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In this paper, we consider the nonlinear fractional Laplacian pseudoparabolic equation (NFLPPE). We mainly focus on the
convergence ofmild solutions with respect to the order of fractional Laplacian. By usingmany techniques, we obtain the result that
the mild solution will converge when the fractional order of the Laplacian tends to 1− . Te proof of convergent result relies on
sharp techniques of evaluating the exponential terms, the Sobolev embeddings, and weakly singular Gronwall inequalities.

1. Introduction

In this paper, we consider a pseudoparabolic equation with
fractional Laplacian defned as follows:

vt − k∆vt +(−∆)
s
v � G(v(x, t)), inΩ ×(0, T],

v(x, t) � 0, in zΩ,
􏼨 (1)

where Ω denotes the domain of the spatial variable x, zΩ is
the boundary of Ω, and k> 0 is a constant coefcient. Te
function G is the nonlinear source term which appears in
some physical phenomena and v(x, t) describes the state of
the unknown function generally at position x and time t.
Our main goal in this paper is to study the convergence of
the mild solution of problem 1.1 with the initial condition as
follows:

v(x, 0) � f(x), x ∈ Ω. (2)

In this paper, for simplicity, we only consider Ω � (0, π)

and so zΩ can be understood by the collection of 2 discrete
points zΩ � 0, π{ }. Te notation (−∆)s is called fractional
Laplacian with order 0< s≠ 1. From the abovementioned
reasons, we can call this equation the “1-dimensional
nonlinear fractional Laplacian pseudoparabolic equation.”

As for k � 0, we obtain the classical nonlinear parabolic
equation. Moreover, when s � 0, we obtain the ordinary
pseudoparabolic equation. Both of these equations had been
carefully studied by many researchers recently [1–3].

Pseudoparabolic equations have been studied exten-
sively in recent years. It describes a variety of physical
phenomena and also has applications in many diferent
felds. One of the debates that have taken place in relation to
equation (1) is about the local fractional operator (−∆)s, in
which many researchers believe that many physical phe-
nomena are better described compared to the classical in-
tegral diferential equation. For more information on this
regard and the properties of the operator (−∆)s, refer to
references [4–9].

Te study of fractional pseudoparabolic equations has
always attracted the attention of many researchers because of
their various applications in diferent felds, such as uni-
directional propagation of long waves in a nonlinear dis-
persed medium, homogeneous liquid permeability in
fractured rock, and heat conduction involving two tem-
peratures [10, 11]. Let us mention some previous results on
fractional pseudoparabolic equations. In [4], the researchers
carried out on the fractional parabolic equation by con-
sidering the Cauchy problem of this equation in the whole
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space Rn. In this work, the authors have investigated the
global existence and time-decay rates for small-amplitude
solutions. Some researchers have also studied the semilinear
pseudoparabolic equation with Caputo derivative [1, 12],
a fnal boundary value problem for a class of fractional
pseudoparabolic with a nonlinear reaction term [3], and
a nonlinear Kirchhof’s model of the pseudoparabolic type in
references [13, 14]. In these works, frst, the existence,
uniqueness, and regularity of the mild local solution have
been investigated. Next, the stability and regularity of the
solution are studied and discussed.Temain techniques and
methods frequently used are the modifed Lavrentiev reg-
ularization method and the Fourier truncated regularization
method. To the fractional pseudoparabolic equation,
sometimes, the inverse source problem is also discussed
[15–17].

In [13], the authors considered a nonlinear Kirchhof’s
model of pseudoparabolic type. Tey obtained the results on
the local existence and regularity of mild solution. Te
authors also showed that the ill-posed property in the sense
of Hadamard of the problem when the fractional order is
larger than 1. By using the Fourier truncation method to
regularize the problem, they established some stability es-
timates on the Hp norm under some a-priori conditions on
the sought solution.

Recently, in [15], the authors focused on the source
problem for the pseudoparabolic equation with fractional
Laplacian. In this article, they also investigated the con-
vergence of the source function when the fractional order
tends to 1− . Tere are not many results devoted to the
convergence of mild solution v(x, t) when the fractional
order tends to 1− . Motivated by the results in [15], we
decided to study the fractional pseudoparabolic equation (1)
and investigate the convergence of the state function v(x, t)

when the fractional order tends to 1− .
In the following section, we present a brief overview of

this work. Te next section gives some preliminary
knowledge on used notations, the spectral analysis of
Laplacian the defnition of fractional Laplacian, and some
information about the functional space of interest. Section 3
is dedicated to the calculation of the explicit formula of mild
solution to problem 1.1. Section 4 is to investigate the
convergence of the mild solution concerning its fractional
order in the Laplacian operator when s tends to 1− . Tis
result is important because of the relationship between the
physical phenomena involved in equations when s� 1 and
s< 1. By letting s tend to 1− , we observe the association of
subdifusion phenomena with normal difusion. Te last
section gives some discussion and proposes some directions
for improving.

2. Preliminaries

2.1. Te Less Tan or Equivalent To Notation. Given two
positive quantities y and z, we write y≲ z if there exists
a constant C> 0 such that y≤Cz.

2.2. Relevant Notation. Let us recall the following spectral
problems:

(−∆)ej(x) � λjej(x), inΩ,

ej(x) � 0, on zΩ,

⎧⎨

⎩ (3)

which admit a family of eigenvalues 0< λ1 ≤ λ2 ≤ λ3 ≤ . . .

≤ λj ≤ . . .↗∞.
We also notice that the collection of eigenfunction ej(x)

could form an orthonormal basis of L2(Ω). In this paper, the
domain of the spatial variable is Ω � (0, π), and we can
directly calculate the eigenvalues λj � j2 for j � 1, 2, 3, . . .

along with the eigenfunctions ej(x) �
���
2/π

√
sin(jx). But for

more convenience, we sometimes reuse these symbols ej(x)

and λj in next steps.

2.3. Te Mittag–Lefer Function

Defnition 1

Eα,β(z) � 􏽘
∞

m�0

z
m

Γ(αm + β)
, z ∈ C, (4)

where α> 0 and β ∈ R are arbitrary constants and Γ is the
Gamma function.

2.4. Te Fractional Laplacian Operator and Inner Product.
For s≥ 0, we defne by (−∆)s the following operator:

(−∆)
s
v ≔ 􏽘
∞

j�1
〈v, ej〉λ

s
jej, (5)

and the inner product is defned as follows:

〈u(x), v(x)〉 � 􏽚
π

0
u(x)v(x)dx. (6)

We recall the Hilbert scale space, which is given as
follows:

H
s
(Ω) � f ∈ L

2
(Ω)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏽘

∞

j�1
λ2s

j 􏽚
Ω

f(x)ej(x)dx􏼒 􏼓
2
<∞

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (7)

for any s≥ 0. It is well known that Hs(Ω) is a Hilbert space
corresponding to the norm as follows:
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‖f‖Hs(Ω) � 􏽘
∞

j�1
λ2s

j 􏽚
Ω

f(x)ej(x)dx􏼒 􏼓
2

⎛⎝ ⎞⎠

1/2

, f ∈ H
s
(Ω).

(8)

3. Mild Solution of the Problem 1.1 and
Some Lemmas

Assume that the problem has a unique solution. Let

v(x, t) � 􏽘
∞

j�1
vj(t)ej(x),with vj(t) �〈v(., t), ej(·)〉, (9)

be the decomposition of v(x, t) in L2(Ω). From (3) and by
taking the inner product with ej(x) to both sides of problem
1.1, we have

z

zt
〈v(., t), ej〉 + k.λj

z

zt
〈v(., t), ej〉 + λs

j〈v(., t), ej〉 �〈G(., t), ej〉,

〈v(., 0), ej〉 �〈f, ej〉.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(10)

Te frst equation of (10) is a diferential equation with
the classical derivative as follows:

z

zt
〈v(., t), ej〉 +

λs
j

1 + kλj

〈v(., t), ej〉 �
1

1 + kλj

〈G(., t), ej〉.

(11)

It is easy to see that the solution of it as follows:

〈v(., t), ej〉 � exp −
λs

j

1 + kλj

t􏼠 􏼡〈f, ej〉 +
1

1 + kλj

􏽚
t

0
exp

λs
j

1 + kλj

(r − t)􏼠 􏼡〈G(., t), ej〉dr. (12)

For simplicity, we denote fj � 〈f, ej〉 and Gj �

〈G(., t), ej〉 and obtain the formula as follows:

vj(t) � exp −
λs

j

1 + kλj

t􏼠 􏼡fj +
1

1 + kλj

􏽚
t

0
exp

λs
j

1 + kλj

(r − t)􏼠 􏼡Gjdr. (13)

Lemma 2. Te mild solution to NFLPPE (1) and (2) is given
by the following formula:

vs(x, t) � 􏽘
j

exp −
j
2s

t

1 + kj
2􏼠 􏼡fjej(x) + 􏽘

j

1
1 + kj

2 􏽚
t

0
exp −

j
2s

(t − r)

1 + kj
2􏼠 􏼡Gj vs(r)( 􏼁dr􏼢 􏼣ej(x), (14)
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where

fj � 􏽚
π

0
f(x)ej(x)dx,

Gj vs(r)( 􏼁 � 􏽚
π

0
G vs(x, r)( 􏼁ej(x)dx.

(15)

Lemma 3. Te mild solution to NFLPPE (1) and (2), when
s � 1 is given by the following formula:

v
∗
(x, t) � 􏽘

j

exp −
j
2
t

1 + kj
2􏼠 􏼡fjej(x) + 􏽘

j

1
1 + kj

2 􏽚
t

0
exp −

j
2
(t − r)

1 + kj
2􏼠 􏼡Gj v

∗
(r)( 􏼁dr􏼢 􏼣ej(x). (16)

Lemma 4 (Weakly singular Gronwall’s inequality, see [18]). Let
v ∈ L1[0, T] and assume that A, B, β′, c′ ∈ (0,∞) with
β′ + c′ > 1, we have

v(t)≤A + B 􏽚
t

0
(t − r)

β′−1
r

c′−1
v(r)dr. (17)

Tus, for 0< t≤T, we conclude

v(t) ≤AEβ′ ,c′ B Γ β′􏼒 􏼓􏼒 􏼓
1/β′+c′− 1

t􏼠 􏼡. (18)

4. Main Results

Te existence result of the mild solution to problem 1.1 is
widely and carefully discussed in Teorem 4.1 of [19] when

the nonlinear term G is the global Lipschitz and satisfed
some particular conditions, so we ignore that part and focus
only in investigating the convergence of the mild solution
while s⟶ 1− . Te obtained result is fully presented by the
following theorem.

Theorem  . Let G be the source function such that for any
Kg > 0 and v1, v2 ∈ L2(Ω),

G v1( 􏼁 − G v2( 􏼁
����

����L2(Ω)
≤Kg v1 − v2

����
����L2(Ω)

. (19)

We assume that v∗ ∈ L∞(0, T; L2(Ω)) and f ∈
H(s+θ− 2)μ+ρ(Ω), where s, θ, μ, ρ> 0 and (s + θ − 2)μ + ρ≤ 2,
where f is a Cauchy data. Ten, we have

vs(., t) − v
∗
(., t)

����
����Hρ(Ω)
≲ T

1+2μ
+ k

− μ
􏼐 􏼑(1 − s)

μθ
‖f‖H(s+θ−2)μ+ρ(Ω) + v

∗����
����L∞ 0,T;L2(Ω)( )

􏼒 􏼓. (20)

Proof. To start the proof, we consider (14) and (16). By
subtracting these two, we have

vs(x, t) − v
∗
(x, t)

� 􏽘
j

exp −
j
2s

t

1 + kj
2􏼠 􏼡 − exp −

j
2
t

1 + kj
2􏼠 􏼡􏼠 􏼡fjej(x)

+ 􏽘
j

1
1 + kj

2 􏽚
t

0
exp −

j
2s

(t − r)

1 + kj
2􏼠 􏼡 Gj vs(r)( 􏼁 − Gj v

∗
(r)( 􏼁􏼐 􏼑dr􏼢 􏼣ej(x)

+ 􏽘
j

1
1 + kj

2 􏽚
t

0
exp −

j
2s

(t − r)

1 + kj
2􏼠 􏼡 − exp −

j
2
(t − r)

1 + kj
2􏼠 􏼡􏼠 􏼡Gj v

∗
(r)( 􏼁dr􏼢 􏼣ej(x)

� M1(x, t) + M2(x, t) + M3(x, t).

(21)

In the sequel, we prove estimates for M1, M2, and M3,
respectively.Terefore, frst, we go to prove the boundedness
of M1.
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(M1): from [15], we get that if j≥ 1, then we fnd that
j2s − j2 ≤Cθj

s+θ(1 − s)θ, for any θ> 0 and Cθ is the constant
which depends on θ. For any μ> 0, in view of the inequality
|e− m − e− n|≤Cμ|m − n|μ, we obtain

exp −
j
2s

t

1 + kj
2􏼠 􏼡 − exp −

j
2
t

1 + kj
2􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤Cμt

μ
j
2s

− j
2􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
μ
1 + kj

2
􏼐 􏼑

− μ

≤C(μ, θ)t
μ
j

(s+θ)μ
(1 − s)

μθ 1 + kj
2

􏼐 􏼑
− μ

≤C(μ, θ)k
− μ

(1 − s)
μθ

j
(s+θ− 2)μ

t
μ
.

(22)

Let us choose s, θ such that s + θ≤ 2. Ten, we obtain

exp −
j
2s

t

1 + kj
2􏼠 􏼡 − exp −

j
2
t

1 + kj
2􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤C(μ, θ)k
− μ

(1 − s)
μθ

t
μ
.

(23)

Terefore,

M1(., t)
����

����
2
Hρ(Ω)

� 􏽘
j

j
2ρ exp −

j2st

1 + kj2
􏼠 􏼡 − exp −

j2t

1 + kj2
􏼠 􏼡􏼠 􏼡

2

fj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

≤ |C(μ, θ)|
2
k

− 2μ
(1 − s)

2μθ
􏽘

j

j
2(s+θ− 2)μ+2ρ

fj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

� |C(μ, θ)|
2
k

− 2μ
(1 − s)

2μθ
‖f‖

2
H(s+θ−2)μ+ρ(Ω),

(24)

and this means that M1 is bounded. (M2): Using the Hölder inequality, we fnd that

M2(., t)
����

����
2
Hρ(Ω)

� 􏽘
j

j
2ρ

1 + kj
2

􏼐 􏼑
2 􏽚

t

0
exp −

j2s(t − r)

1 + kj2
􏼠 􏼡 Gj vs(r)( 􏼁 − Gj v

∗
(r)( 􏼁􏼐 􏼑dr􏼢 􏼣

2

≤ 􏽘
j

j
2ρ

1 + kj
2

􏼐 􏼑
2 􏽚

t

0
exp −

2j
2s

(t − r)

1 + kj
2􏼠 􏼡 Gj vs(r)( 􏼁 − Gj v

∗
(r)( 􏼁􏼐 􏼑

2
dr.

(25)

Due to the e− z ≤Cεz
− ε, we get that

exp −
2j

2s
(t − r)

1 + kj
2􏼠 􏼡≤ Cε

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 j2s

1 + kj2
􏼠 􏼡

− 2ε

(t − r)
− 2ε

� Cε
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
j

− 4sε 1 + kj
2

􏼐 􏼑
2ε

(t − r)
− 2ε

. (26)

Tis implies that
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j
2ρ

1 + kj
2

􏼐 􏼑
2 exp −

2j
2s

(t − r)

1 + kj
2􏼠 􏼡≤ Cε

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
j
2ρ− 4sε 1 + kj

2
􏼐 􏼑

2ε− 2
(t − r)

− 2ε
. (27)

Since ρ≤ 2 sε and ε≤ 1, we obtain that

M2(., t)
����

����
2
Hρ(Ω)

≤ 􏽘
j

j
2ρ

1 + kj
2

􏼐 􏼑
2 􏽚

t

0
exp −

2j
2s

(t − r)

1 + kj
2􏼠 􏼡 Gj vs(r)( 􏼁 − Gj v

∗
(r)( 􏼁􏼐 􏼑

2
dr

≤ Cε
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏽚
t

0
(t − r)

− 2ε
G vs(r)( 􏼁 − G v

∗
(r)( 􏼁

����
����
2
L2(Ω)

dr.

(28)

Since the global Lipschitz is G, we derive that

􏽚
t

0
(t − r)

− 2ε
G vs(r)( 􏼁 − G v

∗
(r)( 􏼁

����
����
2
L2(Ω)

dr

≤Kg 􏽚
t

0
(t − r)

− 2ε
vs(r) − v

∗
(r)

����
����
2
L2(Ω)

dr

≤KgCρ 􏽚
t

0
(t − r)

− 2ε
vs(r) − v

∗
(r)

����
����
2
Hρ(Ω)

dr,

(29)

where we have used the Sobolev embeddingHρ(Ω)↪L2(Ω).
(M3): applying the Hölder inequality, we infer that

M3(., t)
����

����
2
Hρ(Ω)

� 􏽘
j

j
2ρ

1 + kj
2

􏼐 􏼑
2 × 􏽚

t

0
exp −

j2s(t − r)

1 + kj2
􏼠 􏼡 − exp −

j2(t − r)

1 + kj2
􏼠 􏼡􏼠 􏼡Gj v

∗
(r)( 􏼁dr􏼢 􏼣

2

≤ 􏽘
j

j
2ρ

1 + kj
2

􏼐 􏼑
2 × 􏽚

t

0
exp −

j2s(t − r)

1 + kj2
􏼠 􏼡 − exp −

j2(t − r)

1 + kj2
􏼠 􏼡􏼠 􏼡

2

Gj v
∗
(r)( 􏼁􏼐 􏼑

2
dr,

(30)

and using (22), we obtain that

exp −
j
2s

(t − r)

1 + kj
2􏼠 􏼡 − exp −

j
2
(t − r)

1 + kj
2􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤C(μ, θ)k
− μ

(1 − s)
μθ

j
(s+θ− 2)μ

(t − r)
μ
.

(31)

Tus, we obtain

j
2ρ

1 + kj
2

􏼐 􏼑
2 exp −

j2s(t − r)

1 + kj2
􏼠 􏼡 − exp −

j2(t − r)

1 + kj2
􏼠 􏼡􏼠 􏼡

2

Gj v
∗
(r)( 􏼁􏼐 􏼑

2

≤C(μ, θ)k
− 2μ− 2

(1 − s)
2μθ

j
2(s+θ− 2)μ+2ρ− 4

(t − r)
2μ

.

(32)

Since (s + θ − 2)μ + ρ≤ 2, we obtain
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j
2ρ

1 + kj
2

􏼐 􏼑
2 exp −

j2s(t − r)

1 + kj2
􏼠 􏼡 − exp −

j2(t − r)

1 + kj2
􏼠 􏼡􏼠 􏼡

2

Gj v
∗
(r)( 􏼁􏼐 􏼑

2

≤C(μ, θ)k
− 2μ− 2

(1 − s)
2μθ

(t − r)
2μ

.

(33)

From (30), we have

M3(., t)
����

����
2
Hρ(Ω)
≤C(μ, θ)k

− 2μ− 2
(1 − s)

2μθ
􏽚

t

0
(t − r)

2μ
G v
∗
(r)( 􏼁

����
����
2
L2(Ω)

dr

≤C(μ, θ)Kgk
− 2μ− 2

(1 − s)
2μθ

􏽚
t

0
(t − r)

2μ
v
∗
(r)

����
����
2
L2(Ω)

dr

≤C μ, θ, Kg, k􏼐 􏼑(1 − s)
2μθ

v
∗����
����
2
L∞ 0,T;L2(Ω)( )

􏽚
t

0
(t − r)

2μdr􏼠 􏼡,

(34)

where C(μ, θ, Kg, k) indicates the constant which depends
on μ, θ, Kg, k. It is easy to see that 􏽒

t

0 (t − r)2μdr �

t1+2μ/1 + 2μ. Hence, we infer that

M3(., t)
����

����Hρ(Ω)
≤C μ, θ, Kg, k􏼐 􏼑T

1+2μ
(1 − s)

μθ
v
∗����
����L∞ 0,T;L2(Ω)( )

.

(35)

Combining three steps as mentioned earlier, we derive
that

vs(., t) − v
∗
(., t)

����
����Hρ(Ω)
≤ M1(., t)

����
����Hρ(Ω)

+ M2(., t)
����

����Hρ(Ω)
+ M3(., t)

����
����Hρ(Ω)

≤C μ, θ, Kg, k􏼐 􏼑 T
1+2μ

+ k
− μ

􏼐 􏼑(1 − s)
μθ

× ‖f‖H(s+θ−2)μ+ρ(Ω) + v
∗����
����L∞ 0,T;L2(Ω)( )

􏼒 􏼓

+ KgCρ 􏽚
t

0
(t − r)

− 2ε
vs(r) − v

∗
(r)

����
����
2
Hρ(Ω)

dr.

(36)

By Lemma 4 and equation (36), we infer that

v(t) � vs(., t) − v
∗
(., t)

����
����Hρ(Ω)

,

A � C μ, θ, Kg, k􏼐 􏼑 T
1+2μ

+ k
− μ

􏼐 􏼑(1 − s)
μθ

× ‖f‖H(s+θ−2)μ+ρ(Ω) + v
∗����
����L∞ 0,T;L2(Ω)( )

􏼒 􏼓,
(37)

and B � KgCρ, β
′ � 1 − 2ε and c′ � 1. Next, by applying

Lemma 4, we derive that

vs(., t) − v
∗
(., t)

����
����Hρ(Ω)
≲ T

1+2μ
+ k

− μ
􏼐 􏼑(1 − s)

μθ
‖f‖H(s+θ−2)μ+ρ(Ω) + v

∗����
����L∞ 0,T;L2(Ω)( )

􏼒 􏼓. (38)
□
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5. Conclusion

Motivated by the result of [15], this work has considered the
1-dimensional fractional Laplacian pseudoparabolic equa-
tion with the nonlinear source term. By considering the
problem included with an initial condition and some con-
ditions in the source function, we showed the continuous
dependence of mild solution to the fractional-order
parameter.
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