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One of the requirements of curves in computer-aided design (CAD) is a curve withmonotonic curvature profles. Generalized log-
aesthetic curves (GLACs) comprise a family of aesthetic curves which possesses a monotonic curvature profle. However, we
cannot directly implement GLAC in CAD systems since it is in the form of a transcendental form. In this paper, we used cubic
trigonometric Bézier (T-Bézier) curves with two shape parameters to approximate GLAC with G2 continuity. Te fnal ap-
proximation formula inherits the shape parameters of GLAC whereas T-Béziers’ shape parameters are utilized to satisfy G2

constraints. Numerical results indicate that the proposed algorithm is capable of approximating GLAC within the given tolerance
in (at least) two iterations.

1. Introduction

In 2010, Gobithasaan and Miura formulated the gener-
alized log-aesthetic curves (GLACs) [1] by extending the
formulation of generalized Cornu spiral (GCS) [2], similar
to log-aesthetic curves (LACs) [3]. LAC is a curve ob-
tained by a curve synthesis process using linear repre-
sentation of logarithmic curvature graph (LCG) which
involves the third derivative. Due to its capabilities
capturing the shape of natural spirals, LCG has been used
as shape interrogation tools [4]. Te main characteristic of
GLAC is that it has an extra curvature shift parameter
(−]), which increases the fexibility of the curve. In
general, the curvature of GLAC is always monotonic and,
hence, it produces fair curves where the family is com-
posed of clothoid, logarithmic spiral, circle involute,
Neilsen’s curve, and GCS.

Tere are two types of GLAC, the frst one is called
ρ-shift GLAC which can be constructed by manipulating the
radius of curvature of LAC as follows [1]:

κρ−GLAC(s) �

1
e
Λs

+ ]
, α � 0,

1
(Λαs + 1)

1/α
+ ]

, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1)

Similarly, the second type of GLAC is called κ-shift
GLAC which can be constructed by manipulating the radius
of curvature of LAC as follows [1]:

κκ−GLAC(s) �
e

−Λs
+ ], α � 0,

(Λαs + 1)
−1/α

+ ], otherwise.

⎧⎨

⎩ (2)
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Tus, the directional angle of GLAC can be represented
as follows:

θGLAC(s) � θ0 + 􏽚
s

0
κGLAC(u)du, (3)

and fnally, the parametric form of GLAC is as follows:

CGLAC(s) � P0 +

􏽚
s

0
cos θGLAC(u)( 􏼁du

􏽚
s

0
sin θGLAC(u)( 􏼁du

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (4)

where P0 is the start point, θ0 is the angle between the
tangent at the start point measured anticlockwise from the x-
axis, and Λ, α, ]{ } ∈ R are variables related to the shape of the
GLAC segment [1]. Fair curves are essential in CAD/CAM
environment. However, we cannot implement GLAC in the
CAD system directly due to its transcendental form. Tus,
one way to implement this curve for design feat is utilizing
approximation to traditional curves, for example, quintic
Bézier curves approximation using GCS [2] and quintic
Bézier curves approximation using LAC [5].

Tere are numerous works on the representation of splines
with trigonometric functions. In 1964, Schoenberg frst in-
troduced trigonometric B-splines as a function in space [6]. In
2003, Han introduced piecewise quadratic trigonometric
polynomial curves with C1 continuity analogous to the qua-
dratic B-spline curves [7], and in 2004, he further proposed
cubic trigonometric polynomial curves with a shape parameter
[8]. A class of quartic trigonometric polynomial curves with
a shape parameter was presented by Han in 2011 [9].

Similarly, there were attempts to represent traditional
Bézier curves with trigonometric coordinate functions. In
1997, Walz introduced trigonometric Lagrange and Berstein
polynomials to form Stancu polynomials [10]. A notable
work of Han et al. is a cubic trigonometric Bézier (T-Bézier)
curve with two shape parameters similar to traditional Bézier
curves which were published in 2009 [9]. Te advantage of
T-Bézier over traditional Bézier curves is twofold: frstly, it
can precisely represent circular arcs, cylinders, cones, tori,
etc. Tus, CAD implementation becomes an easy task.
Secondly, T-Bézier curves are located closer to the control
polygon as compared to traditional Bézier curves which are
of use during the designing process. Te applications of
trigonometric splines were the motivation for introducing
various types of the trigonometric spline with features
suitable for CAD/CAM applications. Readers are referred to
[11–16] for further advantages of trigonometric splines in
geometric modelling.

It is essential to consider the geometric constraints at the
endpoints for developing splines which possess local control.
For example, creating a piecewise curve which satisfes
second-order geometric continuityG2 involves matching the
endpoints, its tangent vectors, and curvatures [15, 17–20]. In
this paper, we approximate GLAC to cubic T-Bézier curves
with G2 conditions and derived a stable solution region so
that GLAC can be approximated efciently and directly
implemented for the CAD environment.

Te rest of the paper is arranged as follows. Te next
section introduces cubic T-Bézier curves. Section 3 elabo-
rates the formulation to approximate GLAC with cubic T-
Bézier curves. Section 4 elaborates on the curvature error
measure, and it is followed by Section 5 detailing the solution
region of the approximation before laying out the approx-
imation algorithm. Finally, numerical examples are depicted
before concluding remarks.

2. Preliminaries

For a given four control points Pi (i � 0, 1, 2, 3) in R2 or R3,
Han et al. presented a cubic trigonometric Bézier curve with
two real-valued shape parameters λ, μ ∈ [−2, 1] as follows
[11]:

r(t) � 􏽘
3

i�0
Pibi, t ∈ [0, 1], (5)

where

b0(t) � 1 − sin
π
2

t􏼒 􏼓
2
1 − λ sin

π
2

t􏼒 􏼓,

b1(t) � sin
π
2

t 1 − sin
π
2

t􏼒 􏼓 2 + λ − λ sin
π
2

t􏼒 􏼓,

b2(t) � cos
π
2

t 1 − cos
π
2

t􏼒 􏼓 2 + μ − μ cos
π
2

t􏼒 􏼓,

b3(t) � 1 − cos
π
2

t􏼒 􏼓
2
1 − μ cos

π
2

t􏼒 􏼓,

(6)

are the basis functions for the cubic T-Bézier curve whenever
λ, μ≠ 0. To note, when λ, μ ∈ [−2, 1], essential properties of
traditional Bézier curves are preserved, e.g., non-negativity,
partition of unity, monotonicity, and symmetry as proven
in [11].

Te derivatives of r(t) at the endpoints are given as
follows:

r(0) � P0,

r
′
(0) �

π
2

(λ + 2) P1 − P0( 􏼁,

r
″
(0) �

π2

2
(2λ + 1)P0 − 2(λ + 1)P1 + P2( 􏼁,

r(1) � P3,

r
′
(1) �

π
2

(μ + 2) P3 − P2( 􏼁,

r
″
(1) �

π2

2
P1 − 2(μ + 1)P2 +(2μ + 1)P3( 􏼁.

(7)

3. The Approximation Method

Let the GLAC be in a normalized form defned over
s ∈ [0, S]. We can express a GLAC segment in normalized
form by translating it to the origin, then rotate it such that its
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initial tangent point resides along the positive x-axis (θ0 � 0)
and fnally scale it to make the arc length S � 1. Te rest of
this paper employs κ-shift GLAC for cubic T-Bézier ap-
proximation. To note the derivation of ρ-shift approxima-
tion [21] is straightforward and similar to the steps shown as
follows.

Let κκ(s) be the curvature function of κ-shift GLAC as
stated in equation (2), (x, y) be the endpoint where x � x(1)
and y � y(1), and θ be the winding angle at the endpoint
such that θ � 􏽒

1
0 κ(s)ds. Ten, the derivatives of GLAC at the

endpoints are given as follows:

CGLAC(0) �
0

0
􏼠 􏼡CGLAC(1),

CGLAC′ (0) �
1

0
􏼠 􏼡CGLAC′ (1) �

cos θ

sin θ
􏼠 􏼡,

CGLAC″ (0) �
0

(1 + ])
􏼠 􏼡CGLAC″ (1) � (Λα + 1)

−1/α
+ ]􏼑

−sin θ

cos θ
􏼠 􏼡,

CGLAC″ (0) �
0

(1 + ])
􏼠 􏼡CGLAC″ (1) � (Λα + 1)

−1/α
+ ]􏼑

−sin θ

cos θ
􏼠 􏼡,

(8)

where ’ is the diferentiation with respect to the parameter s.
To guarantee the second-order geometric continuity

(G2) between r(t) and CGLAC(u) at a, it is required to es-
tablish 􏽧CGLAC(h(u)) parameterization equivalent to
CGLAC(u) satisfying the following equation [2]:

di

dt
i
r(a) � 􏽧CGLAC

di

du
i
(a), i � 0, 1, 2. (9)

Te accompanying sets of equations are given as follows
[2]:

r(a) � CGLAC(a),

r
′
(a) � τ1C

′
GLAC(a),

r
″
(a) � τ2C

′
GLAC(a) + τ21 C

″
GLAC(a),

(10)

where τ1 and τ2 are real-valued shape factors. Te second-
order parametric continuity, C2, is obtained by letting τ1 � 1
and τ2 � 0.

Consider the ith derivative of CGLAC(s) w.r.t. s evaluated
at s � a denoted by Dj

a, then to approximate GLAC segment
using G2 cubic T-Bézier curve, we should satisfy the set of
equations in equation (9) at the start and endpoints with the
shape parameters ξ1 and ξ2 used at the start point and the
shape parameters ω1 and ω2 used at the endpoint.

At the start point, we have the following set of equations:

P0 � D
0
0,

π
2

(λ + 2) P1 − P0( 􏼁 � ξ1D
1
0,

π2

2
(2λ + 1)P0 − 2(λ + 1)P1 + P2( 􏼁 � ξ2D

1
0 + ξ21D

2
0.

(11)

After algebraic simplifcations, we get the control points
at the start point as follows:

P0 � D
0
0, (12)

P1 �
(2 + λ)πD

0
0 + 2ξ1D

1
0

(2 + λ)π
, (13)

P2 �
(2 + λ)π2D0

0 + 4(1 + λ)ξ1πD
1
0 + 2(2 + λ)ξ2D

1
0 + 2(2 + λ)ξ21D

2
0

(2 + λ)π2 . (14)

Similarly, at the endpoint, we have the following set of
equations:
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P3 � D
0
1,

π
2

(μ + 2) P3 − P2( 􏼁 � ω1D
1
1,

π2

2
P1 − 2(μ + 1)P2 +(2μ + 1)P3( 􏼁 � ω2D

1
1 + ω2

1D
2
1,

(15)

and

P1 �
(2 + μ)π2

D
0
1 − 4(1 + μ)ω1πD

1
1 + 2(2 + μ)ω2D

1
1 + 2(2 + μ)ω2

1D
2
1

(2 + λ)π2 , (16)

P2 �
(2 + μ)πD

0
1 − 2ω1D

1
1

(2 + μ)π
, (17)

P3 � D
0
1. (18)

For the control points P1 and P2, each has two ex-
pressions at the start and endpoints. Tus, we have four

equations in x and y coordinate functions to be solved for λ
and μ, leading to the following equations:

λ ξ1,ω1( 􏼁 �
2πξ1 sin θ

π2(x sin θ − y cos θ) − 2 (Λα + 1)
−1/α

+ ]􏼐 􏼑ω2
1

− 2, (19)

μ ξ1,ω1( 􏼁 �
2πω1 sin θ

π2
y − 2(1 + ])ξ21

− 2. (20)

Defnition 1. G2 cubic T-Bézier approximation
A G2 cubic trigonometric approximation curve of GLAC

is defned by the following equation:

􏽥r(t) � 􏽘
3

i�0
Pibi, t ∈ [0, 1], ξ1,ω1 ∈ δ, (21)

where δ is the solution region shown in Section 6, with the
defnitions of basis functions, bi, as stated in equation (5), λ
and μ as stated in equations (19) and (20). By employing
equations (12), (13), (17), and (18), the control points, Pi, are
defned as follows:

P0 �
0

0
⎛⎝ ⎞⎠,

P1 �
x − y cot(θ) −

2ω2
1csc(θ) (αΛ + 1)

− 1/α
+ ]􏼐 􏼑

π2

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

P2 �

x − y cot(θ) +
2(] + 1)ξ21 cot(θ)

π2

2(] + 1)ξ21
π2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

P3 �
x

y
⎛⎝ ⎞⎠.

(22)
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Te free shape parameters for the approximated curve
are α,Λ, and ] which are inherited from GLAC. λ and μ are
calculated by searching for suitable values ξ1 and ω1 satis-
fying G2 data. Once these shape parameters are given values
by the designer, then we would be able to identify their
corresponding control points as stated in Defnition 1.

Defnition 2. An alternative to G2 cubic T-Bézier
approximation

One can use the equations (14) and (16) instead of
equations (13) and (17) to defne the control pointsP1 and P2

while employing the basis functions, bi, as stated in equation
(5), λ and μ as stated in equations (19) and (20). Ten, the G2

cubic trigonometric approximation of GLAC is defned as
follows:

r(t) � 􏽘
3

i�0
Pibi, t ∈ [0, 1], ξ1,ω1 ∈ δ, (23)

where

ξ2 ξ1,ω1( 􏼁 � (] + 1)ξ21 cot(θ) − 2 ω2
1csc(θ) (αΛ + 1)

− 1/α
+ ]􏼐 􏼑 + π 3π x − 4ξ1 − 3π y cot(θ)( 􏼁􏼐 􏼑,

ω2 ξ1,ω1( 􏼁 � −
1
2
csc(θ) 2ω2

1 cos(θ) (αΛ + 1)
− 1/α

+ ]􏼐 􏼑 − 4πω1 sin(θ) − 4(] + 1)ξ1
2

+ 3π2y􏼐 􏼑.

(24)

Since both defnitions provide the same results, it is
recommended to use 􏽥r(t) in Defnition 1 instead of r(t) to
avoid extra computations in calculating the values of ξ2 and
ω2.

4. Curvature Error Measure

It is known that the curvature of GLAC is a smooth
monotonic function which guarantees fairness. Tus, we
used the curvature error measure as proposed by Cross and
Cripps which was used to approximate GCS [2] as follows:

ϵmax � max
s∈[0,1]

κr(s) − κC(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

max κC(s), 1􏼈 􏼉
, (25)

where κr(s) is the curvature function of the Bézier curve
defned in the domain [0, 1] and κC(s) is the curvature
function of the GCS. Te advantage of this measure is that it
can accurately refect the curvature profle and produce
smooth approximation results. However, the disadvantage is
that it is computationally costly due to the arc length rep-
arameterization of the Bézier curve. Tus, to reduce the high
computational cost, Albayari [22] proposed another cur-
vature error measure as follows:

ϵmax � max
t∈[0,1]

κr(t) − κC(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

max κC(t), 1􏼈 􏼉
, (26)

where κr(t) is the curvature function of the Bézier curve and
κC(t) is the curvature function of the GCS, and to calculate
the error, one has to sample a sequence of equally spaced
parameter values ti􏼈 􏼉

N
i�0. Even though Lu’s curvature error

measure takes less computation than Cross and Cripps’s
curvature measure, we still must calculate Cross and
Cripps’s error measure to exactly identify the quality of an
approximation. Hence, one may end up calculating both
ϵmax and ϵmax for an efcient approximation [23].

In 2016, Albayari et al. proposed a new error measure
that can reduce the computations and determine the ac-
ceptability of the approximations accurately as follows [21]:

􏽥ϵmax � max
i�0,···,n

κr ti( 􏼁 − κC si( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

max Abs κC si( 􏼁􏼂 􏼃, 1􏼈 􏼉
, (27)

where κr(ti) and κC(si), i � 0, . . . ,n, are the correspondence
curvatures of the curve and the approximation curve at the
same arc length, respectively. Although their measure re-
duces the computation, and it is very accurate to the exact
error but the accuracy of the results depends on the numbers
of the selected nodes. Since there is no rule to identify an
ideal number of nodes which satisfy the exact error for all
cases, and the maximum error may occur in between some
of the two nodes. Tus, Lu introduced a new error measure
as follows [21]:

_ϵmax � max
t∈[0,1]

κr(s) − κC(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

max κC(s), 1􏼈 􏼉
, (28)

where κr(s) is the curvature function of r(s(t)) normalized
to the domain [0, 1] and κC(s) is the curvature function of
the GLAC. By using this error measure, one may obtain
a parameterized arc length curvature error measure by in-
terpolating the arc length function of GLAC to avoid un-
necessary computation.Te default tolerance is set to be 0.05
which guarantees a high-quality approximation as proposed
by Cross and Cripps [2].

Similarly, we used the error measure proposed by Lu [21]
which is tailored to approximate GLAC as follows:

_ϵmax � max
t∈[0,1]

κ􏽥r(s) − κC−GLAC(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

max κC−GLAC(s), 1􏼈 􏼉
, (29)

where κ􏽥r(s) is the curvature function of 􏽥r(s(t)) nor-
malized to the domain [0, 1] and κC−GLAC(s) is the cur-
vature function of the GLAC which can be either κ-shift
or ρ-shift GLAC.

5. Solution Region

Te frst step in the approximation is to set an initial value to
the shape parameters ξ1 and ω1. A plausible set of initial
values for shape parameters are ξ1 � ω1 � 1 which satisfes
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C2 continuity [2]. However, in some cases, these initial
values provide unacceptable errors. Tus, it is essential to
fnd a suitable solution region for the shape parameters ξ1
and ω1 to meet the tolerance in a shorter period.

Indeed, there is a geometric efect of the two shape
parameters ξ1 and ω1 on the initial and end tangent vectors.
From equations (12), (13), (17), and (18), it is evident that ξ1
relates to the magnitude of ‖P1 − P0‖ and ω1 relates to the

magnitude of ‖P3 − P2‖. Since λ, μ>−2, the shape param-
eters ξ1 and ω1 should be positive; otherwise, the tangents
will point in the opposite direction. Hence, we set the lower
bound of ξ1 and ω1 as 0. Additionally, the values of the shape
parameters should not be large otherwise the control points
will be far away from each other. Since the total arc length of
the curve 􏽒

1
0 ‖V′(s)‖ds is approximately 1, so using the

trapezoid rule, we get the following equation [2]:

1 ≈ 􏽚
1

0
r
′
(s)

�����

�����ds ≈
1
4

r
′
(0)

�����

����� +
1
2

r
′ 1
2

􏼒 􏼓

�������

�������
+
1
4

r
′
(1)

�����

����� �
1
4
ξ1 +

1
2

r
′ 1
2

􏼒 􏼓

�������

�������
+
1
4
ω1 >

1
4

ξ1 + ω1( 􏼁. (30)

Hence, an appropriate upper bound for the shape pa-
rameters ξ1 and ω1 is 4. It can be concluded that the entire
solution region of the shape parameters ξ1 and ω1 is
∆ � (ξ1,ω1) ∈ [0, 4] × [0, 4]􏼈 􏼉.

Referring to equations (13) and (17), the value of λ
becomes −2 when ξ1 � 0. Similarly, the value of μ becomes
−2 at ω1 � 0. Tese values may lead to undefned control
points P1 and P2; hence, we should drop 0 from the solution
region. Since the shape parameters ξ1 andω1 afect the values
of λ and μ so we should consider the values in ∆ for which λ
and μ are still in [−2, 1]. Hence, the restricted solution region
becomes as follows:

δ � ξ1,ω1( 􏼁 ∈ (0, 4] ×(0, 4]: − 2< λ ξ1,ω1( 􏼁, μ ξ1,ω1( 􏼁≤ 1􏼈 􏼉.

(31)

6. The Basis Functions’ Properties of G2 GLAC
T-Bézier Approximated Curves

Te proposed G2 basis functions for all GLAC approximated
curves possess various properties. Te following theorems
elucidate these properties. Without loss of generality, the
case when α � 0 for κ-shift GLAC is discussed inTeorems 3
and 4. However, all other 3 diferent cases are discussed in
detail in [21].

Theorem 3. Te proposed G2 basis functions of the G2 GLAC
cubic trigonometric approximated curve satisfy the partition
of unity property.

Proof. After algebraic simplifcation of the basis functions,
the approximated curve basis functions stated in equation
(5) can be rewritten as follows:

bκ,0 t, λ ξ1,ω1( 􏼁, μ ξ1,ω1( 􏼁( 􏼁 �
2π[ee]

Λξ1 sin(θ)sin3(πt/2)

2ω2
1 [ee]

Λ] + 1􏼐 􏼑 + π2[ee]
Λ

(y cos(θ) − x sin(θ))

−
4π[ee]

Λξ1 sin(θ)sin2(πt/2)

2ω2
1 [ee]

Λ] + 1􏼐 􏼑 + π2[ee]
Λ

(y cos(θ) − x sin(θ))

+
2π[ee]

Λξ1 sin(θ) sin(πt/2)

2ω2
1 [ee]

Λ] + 1􏼐 􏼑 + π2[ee]
Λ

(y cos(θ) − x sin(θ))
+ 2 sin3

πt

2
􏼒 􏼓 − 3 sin2

πt

2
􏼒 􏼓 + 1,

(32)

bκ,1 t, λ ξ1,ω1( 􏼁, μ ξ1,ω1( 􏼁( 􏼁 � −
2π[ee]

Λξ1 sin(θ)sin3(πt/2)

2ω2
1 [ee]

Λ] + 1􏼐 􏼑 + π2[ee]
Λ

(y cos(θ) − x sin(θ))

+
4π[ee]

Λξ1 sin(θ)sin2(πt/2)

2ω2
1 [ee]

Λ] + 1􏼐 􏼑 + π2
[ee]
Λ

(y cos(θ) − x sin(θ))

−
2π[ee]

Λξ1 sin(θ) sin(πt/2)

2ω2
1 [ee]

Λ] + 1􏼐 􏼑 + π2
[ee]
Λ

(y cos(θ) − x sin(θ))
− 2 sin3

πt

2
􏼒 􏼓 + 2 sin2

πt

2
􏼒 􏼓,

(33)
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bκ,2 t, λ ξ1,ω1( 􏼁, μ ξ1,ω1( 􏼁( 􏼁 �
2πω1 sin(θ)cos3(πt/2)

π2
y − 2(] + 1)ξ21

−
4πω1 sin(θ)cos2(πt/2)

π2y − 2(] + 1)ξ21

+
2πω1 sin(θ) cos(πt/2)

π2
y − 2(] + 1)ξ21

− 2 cos3
πt

2
􏼒 􏼓 + 2 cos2

πt

2
􏼒 􏼓,

(34)

bκ,3 t, λ ξ1,ω1( 􏼁, μ ξ1,ω1( 􏼁( 􏼁 � −
2πω1 sin(θ)cos3(πt/2)

π2
y − 2(] + 1)ξ21

+
4πω1 sin(θ)cos2(πt/2)

π2y − 2(] + 1)ξ21

−
2πω1 sin(θ) cos(πt/2)

π2y − 2(] + 1)ξ21
+ 2 cos3

πt

2
􏼒 􏼓 − 3 cos2

πt

2
􏼒 􏼓 + 1.

(35)

Te frst four terms of bκ,0(t, λ(ξ1,ω1), μ(ξ1,ω1)) stated
in equation (32) are the negation terms of the frst four terms
of bκ,1(t, λ(ξ1,ω1), μ(ξ1,ω1)) stated in equation (33). Sim-
ilarly, for the frst four terms of bκ,2(t, λ(ξ1,ω1), μ(ξ1,ω1))

stated in equation (34) with the frst four terms of
bκ,3(t, λ(ξ1,ω1), μ(ξ1,ω1)) stated in equation (35), the
summation of the basis functions is as follows:

􏽘

3

i�0
bκ,i t, λ ξ1,ω1( 􏼁, μ ξ1,ω1( 􏼁( 􏼁 � −sin2

πt

2
􏼒 􏼓 + 1− cos2

πt

2
􏼒 􏼓 + 1 � 2 − sin2

πt

2
􏼒 􏼓 + cos2

πt

2
􏼒 􏼓􏼒 􏼓 � 1. (36)

□

Theorem 4. Te proposed G2 basis functions of the G2 GLAC
cubic trigonometric approximated curves satisfy the sym-
metric property.

Proof. Te symmetric property for the G2 basis functions
holds if the following equations hold for i � 0, 1, 2, 3.

bi t, λ ξ1,ω1( 􏼁, μ ξ1,ω1( 􏼁( 􏼁 � b3−i 1 − t, μ ξ1,ω1( 􏼁, λ ξ1,ω1( 􏼁( 􏼁.

(37)

From equations (5), (19), and (20),
bκ,0(t, λ(ξ1,ω1), μ(ξ1,ω1)) for the κ-shift GLAC approxi-
mated curve can be written as follows:

bκ,0 t, λ ξ1,ω1( 􏼁, μ ξ1,ω1( 􏼁( 􏼁 � sin
πt

2
􏼒 􏼓 − 1􏼒 􏼓

2
∗ 2 sin

πt

2
􏼒 􏼓

π[ee]
Λξ1 sin(θ)

2ω2
1 [ee]

Λ] + 1􏼐 􏼑 + π2
[ee]
Λ

(y cos(θ) − x sin(θ))
+ 1⎛⎝ ⎞⎠ + 1⎛⎝ ⎞⎠.

(38)

Similarly, the value of b3(1 − t, μ(ξ1,ω1), λ(ξ1,ω1)) can
be calculated as follows:

bκ,3 1 − t, μ ξ1,ω1( 􏼁, λ ξ1,ω1( 􏼁( 􏼁 � 4 cos4
1
4
π(t + 1)􏼒 􏼓∗ 2 sin

πt

2
􏼒 􏼓

π[ee]
Λξ1 sin(θ)

2ω2
1 [ee]

Λ] + 1􏼐 􏼑 + π2
[ee]
Λ

(y cos(θ) − x sin(θ))
+ 1⎛⎝ ⎞⎠ + 1⎛⎝ ⎞⎠.

(39)

It is evident from equations (38) and (39) that it is
sufcient to show 4 cos4((1/4)π(t + 1)) � (sin((1/2) πt) −

1)2 to prove that b0(t, λ(ξ1,ω1), μ(ξ1,ω1)) � b3(1−

t, μ(ξ1,ω1), λ(ξ1,ω1)).
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Based on the trigonometric identities in equations (40)
and (41), we can complete the proof by equation (42).

cos2
θ
2

􏼠 􏼡 �
1
2

(cos(θ) + 1), (40)

cos(x + y) � cos(x) cos(y) − sin(x) sin(y), (41)

4 cos4
1
4
π(t + 1)􏼒 􏼓 � 4 cos2

1/2π (t + 1)

2
􏼠 􏼡􏼠 􏼡

2

� 4
1
2

cos
1
2
π(t + 1)􏼒 􏼓 + 1􏼒 􏼓􏼒 􏼓

2
� cos

1
2
π(t + 1)􏼒 􏼓 + 1􏼒 􏼓

2

� cos
1
2
πt􏼒 􏼓cos

π
2

􏼒 􏼓 − sin
1
2
πt􏼒 􏼓sin

π
2

􏼒 􏼓􏼒 􏼓 + 1􏼒 􏼓
2

� 1 − sin
1
2
πt􏼒 􏼓􏼒 􏼓

2
� sin

1
2
πt􏼒 􏼓 − 1􏼒 􏼓

2
.

(42)

To prove the symmetric property for the remaining basis
functions, it is required to show that b1(t, λ(ξ1,ω1), μ(ξ1,
ω1)) � b2(1 − t, μ(ξ1,ω1), λ(ξ1,ω1)), which recall from

equations (5), (19), and (20) that the value of
b1(t, λ(ξ1,ω1), μ(ξ1,ω1)) is as follows:

bκ,1 t, λ ξ1,ω1( 􏼁, μ ξ1,ω1( 􏼁( 􏼁 � − 2 sin
πt

2
􏼒 􏼓 − 1􏼒 􏼓sin

πt

2
􏼒 􏼓􏼒 􏼓

π[ee]
Λξ1 sin(θ)(sin(πt/2) − 1)

2ω2
1 [ee]

Λ] + 1􏼐 􏼑 + π2
[ee]
Λ

(y cos(θ) − x sin(θ))
⎛⎝

+
sin(πt/2) 2ω2

1 [ee]
Λ] + 1􏼐 􏼑 + π2

[ee]
Λ

(y cos(θ) − x sin(θ))􏼐 􏼑

2ω2
1 [ee]

Λ] + 1􏼐 􏼑 + π2
[ee]
Λ

(y cos(θ) − x sin(θ))
⎞⎠,

(43)

where the value of bκ,2(1 − t, μ(ξ1,ω1), λ(ξ1,ω1)) can be
calculated as follows:

bκ,2 1 − t, μ ξ1,ω1( 􏼁, λ ξ1,ω1( 􏼁( 􏼁 � 2 1 − sin
πt

2
􏼒 􏼓􏼒 􏼓 × sin

πt

2
􏼒 􏼓􏼒 􏼓

π[ee]
Λξ1 sin(θ)(sin(πt/2) − 1)

2ω2
1 [ee]

Λ] + 1􏼐 􏼑 + π2
[ee]
Λ

(y cos(θ) − x sin(θ))
⎛⎝

+
sin(πt/2) 2ω2

1 [ee]
Λ] + 1􏼐 􏼑 + π2

[ee]
Λ

(y cos(θ) − x sin(θ))􏼐 􏼑

2ω2
1 [ee]

Λ] + 1􏼐 􏼑 + π2[ee]
Λ

(y cos(θ) − x sin(θ))
⎞⎠.

(44)
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Multiplying the constant −1 by the frst parenthesis of
equation (43) makes it identically equal to equation (44).
Terefore, the symmetric property holds. □

Theorem 5. Te proposed G2 basis functions are non-
negative functions.

Proof. Te proposed G2 basis functions are constructed by
substituting the proposed G2 formulas of the shape pa-
rameters λ and μ in Han’s basis functions [7] stated in
equation (5) as follows:

b0 t, λ ξ1,ω1( 􏼁( 􏼁 � 1 − sin
π
2

t􏼒 􏼓
2
1 − λ ξ1,ω1( 􏼁sin

π
2

t􏼒 􏼓,

b1 t, λ ξ1,ω1( 􏼁( 􏼁 � sin
π
2

t 1 − sin
π
2

t􏼒 􏼓 2 + λ ξ1,ω1( 􏼁 − λ ξ1,ω1( 􏼁sin
π
2

t􏼒 􏼓,

b2 t, μ ξ1,ω1( 􏼁( 􏼁 � cos
π
2

t 1 − cos
π
2

t􏼒 􏼓 2 + μ ξ1,ω1( 􏼁 − μ ξ1,ω1( 􏼁cos
π
2

t􏼒 􏼓,

b3 t, μ ξ1,ω1( 􏼁( 􏼁 � 1 − cos
π
2

t􏼒 􏼓
2
1 − μ ξ1,ω1( 􏼁cos

π
2

t􏼒 􏼓.

(45)

Te search region, δ, of the shape parameters ξ1 and ω1
for all GLAC approximated curves restricts ξ1 and ω1 over
a domain which encloses the corresponding shape param-
eters λ(ξ1,ω1) and μ(ξ1,ω1) in the interval [−2, 1]. Tere-
fore, taking into consideration that the general parameter, t,
varies over the interval [0, 1], it becomes clear that
(1 − λ(ξ1,ω1)sin π/2t)≥ 0, and (1 − sin π/2t)≥ 0, which
follows that b0(t, λ(ξ1,ω1))≥ 0. Similarly, (2 + λ(ξ1,ω1)−

λ(ξ1,ω1)sin π/2t)≥ 0, sin π/2t> 0, and (1 − sin π/2t)> 0,
which follows that b1(t, λ(ξ1,ω1))> 0, b2(t, μ(ξ1,ω1)), and
b3(t, μ(ξ1,ω1)). □

Theorem 6. For a given parameter t, the proposed G2 basis
functions preserve monotonicity property for the corre-
sponding shape parameters λ(ξ1,ω1) and μ(ξ1,ω1) as
follows.

(1) b0(t, λ(ξ1,ω1)) monotonically decreasing for the
corresponding shape parameter λ(ξ1,ω1).

(2) b1(t, λ(ξ1,ω1)) monotonically increasing for the
corresponding shape parameter λ(ξ1,ω1).

(3) b2(t, μ(ξ1,ω1)) monotonically increasing for the
corresponding shape parameter μ(ξ1,ω1).

(4) b3(t, μ(ξ1,ω1)) monotonically decreasing for the
corresponding shape parameter μ(ξ1,ω1).

Proof. Tis can be proved by considering the sign of the frst
derivatives for the basis functions over the entire domain
t ∈ [0, 1].

From equations in equation (45), the frst derivatives of
the basis functions with respect to the corresponding shape
parameters can be calculated as follows:

b0′ λ ξ1,ω1( 􏼁( 􏼁 � − sin
πt

2
􏼒 􏼓 − 1􏼒 􏼓

2
sin

πt

2
􏼒 􏼓,

b1′ λ ξ1,ω1( 􏼁( 􏼁 � sin
πt

2
􏼒 􏼓 − 1􏼒 􏼓

2
sin

πt

2
􏼒 􏼓,

b2′ μ ξ1,ω1( 􏼁( 􏼁 � 4 sin4
πt

4
􏼒 􏼓 cos

πt

2
􏼒 􏼓,

b3′ μ ξ1,ω1( 􏼁( 􏼁 � −4 sin4
πt

4
􏼒 􏼓 cos

πt

2
􏼒 􏼓.

(46)

Te derivatives’ functions b0′(λ(ξ1,ω1)) and
b3′(μ(ξ1,ω1)) are negative over the entire domain t ∈ [0, 1],
where the derivatives’ function b1′(λ(ξ1,ω1)) and
b2′(μ(ξ1,ω1)) are positive over the entire domain t ∈ [0, 1]

which proves the monotonicity of the proposed basis
functions, as mentioned in Teorem 6.

To proof that the approximation curve r(t) is invariant
under translation, consider the translation m � (x∗, y∗),
then
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r∗(t) � b0(t) b1(t) b2(t) b2(t)􏼂 􏼃

P
∗
0

P
∗
1

P
∗
2

P
∗
3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� b0(t) b1(t) b2(t) b2(t)􏼂 􏼃

P0 + x
∗
, y
∗

( 􏼁

P1 + x
∗
, y
∗

( 􏼁

P2 + x
∗
, y
∗

( 􏼁

P3 + x
∗
, y
∗

( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� sin
π
2

t 1 − sin
π
2

t􏼒 􏼓 2 +
2πξ1 sin θ

π2(x sin θ − y cos θ) − 2 (Λα + 1)
−1/α

+ ]􏼐 􏼑ω2
1

− 2⎛⎝ ⎞⎠⎛⎝⎛⎝
⎧⎨

⎩

−
2πξ1 sin θ

π2
(x sin θ − y cos θ) − 2 (Λα + 1)

−1/α
+ ]􏼐 􏼑ω2

1
− 2⎛⎝ ⎞⎠ sin

π
2

t⎞⎠⎞⎠

· x − y cot(θ) −
2ω2

1csc(θ) (αΛ + 1)
− 1/α

+ ]􏼐 􏼑

π2
+ x
∗⎛⎝ ⎞⎠ x − y cot(θ) −

2ω2
1csc(θ) (αΛ + 1)

− 1/α
+ ]􏼐 􏼑

π2
+ x
∗⎛⎝ ⎞⎠

+ cos
π
2

t 1 − cos
π
2

t􏼒 􏼓 2 +
2πω1 sin θ

π2y − 2(1 + ])ξ21
− 2􏼠 􏼡 −

2πω1 sin θ
π2

y − 2(1 + ])ξ21
− 2􏼠 􏼡 cos

π
2

t􏼠 􏼡􏼠 􏼡 x − y cot(θ)(

+
2(] + 1)ξ21 cot(θ)

π2
+ x
∗
􏼡 + 1 − cos

π
2

t􏼒 􏼓
2

1 −
2πω1 sin θ

π2
y − 2(1 + ])ξ21

− 2􏼠 􏼡 cos
π
2

t􏼠 􏼡􏼠 􏼡 x + x
∗

( 􏼁,

cos
π
2

t 1 − cos
π
2

t􏼒 􏼓 2 +
2πω1 sin θ

π2
y − 2(1 + ])ξ21

− 2􏼠 􏼡 −
2πω1 sin θ

π2y − 2(1 + ])ξ21
− 2􏼠 􏼡 cos

π
2

t􏼠 􏼡􏼠 􏼡
2(] + 1)ξ21

π2
+ y
∗

􏼠 􏼡

+ 1 − cos
π
2

t􏼒 􏼓
2

1 −
2πω1 sin θ

π2y − 2(1 + ])ξ21
− 2􏼠 􏼡 cos

π
2

t􏼠 􏼡􏼠 􏼡 y + y
∗

( 􏼁􏼩

� r(t) + b0(t) + b1(t) + b2(t)+b3(t)( 􏼁 x
∗
, y
∗

( 􏼁 � r(t) + 􏽘
3

i�0
bi(t)⎛⎝ ⎞⎠m.

(47)

For the approximation curve to be invariant, the Cau-
chy’s relation 􏽐

3
i�0bi(t) � 1, must be satisfed [24], which is

proved in Teorem 3. □

7. Approximation Algorithm

Tis section illustrates the overall algorithm to approximate
GLAC with G2 cubic T-Bézier as shown in Algorithm 1.Te
numerical method used to search for suitable ξ1 and ω1 in
the algorithm is the interior point method utilizing the
FindMinimum [] command found in Mathematica. Based
on numerical results discussed in the next section, the
values of ξ1 and ω1 is always around (1, 1). Tis is because
the length of normalized GLAC where the parameter s is
equal to 1.

8. Numerical Examples

As stated in the previous section, we may generate LAC with
the formulation of GLAC by letting ] � 0 [1]. Table 1 depicts
various types of GLAC segments (including LAC) with
diferent values of shape parameters to show the efciency of
the proposed method in approximating the GLAC family
with cubic T-Béziers.

Numerous approximation examples of LACs (] � 0) and
GLACs are depicted in Table 1. Te First 1–5 examples show
the results of approximating various GLACs. Te next 6–13
examples depict special cases of GLAC and LAC (] � 0).
Most cases terminate after the frst run which indicates the
efciency of the proposed algorithm. However, two cases
(examples 14 and 15) have error of the approximation which
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is large on the frst attempt of approximation, where the next
iteration itself minimizes the error with tol � 0.05.

Figures 1–3 are related to rows 3, 7, and 8 in Table 1,
respectively. Te GLAC and its G2 cubic T-Bézier approx-
imation is shown in 1(a) where the curvature error measure
appears in 1(b), the graph of the dependent shape param-
eters λ(ξ1,ω1) and μ(ξ1,ω1) over the solution region δ are
shown in 1(c) and 1(d), respectively.

For the case of example 14, which shown in Figure 4
below, the error was 0.078 obtained with the initial values of
ξ1 � ω1 � 1, where their corresponding shape parameters
are λ � 0.587 and μ � −0.15. To reduce the number of iter-
ations, we recommended searching around the parameter s
where the maximum error occurs. In this example, the
maximum error of 0.078 occurs at s � 0.5054. By inputting
this information during the search with the interior point
method, we obtained the desired result on the next run itself
where the error is 0.045 and the corresponding shape pa-
rameters are ξ1 � 0.989 and ω1 � 0.989, which led to the
calculation of cubic T-Béziers’ shape parameters as λ � 0.471
and μ � −0.194.

For example 15, the error was 0.063 with the initial
values of ξ1 � ω1 � 1, and its corresponding shape param-
eters were λ � 0.034 and μ � 0.43. Te maximum error oc-
curs 0.063 occurs at s � 0.489. Similar to example 14, we also
obtained the desired result on the next run itself where the
error is 0.025 and the corresponding shape parameters are
ξ1 � 0.984 and ω1 � 0.988, which led to the calculation of
cubic T-Béziers’ shape parameters as λ � −0.028 and
μ � 0.31.

9. Comparing the Proposed T-Bézier
Method with the Standard Bézier Method

In this section, we are comparing the proposed T-Bézier
method with the standard Bézier method in approximating
several GLAC with various arc lengths.

Table 2 shows the results of approximating several
normalized κ-shift GLAC while Table 3 depicts the results of
approximating numerous examples of κ-shift GLAC with
several arc lengths. Table 2 shows that the cubic Bézier
approximation method does not reach satisfactory ap-
proximations without the need of searching for other values
of the shape parameters (ξ1,ω1). As a consequence, this
method constantly replaces the control points of the cubic
Bézier approximated curve with better positions to provide
increased accuracy. However, the proposed cubic trigono-
metric Bézier approximation method completes most of the
examples in Table 2 with the given initial values without any
change in values. Tis, then, indicates that the proposed
cubic trigonometric Bézier approximation method is more
efcient than the cubic Bézier approximation method.
Furthermore, although both of the cubic methods require 1
iteration to reach an acceptable approximation for GLAC
(α,Λ, ]) � (0.7, −0.6,0.1), the proposed cubic trigonometric
Bézier approximation method provides an error of 0.008955
which is more accurate when compared to the cubic Bézier
approximation method’s error of 0.017444.

For aesthetic curves with various arc lengths, the cubic
trigonometric Bézier approximation method needs iteration
for more cases compared to the normalized curves.

INPUT: GLAC Shape parameters Λ, α, ]; by default tol is set as: tol � 0.05; the maximum number of iterations n.
OUTPUT: G2 cubic T-Bézier curve approximating the predetermined GLAC with curvature error ≤ 0.05.
Begin
Step 1 Set i � 1;
Step 2 Compute the solution region δ as stated in equation (31)
Set the initial values as (ξ1,ω1) � (1, 1) whenever (1, 1) ∈ δ, otherwise set any random values satisfy δ close to (1, 1).
While i≤ n do step 3–7

Step 3 Compute the control points as stated in equation (22)
Step 4 Compute λ(ξ1,ω1) as stated in (19);
μ(ξ1,ω1) as stated in (20)

Step 5 Use equation (21) to compute the G2 cubic trigonometric Bézier curve basis functions using the values of the shape parameters
λ and μ gained in step 4.
Step 6 Calculate the curvature error measure as stated in equation (29)
Step 7 If _ϵmax ≤ 0.05 then
output r(t); (Procedure completed successfully.)

stop.
else

Select random initial values for ξ1 and ω1 satisfy the solution region δ and set them as new initial values in step 2, where we
highly recommended choosing values close to C2 initial value, 1.
Return to step 3 and search using the Interior Point method for values to ξ1 and ω1 which minimize _ϵmax around the maximum

error point in the previous iteration.
Step 8 Output (“Method failed after n iterations split the GLAC or increase the tolerance 0.05, n � ”, n).
Stop.

ALGORITHM 1: G2 cubic T-Bézier approximation of generalized log-aesthetic curves.
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However, examples with iterations propose that the trigo-
nometric method provides errors of 0.005753 and 0.015615
for the GLAC (α,Λ, ]) � (0,0.5,0.2) and GLAC
(α,Λ, ]) � (2,0.3, −0.4), respectively. Tis is more accurate
than the errors of the cubic Bézier method which are
0.019160 and 0.022365.

Table 4 displays the results of several normalized ρ-shift
GLAC approximated curves. Table 5 shows the results of ap-
proximating the various ρ-shift GLACwith diferent arc lengths.

For the normalized ρ-shift GLACs, the cubic Bézier
approximation method [21] still requires more iterations to
reach satisfactory approximations. It is evident that the cubic
trigonometric basis functions of the cubic trigonometric
Bézier approximation method contribute to an increase in
accurate results compared to the Bernstein polynomial basis
functions of the cubic Bézier approximation method. Te
last example of Table 4 is another example which shows that
even though the cubic trigonometric method does not reach

a satisfactory approximation with the initial values, it still
produces a result that is more accurate than the standard
cubic Bézier method.

For ρ-shift GLAC with various arc lengths, the pattern
remains the same. Te cubic trigonometric method requires
less iteration than the cubic Bézier method for most of the
examples while it provides more accurate results.

In general, the cubic T-Bézier takes more time than the
standard cubic Bézier as more time is needed for compu-
tations of the trigonometric basis functions as compared to
the Bernstein polynomial basis functions.

Concerning accuracy, as the cubic trigonometric Bézier
curve is closer to the control polygon compared to the
standard cubic Bézier curve, the cubic trigonometric Bézier
curve has an extra degree of freedom. Tis explains the
advantage related to the accuracy of the proposed GLAC
cubic trigonometric Bézier approximated curves over cubic
Bézier approximated curves.
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Figure 1: (a)TeGLAC (Λ, α, ]) � (0.8,0.4,0.7) and its approximation. (b)Te curvature error. (c)Te restricted solution region of (ξ1,ω1)

with corresponding λ values. (d) Te restricted solution region of (ξ1,ω1) with corresponding μ values.

Journal of Mathematics 13



0.1

0.2

0.3

0.4

0.5

0.4 0.6 0.80.2

GLAC
Cubic Trig. GLAC
Control Points

(a)

0.4 0.6 0.8 1.00.2

0.002

0.004

0.006

0.008

Te curvature error є

(b)

1.0

0.0

0.50.5

1.5

0.0

1.0ξ1

λ

1

0

–1
–2

ω1

(c)

0.5

1.5

0.0

1.0
ξ1

1

0

–1
–2 1.0

0.0

0.5 ω1

μ

(d)

Figure 2: (a)Te GLAC (Λ, α, ]) � (2, −0.2,0) and its approximation. (b)Te curvatures error. (c)Te restricted solution region of (ξ1,ω1)

with corresponding λ values. (d) Te restricted solution region of (ξ1,ω1) with corresponding μ values.
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Figure 3: Continued.
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Figure 4: (a) Te GLAC (Λ, α, ]) � (1, −0.5,0.2) and its approximation at the frst iteration. (b) Te same GLAC and its approximation at
the second iteration. (c) Te curvatures of the GLAC (Λ, α, ]) � (1, −0.5, 0.2) and its approximation at the frst iteration. (d)Te curvatures
of the same GLAC and its approximation at the second iteration. (e) Te curvature errors of the GLAC (Λ, α, ]) � (1, −0.5, 0.2) and its
approximation at the frst and second iterations. (f ) λ over the restricted solution region. (g) μ over the restricted solution region.

Table 2: Approximations of normalized κ-shift GLAC.

κ-GLAC Cubic Bézier Cubic trigonometric Bézier
(α,Λ, ]) (ξ1,ω1) #Iterations _ϵ Time (s) (ξ1,ω1) #Iterations _ϵ Time (s)

(−1, 0.5, 1) (1, 1) 0 0.596104 0.3906 (1, 1) 0 0.003419 0.8281(0.985, 1.140) 1 0.025942 0.8125

(0, 0.5, 0.5) (1, 1) 0 0.394663 0.4063 (1, 1) 0 0.007401 1.1094(0.955, 1.113) 1 0.008084 0.8594

(0.7, −0.6, 0.1) (1, 1) 0 0.634895 0.5000 (1, 1) 0 0.083813 0.8281
(1.242, 0.862) 1 0.017444 0.8594 (0.982, 0.970) 1 0.008955 1.8594

(1, 0.1, 0.6) (1, 1) 0 0.441414 0.3750 (1, 1) 0 0.000908 0.8281(1.031, 1.062) 1 0.017211 0.7656

(2, −0.1, 0.2) (1, 1) 0 0.34501 0.4063 (1, 1) 0 0.004157 0.8906(1.056, 1.007) 1 0.007432 0.7969

16 Journal of Mathematics



10. Conclusion and Future Work

A new set of G2 formulas to approximate GLAC with cubic T-
Bézier for the two shape parameters λ and μ is derived. Tese
new formulas employ the basis functions of cubic T-Bézier as
proposed by Han et al. [11] and the intermediate control points
are expressed in the form of GLACs’ shape parameters. A so-
lution region is established to ensure the efciency of the ap-
proximation is at optimum. Based on the numerical results, the
proposed algorithm may obtain an approximation of GLAC
within 0.05 tolerances either on the frst or second iteration.
Future work includes approximating GLAC with generalized
Trigonometric Bézier curves controlled at curvature extrema.
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Table 3: Approximations of κ-shift GLAC with various arc lengths.

κ-GLAC Cubic Bézier Cubic trigonometric Bézier
(α,Λ, ]) S (ξ1,ω1) # Iterations _ϵ Time (s) (ξ1,ω1) # Iterations _ϵ Time (s)

(−1, 0.2, −0.1) 3 (3, 3) 0 0.622259 0.3750 (3, 3) 0 0.007819 0.8750(2.337, 4.473) 1 0.016135 0.7344

(0, 0.5, 0.2) 2 (2, 2) 0 0.467113 0.3750 (2, 2) 0 0.059382 0.8750
(1.733, 2.525) 1 0.019160 0.7656 (1.948, 1.971) 1 0.005753 2.0625

(0.3, 0.2, 0.1) 2 (2, 2) 0 0.504361 0.3906 (2, 2) 0 0.021884 0.8438(1.953, 2.312) 1 0.032646 0.7656

(1, 0.1, −0.3) 3 (3, 3) 0 0.2918 0.3750 (3, 3) 0 0.013707 1.0313(2.860, 3.498) 1 0.015333 0.7031

(2, 0.3, −0.4) 5 (5, 5) 0 0.434436 0.3438 (5, 5) 0 0.063259 0.9219
(2.554, 8.865) 1 0.022365 0.7031 (4.367, 4.663) 1 0.015615 1.7813

Table 4: Approximations of normalized ρ-shift GLAC.

ρ-GLAC Cubic Bézier Cubic trigonometric Bézier
(α,Λ, ]) (ξ1,ω1) #Iterations _ϵ Time (s) (ξ1,ω1) #Iterations _ϵ Time (s)

(−1, −0.4, −0.1) (1, 1) 0 0.474890 0.5312 (1, 1) 0 0.006546 0.8438(1.147, 0.940) 1 0.008330 0.9531
(0, 0.6, 0.5) (1, 1) 0 0.034375 0.3594 (1, 1) 0 0.007147 0.7344
(0.9, 0.7, 0.2) (1, 1) 0 0.033466 0.5469 (1, 1) 0 0.005927 1.0312
(1, 0.8, 0.9) (1, 1) 0 0.015756 0.4531 (1, 1) 0 0.003125 0.7813

(2, 0.5, −0.5) (1, 1) 0 0.436882 0.5156 (1, 1) 0 0.078244 0.8594
(0.879, 1.195) 1 0.014967 0.9063 1 0.007277 1.7344

Table 5: Approximations of ρ-shift GLAC with various arc lengths.

ρ-GLAC Cubic Bézier Cubic trigonometric Bézier
(α,Λ, ]) S (ξ1,ω1) #Iterations _ϵ Time (s) (ξ1,ω1) #Iterations _ϵ Time (s)

(−1, 0.1, 0.9) 4 (4, 4) 0 0.258526 0.5938 (4, 4) 0 0.004819 0.9844(3.957, 4.619) 1 0.014342 0.9531

(0, 0.1, 0.3) 3 (3, 3) 0 0.393629 0.3594 (3, 3) 0 0.011349 0.8906(3.035, 3.424) 1 0.035227 0.7500

(0.5, 0.5, 0.5) 5 (5, 5) 0 0.454235 0.4063 (5, 5) 0 0.090672 0.4870
(3.710, 7.212) 1 0.012465 0.7969 (4.557, 4.748) 1 0.009789 1.6250

(1, 0.7, 0.9) 2 (2, 2) 0 0.036563 0.3438 (2, 2) 0 0.008822 1.0469

(2, 0.1, 0.5) 2 (2, 2) 0 0.209512 0.3594 (2, 2) 0 0.002147 0.7969(2.002,2.123) 1 0.004711 0.7031
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