that

Fix(S) N SEMVLL(%, gy, b, T W Api € A)#D.  Suppose

Journal of Mathematics

variational-like proximal dynamical system (84) with
p;i(ty) = c; over [ty,00].

O,y (5p;)

that Q< min {1, 1/K;}, for eachi € A, where Q) is the same as P;OOJ; By Lemrr;a 2, we have h;(p;) =, I [gi (pi) _f
in (42). Then, there exists a unique continuous solution (T (A (pi)) + piAi (P1> P> - - Pi))] s a 8o ution o
(p1 @), py ()., P () of extended nonlinear mixed SgENIl\_[/IXL;f ﬁ??%p bfror each i€A, we define
it Llim i i
O, (-pi
Fi(P1> P2 P3o- s P) = wi{jpf,T, () [9:(Pi) = (T (hi () + piAi (P1> Pas - P))] — i (Pi)}’ (89)

forall (py, pss---> P) € [12, % ;. Define |||, on [12, % by

It is easy to see that ([]2, %, |.l.) is a Hilbert space.
Also, define G: [}, #; — [, #; as follows:

(o1 22 P35 L. = X N 2illo ¥ (1> P2 -5 ) € [ [
i=1 i=1
(90)
C(P1>Pr- > Pm) = (F1(P1> P25 i)y Fa(P1sPos -5 Pn)s -+ o> Fon (P1s Pas - -5 Pn) s (91)

for all (py, pys---s p) € [0
To prove that & (p;, p,,---» P,,) is a locally Lipschitz
continuous mapping, suppose that (p;,py - > Pm)

|7: (1> ps -

o

—(fi:;/’ ("E) [gi (f’z) - (Ti (hi (f’l)) +pid; (1311132’ .- rf)m))] —h; (i)’))”z]

»Pm) = Fi (P> Do -

(P1>P2>---»> D) € 112, ; are given. By using (32) and (34)
and Theorem 1, for each i € A, we have

P

(7587 131 (p) = (T, 0 () + iy i v D] = ()

-~ O, vi (i
B wi"Pi - pilli + wi"(pi —hi(p;) + pfiT‘lji () [9:(p:) = T; (h: (p;))

#p (pr P 2] (B = (B0 + 25 7 9, () - (T ()

+p;A; (P Pos -+ 5 )i

Using the same technique of (35)-(39) and (42) and (92)
becomes

”9:1' (P> P2+ Pm) = Fi(P1> Py - - > IA’m)”l

= = TiPi =
<opi - pil+ <®f"Pi -l oy > lei- Pj||j>’
i T O jenis
(93)
where O,=¢++(1- 2uy, +/\f,‘) + (7 (ATi

A + Wé,- = 2pitha, + pPAG ) (0 + 8).
similar arguments of (36) and (44), we have

Applying  the

(92)
“g(Pl»sz s P) =G (P1> P+ -5 Pm) N
= Z "91 (1> P2 > D) = Fi(P1s Pas -+ > Pl
-1
<max {w;: i € A}<Z |py = 1|, + max {©;
i-1 (94)

oy TPy, e A} > loi - Bl

keAk#i

cof Sln-lroS -2
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ie.,

H?(P1>P2)-~-’Pm) ~G(P1>Py- > Pl s@(1+ Q)" (P1> P> - - -

where Q= max {®; + Yyeppp (T pi)/ (g + )y ;0 i € A}
and w = max {w;: i € A}. Therefore, & is a locally Lipschitz

s Pm) = (Pr Pas - -

21

s D)l (95)

(84), defined in an interval t, <t <9 with the initial con-
dition p; (t,) = ¢;, for each i € A. Suppose that [t,, FB] is the

continuous mapping. Hence, for each  maximal interval of the existence of the solutions of (84).
(c1,¢55---5C,) € 102, %, there exists a unique and con-  Now, we have to show that 9% =oco. For any
tinuous solution (p, (t), p,(t),..., p,, (t)) of the extended (P1>P2>-- > Pm) € [112,;» we have
nonlinear mixed variational-like proximal dynamical system
dp;
2] =17 (p1o -2,
Vi Px
= a7 g, (0) - (T, (9)) + 2 (B oo 2] = (01|
9 vi (-pi)
Swll7, [9:(pi) = (T (hi () + piAi (P1> P2s - - Pim))]
O, (-P] * * _— *
=70 0100 = (T (1)) + iy o ]
+wlpi - pil
(96)

<1730 " 91 () = (T (p) + piAs (1o -

o v (op!
2t ) g (p) -

122D (g (p) = (T (1 (£)) + Pidds (P s -

O, vi (-p7)

7 g, (p7) -

-pilli+

colpi- p,||+w<

lpl
o; +0; Z

I ojeNi#j

Now, we calculate

(T; (h: (p;) + piAi (P1> P2 - - -

(T; (ki (p])) + piAi (P1> P35 - - -

p,—p}fllj)

)]
s D))l
YN
Il
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“?(Pl’pz" o Pl = Z "971‘(1’1’1’2’ e
in1

> pm)"z = z
i=1
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m

dpi“
dt |;

N * * Ti Pi *
<3 wl(upi ~pils (@,-np,» TSl p) ))
i=1 1 L ojeNi#j
<max{w;: i € A}<§: |p; = p|; + max {®,
i=1
Tk Pk . S -
— V. A =D
’ ke/é#i g +5kvk’l He };”P] Pill (97)
Sw<lePi—pZ‘ +Q) |pi-pf i)
i1 i1
<w(1+9)) |- P}l
i=1
=01+ Q)| (pi:par- -2 Pm) = (P12 P20+ P,

<w(1+Q)|(p1> po-- > L)l + @1+ Q| (P> 55> )

and therefore,

[Py (0, 2 ()2 (D))

« S "(Pl (t0)> P2 (t0)s - - -5 P (t0))|..
+jt 1Z (91 (5), P2 (s 2 Py ()]s

(98)
< (“(Pl (to), P2 (to)s - +» Pm (to))"* +ky (- to))
vk L (21 (51, P> (5)s -+ P ()] s
wherek; = w(1+ Q)(pT, p5>- > Pl and k, = w(1 + Q).
Using Lemma 3, we have
[ o1, 20, P O < ([(P1 (80 22 (Ee)s - P (8], + Ky (£ = £) )€™ (-1) vy ¢ [to,.%’]>. (99)

Hence, the solution is bounded for t € (t,, %), if B is
finite. Thus, 9 = co. This completes the proof. O

Applying the approach of Xia and Feng [31, 32], we now
show that the trajectory of the solution of extended non-
linear mixed variational-like proximal dynamical system
(84) converges to a unique solution of SENMVLI (19).

Theorem 5. For each ieA, let %, g,h,T,v,(,
and p;>0 be the same as in Theorem 2 and let all the

conditions of Theorem 2 hold. If the following conditions
are satisfied:

_Fibi DY
«; + 9 b

i jeNit]

Xi =W, +

Ti\/(/\zi = 2pig, Pizfli,.,-) < [ (6 = §:) (a; + ;) - TiAT,Ah,]’
(100)
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then, the extended nonlinear mixed variational-like proximal
dynamical system (84) converges globally exponentially to
a unique solution of SENMVLI (19).

Proof. In Theorem 2, we prove the existence of a unique
solution (pj, p3,...,p;,) of the problem SENMVLI (19).

By Lemma 2, we have h(p])= jii,;fj(.,ﬁ )
(g:(p}) — (T; (hi (p})) + pAi (P} 5 --> Pi))]. Also, in

23

view of Theorem 4, the extended mixed variational-like
resolvent dynamical system (82) has a unique solution
(p1 (@), py (1), ..., P,y (1)) OVer [ty, B] for any fixed ¢; € #;,
for each ie€A. Let (pr (), py (), s P (1)) =
(p1 (ttg5¢1)s po (805 €2)5 - - o5 P (B85 €,,,)) e the solution
of the initial value problem (84) with p;(t,) = ¢;, for each
i € A. Now, we consider the Lyapunov function Z defined
on [[i2,%; by

L(P1s P2 P) = NP1 P2 s ) = (01 93 DI Y (P15 P25 P) € [ [ (101)
i=1
For eachi € A, from (82), (91)-(95), and (101), and using
pp, ~strongly monotonicity of h;, we have
oZ dp; . dp;
api dt _2<pi(t) pi’ dt >i
® O ¥i (-pi
= 20,0 = 51, 70 ) [0,2) — (T, (9)) + A (P12 )] = i (),
= =2w;{p; (t) = p;» by (p:) = hi (P )
% or Y (-pi *
+ 2w {p; (t) - p; ’fpj,’;"’i () [9:(pi) = (T (h; (P;) + piAi (P> Pas - - > P))] = B (D7 )i
5 * or.Y; (-pi
< - 2‘”1‘.‘411,.“1’1‘ () - p; ",2 +2w;]|pi (1) - p; | 'fpfhv:,. N )gi (p:) = (T; (h: (p;))
a[,“Vi (~>Pi*) * * * * * (102)
+piAi (P1> P25 Pm) — I o, 9:(p;) = (T;(hi(p7)) + PiAi (P1> P> - - > Po))l
Ei (‘Xi + 61) + Ti</1T,~Ah,~ + \/(/\; - 2P,‘,“A”. + P?Ai‘u) ) 112
< =20, py, - P Ip; (£) = p; IIll;
Ti Pi = 12
Ly villp; — Pl
o + 6, jegﬂ jUE;— Pjllllj
< =20, Ofpi 0 - pIIE+ LN ) - PN
= i il £ i Il “i+6i e Li|£7 P

where D; = py, = §i (o + 6;) + 7, (A )y,
+\/%i —2puy, + pgaiﬁ) )/ (a; + 8;). By using (102), we have
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dZ 0Z; dp, R dp;
dar Zl op; d Zl PGy
N 2 TiPi =7
< —2;: w0, ®;|p: (1) = pi | g+, Vij 'Pj—Pj"j s (103)
i= JEMNI#
(D T‘Pl s z %12
< —2wmax i+oc+8 Z vii=12 Z“pi(t)—pi"i,
bojeNi#j i=1
ie.,
d % % * 2 * * * 2
1o ) = (P1 P PIIE S = 208 (p1s oo s P) = (P15 P35 PN (104)
where A = max {q) + (1, p)) (; +6)Z]5A1¢] (i€ A} and
w = {w;: i € A}. Therefore, we have
[((P1s Pos- s Pr) = P1 D3 s oL <[ (1o P+ ) = (1o P i)l € (), (105)

Using the conditions (32) and (100), we conclude that
A>0. Hence, the trajectory of the solution of extended
nonlinear mixed variational-like proximal dynamical system
(84) converges globally exponentially to a unique solution of
SENMVLI (19). This completes the proof. O

6. Conclusion

In this work, we have studied a new system of extended
nonlinear mixed variational-like inequalities involving dif-
ferent nonlinear mappings in the setting of real Hilbert
spaces. Using the proximal operator technique, we have
shown that the system of extended nonlinear mixed
variational-like inequalities is equivalent to the corre-
sponding fixed point problem, and applying this equivalent
result, we have proved the existence and uniqueness of
solution of the system of extended nonlinear mixed
variational-like inequalities. Making use of equivalent fixed
point formulation and nearly uniformly Lipschizian map-
ping, we have proposed a new three-step iterative algorithm
with mixed errors to examine the convergence and stability
analysis of the suggested iterative algorithm under some
suitable conditions. Finally, we have analyzed and suggested
a proximal dynamical system associated with the system of
extended nonlinear mixed variational-like inequalities. We
have shown that the trajectory of the solution of the
proximal dynamical system converges globally exponentially
to a unique solution of the considered problem. We would
like to emphasize that the problem considered in this article
can be further investigated from different aspects such as
sensitivity analysis, well-posedness, approximation, and
numerical analysis. The concepts and method of the

proposed operator splitting scheme may be extended for
solving the system of quasi variational-like inequalities,
system of equilibrium problems, and other related gener-
alized systems.
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