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Let X and X∗ be a Banach space and its dual, respectively. In this paper, we study the relations between modulus of W1X∗(ε) and
modulus ζX∗(ε) in X∗ and normal structure in X, respectively. Among other results, we proved either W1X∗(ε)< ε/2, for any
0≤ ε≤ 2, or ζX∗(ε)< 1 + ε, for any 0≤ ε≤ 1, implies both X and its dual X∗ have uniform normal structure.

1. Introduction

Suppose X, B(X), S(X), and X∗ be a real Banach space, its
unit ball of X, its unit sphere of X, and its dual space of X,
respectively. Let x ∈ S(X), we use ∇x ⊆ S(X∗) to denote the
set of all norm one supporting functionals at x. Let
x1, x2 ∈ B(X), we use [x1, x2] to denote the line segment
connecting x1 and x2. For a 2-dimensional subspace X2 of X

and x1, x2 ∈ S(X2), we use 􏽧x1, x2, which denotes the curve
on S(X2), connecting x1 to x2 counter-clockwise, and
l( 􏽧x1, x2) denotes the arc length of the curve 􏽧x1, x2.

For H in X, where H is a bounded subset, d(H) �

sup ‖x − y‖: x, y ∈ H􏼈 􏼉 is used to denote the diameter of H.
Te following geometric concepts were introduced in

1948 [1]:

Defnition 1. A bounded and convex subset K of X is said to
have a normal structure if for every convex subset H⊆K,
there is a point x0 ∈ H, such that sup ‖x0 − y‖:􏼈

y ∈ H}< d(H).
X is said to have a normal structure, or weak normal

structure if each bounded and convex subset H⊆X, or each
weakly compact convex set K⊆X has a normal structure.

If there exists a number c with 0< c< 1, such that for any
bounded closed convex subset K⊆X, sup ‖x0 − y‖:􏼈

y ∈ K}≤ c · d(K) for a x0 ∈ K, then X is said to have
a uniform normal structure.

Te mapping T: C⟶ C, where C is a subset of X, is
called nonexpansive if for all x, y ∈ C, we have
‖Tx − Ty‖≤ ‖x − y‖. For fxed point property of a non-
expansive mapping T: C⟶ C, please refer [2–4].

Kirk [3] proved that every nonexpansive mapping T in
a convex and weakly compact subset C of X has a fxed
point in C.
Gao [5] introduced the following concept: the modulus
of W1X-convexity:

Defnition 2. Let ∇x be the set of norm 1 support functionals
of S(X) at x and r1(x, y) � inf 〈x − y/2, fx〉, forfx ∈ ∇x􏼈 􏼉.
Ten, W1X(ε) � sup r1(x, y), ‖x − y‖≤ ε􏼈 􏼉, for 0≤ ε≤ 2 is
called the modulus of W1X-convexity.

In this paper, we use an equivalent defnition for
W1X-convexity:

Defnition 3. W1X(ε) � sup 〈x − y/2, fx〉: x, y ∈ S(X),􏼈

‖x − y‖≤ ε for somefx ∈ ∇x}, where 0≤ ε≤ 2.
In general, W1X(ε) and W1X∗(ε) are not equal, for

0≤ ε≤ 2.
Gao [6] introduced the modulus of ζX(ε).

Defnition 4. ζX(ε) � sup l( 􏽧x1, x2): x1, x2 ∈ S(X) satisfy􏽮

〈x1 − x2, fx1
〉≤ ε for afx1

∈ ∇x1
}, where 0≤ ε≤ 2.
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We had W1X(ε)≤ ε/2 and W1X(ε)≤ ζX(ε) for 0≤ ε≤ 2.
BothW1X(ε) and ζX(ε) are nondecreasing functions in [0, 2]
[5, 6].

In this article, we show the relation between modulus of
W1X∗(ε) in X∗ and normal structure in X, and modulus
ζX∗(ε) in X∗ and normal structure in X, respectively. More
results for fxed points of nonexpansive mapping are ob-
tained. Among other conclusions, we proved X with
W1X∗(ε)< ε/2, where 0≤ ε≤ 2, or ζX∗(ε)< 1 + ε, where
0≤ ε≤ 1, implies X and its dual X∗ both have the uniform
normal structure.

2. Modulus W1X∗(ε)

Theorem 1 (See [7–9]). Te following proved that

(a) If X is an uniformly nonsquare space, then X must be
a supper-refexive space, and therefore refexive space

(b) X∗ is a super-refexive space if and only if X is a super-
refexive space.

Te following proved that [5]

Theorem 2 (See [5]). A space X is uniformly nonsquare if for
0≤ ε≤ 2, we have W1X(ε)< ε/2.

Theorem 3 (See [5]). A space X has a normal structure if for
0≤ ε≤ 2, we have W1X(ε)< ε/2.

Lemma 1 (Bishop–Phelps–Bollobás [10]). For a Banach
space X and 0< ε< 1, if an element z ∈ B(X) and an element
h ∈ S(X∗) satisfy the condition 1 − 〈z, h〉< ε2/4, then there
exist an element y ∈ S(X) and an element g ∈ ∇y such that
we have ‖y − z‖< ε, and also ‖g − h‖< ε.

Example 1. Let X � c0, X∗ � l1, and X∗∗ � l∞. Ten,

(a) W1c0
(ε) � ε/2, for 0≤ ε≤ 2

(b) W1l1
(ε) � ε/2, for 0≤ ε≤ 2

In fact,

(a) Let x1 � (1, 1, 0, . . . , 0, 0, 0, . . .) ∈ S(c0),

x2 � (t, 1, 0, . . . , 0, 0, 0, . . .) ∈ S c0( 􏼁, − 1≤ t≤ 1,

f1 � (1, 0, 0, . . . , 0, 0, 0, . . .) ∈ ∇x1
⊆ S l1( 􏼁.

(1)

We have 〈x1 − x2, f1〉 � 1 − t, and

x1 − x2
����

����c0
� ‖(1 − t, 0, 0, . . . , 0, 0, 0, . . .)‖c0

� 1 − t. (2)

So, W1c0
(1 − t) � 1 − t/2, for − 1≤ t≤ 1.

Let ε � 1 − t, we have W1c0
(ε) � ε/2, 0≤ ε≤ 2.

(b) Let x1 � (0, 1, 0, 0, . . . , 0, 0, 0, . . .) ∈ S(l1),

x2 �
t

2
, 1 − t,

t

2
, 0, . . . , 0, 0, 0, . . .􏼒 􏼓 ∈ S l1( 􏼁, 0≤ t≤ 1,

f1 � (− 1, 1, − 1, 0, . . . , 0, 0, 0, . . .) ∈ ∇x1
⊆ S l∞( 􏼁.

(3)

We have 〈x1 − x2, f1〉 � 〈(− t/2, t, − t/2,

0, . . . , 0, 0, 0, . . .), (− 1, 1, − 1, 0, . . . , 0, 0, 0, . . .)〉 � 2t, and
‖x1 − x2‖l1

� ‖(− t/2, t, − t/2, 0, . . . , 0, 0, 0, . . .)‖l1
� 2t.

So, W1l1
(2t) � t, 0≤ t≤ 1.

Let ε � 2t, we have W1l1
(ε) � ε/2, 0≤ ε≤ 2.

Example 2. (See [11])

(a) If H is a Hilbert space, we have W1H(ε) � (ε/2)2,
when 0≤ ε≤ 2

(b) For space X, W1X(ε) � sup 1/2(1 − n+{

(x, y)): x, y ∈ S(X), ‖x − y‖≤ ε}, where
n+(x, y) � limt⟶0+ ‖x + ty‖ − 1/t.

If X is a refexive Banach space, or separable Banach
space, or one of those spaces that admit an equivalent
smooth norm, then U(X∗) is weak∗ sequentially compact
([12], Ch. XIII).

Lemma 2 (See [13]). Let B(X∗) be weak∗ sequentially
compact but X fails to have a weak normal structure, then
there are sequence xn􏼈 􏼉⊆ S(X) and sequence fn􏼈 􏼉⊆ S(X∗)

such that for any ε> 0,

(a) ‖fi − fj‖> 2 − ε, if i≠ j; if i≠ j

(b) 〈xi, fi〉 � 1, if 1≤ i≤∞
(c) |〈xj, fi〉|< ε, if i≠ j

(d) |‖xi − xj‖ − 1|< ε

Theorem 4. Let X be a Banach space and B(X∗) weak∗
sequentially compact but X fails to have a weak normal
structure, then for some 0≤ ε≤ 2, we have W1X∗(ε)≥ ε/2.

Proof. Let 0≤ t≤ 1, and tf1 + (1 − t)f2 ∈ [f1, f2] where
[f1, f2] is a line segment which connectf1 andf2 in B(X∗),
and let tf1 + kf2 ∈􏽧f1, f2, where 􏽧f1, f2 is an arc between f1
and f2 on S(X∗). Ten, from the convexity of B(X∗), we get
k≥ 1 − t.

Since 〈x1 − x2/1 + ε, f1〉≥ 1 − ε, from
Bishop–Phelps–Bollobás theorem, there exist y1 ∈ X, and
g1 ∈ X∗ with ‖y1‖≤ ε, and ‖g1‖≤ ε such that

〈
x1 − x2

1 + ε
+ y1, f1 + g1〉 � 1,Therefore

x1 − x2

1 + ε

+ y1 ∈ ∇f1+g1
.

(4)
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We have ‖(f1 + g1) − (tf1 + kf2)‖ �

‖(1 − t)f1 − kf2 + g1‖≤ 1 − t + k + ε.
But, 〈x1 − x2/1 + ε + y1, (f1 + g1) − (tf1 + kf2)〉

�〈
x1 − x2

1 + ε
+ y1, (1 − t)f1 − kf2 + g1〉,

�〈
x1 − x2

1 + ε
, (1 − t)f1 − kf2〉 +〈y1, (1 − t)f1 − kf2〉

+〈
x1 − x2

1 + ε
+ y1, g1〉,

≥ 1 − t + k − 2ε.

(5)

So, sup 〈x, fx − fy/2〉: fx, fy ∈ S(X∗), ‖fx − fy‖≤􏽮

1 − t + k + ε for somex ∈ ∇fx
}≥ 1 − t + k/2 − 4ε.

Since ε can be arbitrarily small as we need, from con-
tinuity of W1X∗(ε), we get W1X∗(1 − t + k)≥ 1 − t + k/2.

Let ε � 1 − t + k, it is clear that 0≤ ε≤ 2, we have
W1X∗(ε)> ε/2, for any 0≤ ε≤ 2. □

Theorem  . Let B(X∗) be weak∗ sequentially compact and
W1X∗(ε)< ε/2, then for an arbitrary 0≤ ε≤ 2, X has a normal
structure.

Proof. From Teorem 2, if W1X∗(ε)< ε/2 for an arbitrary
0≤ ε≤ 2 we have X∗ as uniformly nonsquare. Terefore,
both X and X∗ are super refexive. So, the normal structure
and the weak normal structure coincide. □

3. Modulus ζX∗(ε)

For a 2-dimensional subspace X2 of space X, it is clear that
S(X2) is a simple closed curve which is symmetric about the
origin and unique up to orientation. For more properties of
curves, please see [5, 7, 14] and [15].

Theorem 6 (See [2, 4, 15]). For a 2-dimensional Banach
space X2. Te following statements are true:

(a) 6≤ l(S(X2))≤ 8
(b) l(S(X2)) � 6 if and only if S(X2) is an afne regular

hexagon
(c) l(S(X2)) � 8 if and only if S(X2) is a parallelogram

Lemma 3 (See [16]). If x1, x2 ∈ B(X) with 0< ϵ< 1 such that
‖x1 + x2‖/2> 1 − ε, then for all 0≤ c≤ 1 and
z � cx1 + (1 − c)x2 ∈ [x1, x2], it follows that ‖z‖> 1 − 2ϵ.

For the following, we assume l( 􏽧x1, x2)≤ 1/2l(S(X2))

where x1, x2 ∈ S(X).

Example 3. (a)
ζc0

(ε) � 2, whenε � 0; ζc0
(ε) � 2 + ε, when0≤ ε≤ 2

(b) ζ l1
(ε) � 2, whenε � 0; ζ l1

(ε) � 2 + ε, when0≤ ε≤ 2
(c) If H is a Hilbert space, ζH(ε) � 2 sin− 1ε2/8, when

0≤ ε≤ 2

Theorem 7 (See [6]). If ζX(ε)< 1 + ε, for any 0≤ ε< 1, or
ζX(ε)< 2ε, for any 1≤ ε≤ 2. Ten, X is uniformly nonsquare.

Theorem 8 (See [6]). If ζX(ε)< 1 + ε, for any 0≤ ε≤ 1, then
X has a normal structure.

Theorem 9. If B(X∗) is weak∗ sequentially compact and for
any 0≤ ε≤ 2, ζX∗(ε)< 1 + ε, then space X has a normal
structure.

Proof. Since ζX∗(ε)< 1 + ε for any 0≤ ε≤ 2, we have either
ζX∗(ε)< 1 + ε, for any 0≤ ε< 1, or ζX∗(ε)< 2ε, for any
1≤ ε< 2, so X∗ is uniformly nonsquare. Terefore, both X

and X∗ are super refexive. So the weak normal structure and
the normal structure coincide.

If X fails to have a weak normal structure, then for any
ε> 0, there are a sequence xn􏼈 􏼉⊆ S(X) and a sequence
fn􏼈 􏼉⊆ S(X∗) such that it satisfes 4 conditions of Lemma 2.

Suppose θ(t)> 0, and f � (t(− f1) + (1 − t) (− f2))+

θ(t)(− f2 − f1)) � (t + θ(t))(− f1)+ (1 − t + θ(t))(− f2) ∈
S(X∗), we have 0≤ θ(t)≤ t.

Since ‖ − f2 + f1/2‖≥ 1 − ε, from Lemma 3,
‖t(f1) + (1 − t)(− f2)‖≥ 1 − 2ε, for 0≤ t≤ 1.

Ten, ‖f − (− f2)‖ � ‖(t + θ(t))(− f1) + (1 − t + θ(t))

(− f2) − (− f2)‖ � ‖(t + θ(t)) (− f1) + (− t + θ(t))(− f2)‖ �

‖(t + θ(t)) (f1) + (t − θ(t))(− f2)‖ � 2t‖(t + θ(t)) (f1)+

(t − θ (t))(− f2)/2t‖≥ 2t − 4ε.
Let 〈x2, f1〉 � η. Ten, |η|≤ ε and

〈1/1 + 2ε((1 + η)x1 − x2), f1〉 � 1. By using the
Bishop–Phelps–Bollobás theorem, there exist y ∈ X, and
g ∈ X∗ with ‖y‖≤ ε, and ‖g‖≤ ε such that
1/1 + 2ε((1 + η)x1 − x2) + y ∈ ∇f1+g ∈ S(X∗∗).

We have 〈1/1 + 2ε((1 + η)x1 − x2) + y, f1 + g − f〉

�〈
1

1 + 2ε
(1 + η)x1 − x2( 􏼁, f1 − f〉 +〈

1
1 + 2ε

(1 + η)x1 − x2( 􏼁 + y, g〉 +〈y, f1 − f〉

�〈
1

1 + 2ε
(1 + η)x1 − x2( 􏼁, (1 + t + θ(t)) f1( 􏼁 +(1 − t + θ(t)) f2( 􏼁〉

+〈
1

1 + 2ε
(1 + η)x1 − x2( 􏼁 + y, g〉 +〈y, f1 − f〉 ≤

(1 + η)

1 + 2ε
((1 + t + θ(t)) − (1 − t + θ(t)))

+ 4ε �
2t(1 + η)

1 + 2ε
+ 4ε≤ 2t + 6ε for 0≤ t≤ 1.

(6)
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From Teorem 6, we also have

l 􏽧f1 + g, f􏼐 􏼑≥ l 􏽧f1, − f2􏼐 􏼑 + l 􏽧− f2, f􏼐 􏼑 − l 􏽧f1 + g, f1􏼐 􏼑≥ f1 − − f2( 􏼁
����

���� + − f2 − f
����

���� − 8ε≥ f1 + f2
����

���� + f + f2
����

����

− 8ε≥ 〈
x1 + x2

2
, f1 + f2〉 + 2t − 4ε − 8ε≥ 1 + 2t − 12ε.

(7)

We have ζX∗(2t + 6ε)≥ 1 + 2t − 12ε.
Since ε can be arbitrarily small, we have ζX∗(2t)≥ 1 + 2t,

for any 0≤ t≤ 1.
Let 2t � ε. Ten, 0≤ ε≤ 2.
Tis is equivalent to ζX∗(ε)≥ 1 + ε, for all 0≤ ε≤ 2. □

4. Uniform Normal Structure

Let N be the set of all natural numbers, and let Xi � X for all
i ∈ N be a Banach space X. For more properties of an XU,
please see [17–19].

We proved that

Theorem 10 (See [6]). If ζX(ε)< 1 + ε, then for all 0≤ ε≤ 1,
for all nontrivial ultraflter U on N, we have ζXU

(ε) � ζX(ε).
Similarly, we have

Theorem 11. If W1X(ε)< ε/2, then for all 0≤ ε< 2, and for
all nontrivial ultraflter U on N, we have W1XU

(ε) � W1X(ε).

Theorem 12 (See [20]). For a super-refexive Banach space
X, XU has a uniform normal structure if and only if X has
a normal structure.

Theorem 13. Let W1X∗(ε)< ε/2, for all 0≤ ε≤ 2, then both X

and its dual X∗ have a uniform normal structure.

Proof. From Remark 2.1, Teorem 2 and Teorem 11, we
have W1X∗

U
(ε)< ε/2, for any 0≤ ε≤ 2, then from Teorem 3,

Teorem 5, and Teorem 12, both X and its dual X∗ have
a uniform normal structure. □

Theorem 14. Let ζX∗(ε)< 1 + ε, for all 0≤ ε≤ 1, then both X

and its dual X∗ have a uniform normal structure.

Proof. From Teorem 7, Remark 2.1 and Teorem 10, we
have ζX∗

U
(ε)< 1 + ε for all 0≤ ε≤ 1. Ten, from Teorem 8,

Teorem 9, and Teorem 12, we have both space X and its
dual space X∗ have the uniform normal structure. □
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