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CO2 emissions are one of the most critical and challenging problems impacting the atmosphere. In order to reduce CO2 emissions,
signifcant eforts must be put forward in advanced research. In this research, we propose a fractional optimal control approach to
efectively deal with the accessible resources and minimize the restriction of variables. Te mathematical model is formulated in
terms of the Caputo fractional derivative. Te formulated problem is numerically solved using a forward-backward sweep
approach with the generalized Euler method. We present a numerical problem to obtain the optimal solution and show that the
suggested process is very efcient in science and engineering problems.

1. Introduction

CO2 emissions have been emerged as one of the most critical
and complicated issues impacting the atmosphere. It has an
indirect infuence on the more obvious form of air pollution
and smog. By increasing temperature and humidity, it pro-
duces smog, which has a detrimental efect on respiratory
health and numerous skin illnesses. Fossil fuel combustion is
the major source of new CO2 emissions because it discharges
carbon dioxide into the atmosphere, which acts as a blanket
over the Earth, absorbing solar heat and raising temperatures.
CO2 emissions have had far-reaching implications, hurting
both the ecosystem and the humans who live within it.
Numerous authors [1, 2] have investigated fractional difer-
ential equations with integer and noninteger derivatives for
use in mathematical modeling of CO2 emissions. Recently,
there has been a lot of interest in the modeling of CO2
emissions utilizing time-dependent controls and optimal
control theory [3, 4]. Scientists used mathematical models to
describe the changes of CO2 emissions and deforestation and
provided the mathematical modelling to explain the infuence

of greenhouse gas emissions on the ecosystem [5, 6]. Using
the same mathematical model, Nordhaus [7] analyzed the
optimal taxing systems to stabilize climate and carbon dioxide
emissions. Fractional calculus has been extensively utilized to
represent dynamical processes in many various disciplines,
including science, engineering, and many more [8, 9]. Tis is
because fractional order derivatives include the memory ef-
fect, which is a signifcant attribute. Hertel and Rosch [10]
created general optimum control issues that are motivated by
the fractional derivative of the Riemann–Liouville equation.
Te same authors developed a reliable numerical framework
for the mathematical model and presented related optimal
control problems using Caputo derivatives [11].

Numerous scholars have been working on identifying
climate changes in a certain geographical area and have
created multiple efcient models for doing so. Tey used
a numerical scheme to derive the conditions for the opti-
mality system for a general control problem with Caputo
derivatives. Verma et al. [12] suggested various nonlinear
dynamical models to identify the optimum solutions for
carbon dioxide emission reduction. Te state model for an
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optimal control problem contained both frst-order and
noninteger derivatives, and necessary optimality conditions
have been derived for this problem [13, 14].

According to research in the literature, environmental
systems and other processes with nonlinear behaviour are
good candidates for optimal control problems. Terefore,
utilising fractional derivatives and optimal control theory to
describe climatic changes has a lot of benefts [15, 16]. Tis
research presents the formulation of a mathematical model
with the help of fractional diferential equations where the
optimal solutions are determined by the application of
Pontryagin’s principle. Te paper is summarized as follows:
we provide the formulation of fractional optimal control
problem in Section 2. In Section 3, the formulation of
controlled CO2 emissions model is considered and necessary
condition for the optimality of model problem is derived.
Sections 4 and 5 describe the numerical scheme for the
solution of the problem and the experimentation of the
results in the form of simulation, and fnally, Section 6 deals
with the concluding remarks.

2. Fundamental Properties of
Fractional Calculus

Tis section provides a quick overview of the fractional
optimal control model’s mathematical formulation. Ten, in
Section 3, we will put the modelling approach to build our
CO2 emissions model. Tere are a lot of other kinds of
fractional derivatives, but Riemann–Liouville (R-L) de-
rivative and Caputo derivative are the two that are most
frequently used in engineering and mathematical modelling.
We construct the optimization model for this task using
Caputo fractional derivatives.

Defnition 1. Te left R-L fractional derivative is given as [17]

L
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where m − 1< α<m.

Defnition 2. Te right R-L fractional derivative is given as
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Here order α fulflls m − 1≤ α<m, where Γ denotes
Euler’s Gamma function.

Defnition 3. Te left Caputo fractional derivative is termed as
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Defnition 4. Te right Caputo fractional derivative is
termed as
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where α is the order of the Caputo derivative.

3. Fractional Optimal Control Formulation

Agrawal [18] presented the formulation of fractional optimal
control for a class of distributed systems. Te main goal is to
fnd an optimal control u∗ which minimizes objective
functional,

J(u) � 
1

0
F(x, u, t)dt, (5)

subject to fractional dynamics constraints

C
0D

α
t x(t) � W(x, u, t), (6)

with initial condition

x(0) � x0, (7)

where x(t) is the state variable, F(x, u, t) and W(x, u, t) are
the two arbitrary functions, and x0 is the state variable at
time t � 0. We can obtain the necessary condition only if we
manipulate equations (5) and (6) using Lagrange multiplier
approach, the variations of calculus, and integration by parts
which shows that this equation is now independent from
variation of a derivative such that,
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with

x(0) � x0,

λ1 � 0,
(9)

where λ represents the Lagrange multiplier or co-state
variable.

4. Controlled CO2 Emissions Model with
Fractional Derivatives

In order to obtain the essential conditions or equations for
the fractional optimal control model’s optimality, we will use
the data from the formulation of the fractional optimal
control problem. Our aim is to fnd an optimal control that
reduces the emission of CO2 and increase forested area
which means to fnd an optimal control u∗ that reduces the
objective functional,

J(U) � 
1

0
F(X, U, t)dt, (10)

subject to fractional dynamics constraints

C
0D

α
t X(t) � W(X, U, t), (11)

with initial condition
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X(0) � X0, (12)

where

X(t) � (x, z, y)
T
,
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so, we get
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where X(t) represents a state vector and U(t) represents
a control vector. Initial conditions are x(0) � x0, z(0) � z0
and y(0) � y0. Manabe and Stoufer [19] formulated the
classical optimal control problem at α � 1 and therefore the
dynamic constraint equations (14)–(16) with above initial
condition become as u1 � u2 � 0.

It is important to point out that there are thorough
justifcations in the literature for the formulation of nec-
essary conditions for optimality of various fractional dy-
namical systems [15, 16]. Terefore,
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where λ(t) � (λ1, λ2, λ3)
T is the co-state vector.

We can obtain CO2 emissions system in an enlarged
version by applying the compact form of the prerequisites
listed previously.
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Terefore,
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Moreover, the optimal controls are given by

u
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where (∗ ) denotes the optimal values of u1 and u2.
x(0)� x0, z(0)� z0 and y(0)� y0, λ1(tf) � 0, λ2(tf) � 0,
λ3(tf) � 0.

5. Numerical Results and Discussion

In this segment, we provide an explanation of a few nu-
merical simulations and their results. We develop a forward-
backward sweep algorithm using the RK approach to analyze
the biological model in optimality system. In this work,
a forward-backward approach using the generalized Euler
scheme is employed to compute the numerical solution of
the optimality systems. Te generalised Euler method has
recently been used in a TB model along with the forward-
backward algorithm. We use Mathematica software 11 to
illustrate the graphical results of various fractional order.
Table 1 shows the description of variables and control
functions, whereas Table 2 demonstrate the parameters of
the model.

Te numerical simulations are performed using the
initial conditions, and model parameter values are listed
as follows: x(0) � 398 million tons of carbon dioxide,
y(0) � 2787 billion international dollars, z(0) � 43 mil-
lion·m3, a � 0.1, h � 0.0001, s � 700, u2 � 0.0008, u1 �

0.00012, c � 0.035, r � 0.15, α1 � 0.0006,
c � 1E + 9, b � 3.5E + 9, and α2 � 0.00005. Te graphical
representations demonstrate that we provide a signifcant
reduction in the rate of CO2 and reforestation increases
with decrease in GDP when α� 1 and noninteger orders
(α � 0.98, 0.96, 0.94, 0.92, 0.9, 0.88, 0.86) with time de-
pendent control. Te model’s formulation for fractional
optimal control demonstrates that by maximizing in-
vestments in clean technology research and reforestation
activities, signifcant reductions in CO2 emissions can be
attained. Figure 1 represents the graphical result of million
tons of CO2, Figure 2 shows the graphical of million·m3/
year, Figure 3 shows the graphical representation of bil-
lion US dollars, Figure 4 represents emission of CO2 with
and without control, Figure 5 represents optimal solutions
for forest with and without control, Figure 6 shows the
comparison of GDP with and without control, Figure 7
shows the comparison of the amount of CO2 without
control with diferent values of α, Figure 8 represents

Table 1: Description of variables and control functions.

Variables Description
x(t) Represents atmospheric carbon dioxide (CO2)
y(t) Represents forest area
x(t) Represents GDP (gross domestics product)
u1(t) Represents optimal reforestation efort
u2(t) Represents optimal technological efort
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Table 2: Description of parameters.

Parameter Defnition
r Represents the emission rate of atmospheric carbon dioxide (CO2)
s Represents the carrying capacity of the CO2 in the atmosphere
h Represents the forest depletion rate
c Represents exponential growth rate of CO2
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Figure 1: Graphical representation of million tons of CO2.

Forestry Production
60

58

56

54

52

50

48

44

46

42

40

m
ill

io
n 

m
3.

 (y
ea

r)

60 65 70 75 80 85 90 95 100
Time (years)

Figure 2: Graphical representation of million·m3/year.

Capital

60 65 70 75 80 85 90 95 100
Time (years)

4000

3800

3600

3400

3200

3000

2800

2600

Bi
lli

on
 U

S$

Figure 3: Graphical representation of billion US dollars.
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Figure 4: Emission of CO2 with and without control.
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Figure 5: Optimal solutions for forest with and without control.
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Figure 6: Comparison of GDP with and without control.
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comparison of the forestation rate without control with
diferent values of α, Figure 9 represents comparison of
GDP without control with diferent values of α, Figure 10
represents comparison of the amount of CO2 with control

with diferent values of α, Figure 11 represents compar-
ison of the forestation rate with control with diferent
values of α, and Figure 12 represents comparison of GDP
with control with diferent values of α.
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Figure 7: Comparison of the amount of CO2 without control with diferent values of alpha.
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Figure 8: Comparison of the forestation rate without control with diferent values of alpha.
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Figure 9: Comparison of GDP without control with diferent values of alpha.
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Figure 10: Comparison of the amount of CO2 with control with diferent values of alpha.
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 . Conclusion

In this study, a mathematical model that displays CO2
emissions, deforestation rate, and GDP has been taken
into consideration. Te model is characterized by frac-
tional derivatives. Te forward-backward sweep approach
combined with the extended Euler method was used to
numerically solve the optimality problem. Te results of
the models demonstrate that when control is imple-
mented, the rate of CO2 emissions is reduced and the
reforestation rate increases.Te amount of CO2 is reduced
more than with any other method when all time

dependent controls are employed in simulations. Te
numerical solutions show that the optimum control
problem for fractional orders is signifcantly more precise
than involving integer orders.

Data Availability

All the data are available within the article.
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Figure 11: Comparison of the forestation rate with control with diferent values of alpha.
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Figure 12: Comparison of GDP with control with diferent values of alpha.
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